[1]
Sarker, S.D.; Nahar, L. Application of computation in building dereplicated phytochemical libraries. In: Computational Phytochemistry; Elsevier, 2018.
[7]
Koutsoukas, A.; Paricharak, S.; Galloway, W.R.; Spring, D.R.; Ijzerman, A.P.; Glen, R.C.; Marcus, D.; Bender, A.A. How diverse are diversity assessment methods? A comparative analysis and benchmarking of molecular descriptor space. J. Chem. Inf. Model., 2014, 54(1), 230-242.
[40]
McLaren, D.G.; Shah, V.; Wisniewski, T.; Ghislain, L.; Liu, C.; Zhang, H.; Saldanha, S.A. High-throughput mass spectrometry for hit identification: current landscape and future perspectives. SLAS Discov. Adv. Life Sci., 2021, 26(2), 168-191.
[47]
Weininger, D. SMILES. 3. DEPICT. Graphical depiction of chemical structures. J. Chem. Inf. Model., 1990, 30(3), 237-243.
[48]
O’Boyle, N.M. Towards a Universal SMILES representation - A standard method to generate canonical SMILES based on the InChI. J. Cheminform., 2012, 4, 22.
[50]
McNaught, A. The IUPAC international chemical identifier. Chem. Int., 2006, 28(6), 12-15.
[59]
Mercado, R.; Rastemo, T.; Lindelöf, E.; Klambauer, G.; Engkvist, O.; Chen, H.; Bjerrum, E.J. Graph networks for molecular design. Mach. Learn.: Sci. Technol., 2020, 2, 025023.
[86]
Saldívar-González, F.I.; Pilón-Jiménez, B.A.; Medina-Franco, J.L. Chemical space of naturally occurring compounds. Phys. Sci. Rev., 2018, 4, 20180103.
[90]
Naveja, J.J.; Rico-Hidalgo, M.P.; Medina-Franco, J.L. Analysis of a large food chemical database: chemical space, diversity, and complexity. F1000 Res., 2018, 2018, 7.
[110]
Yan, Q. Translational Bioinformatics and Systems Biology Methods for Personalized Medicine. Methods Mol. Biol., 2010, 662, 167-168.
[128]
dos Santos, J.L.; Chin, C.M. Pan-assay interference compounds (pa1ins): warning signs in biochemical-pharmacological evaluations. Biochem. Pharmacol., 2015, 4, e173.
[132]
Gilberg, E.; Stumpfe, D.; Bajorath, J. Towards a systematic assessment of assay interference: Identification of extensively tested compounds with high assay promiscuity. F1000 Res., 2017, 6, 1505.
[137]
Chakravorty, S.J.; Chan, J.; Greenwood, M.N.; Popa-Burke, I.; Remlinger, K.S.; Pickett, S.D.; Green, D.; Fillmore, M.C.; Dean, T.W.; Luengo, J.I.; Macarrón, R. Nuisance compounds, PAINS filters, and dark chemical matter in the GSK HTS collection. SLAS Disc. Adv. Life Sci., 2018, 35(6), 532-545.
[139]
Berthold, M.R.; Cebron, N.; Dill, F.; Gabriel, T.R.; Kötter, T.; Meinl, T.; Ohl, P.; Sieb, C.; Thiel, K.; Wiswedel, B. Data Analysis, Machine Learning and Applications. Proceedings of the 31st Annual Conference of the Gesellschaft für Klassifikation, GermanyMarch 7-9, 2007
[141]
Studio Team, R. RStudio: Integrated Development for R. RStudio, Inc.: Boston, MA , 2016.