Nanotechnology-Based Approaches for Nose-to-Brain Drug Delivery in Neurodegenerative Diseases

Page: [1913 - 1921] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Drug delivery to the brain is a challenging task as many drugs do not cross the blood-brain barrier (BBB). As a result, designing strategies to target drugs to the brain requires significant effort. However, recent research has focused on the administration of drugs through the nose to the brain, a noninvasive way to bypass the BBB and deliver therapeutic molecules directly to the brain. Nose-to-brain drug delivery is a promising approach that allows for the direct transportation of therapeutic molecules to the brain while increasing drug concentration in the brain. This approach has gained considerable attention due to its non-invasive nature, which makes it feasible, reliable, and efficient. One promising approach for nose-to-brain drug delivery is the use of nanoparticles as a platform for drug and gene delivery. Nanoparticles offer several advantages, including the ability to protect therapeutic drugs from degradation and increase the efficacy of drug delivery due to their unique size, shape, and surface features. Nanoparticles can also be engineered to target specific cells or tissues, enabling more precise drug delivery to the brain. The use of nanoparticles for nose-to-brain drug delivery has been extensively studied, and recent developments have shown promising results. In addition, patents relating to medication targeting via the nasal route have been developed. These patents cover various aspects of drug delivery, including the use of different types of nanoparticles, methods for producing nanoparticles, and methods for delivering nanoparticles to the brain.

[1]
Fitzmaurice, C.; Abate, D.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdel-Rahman, O.; Abdelalim, A.; Abdoli, A.; Abdollahpour, I.; Abdulle, A.S.M.; Abebe, N.D.; Abraha, H.N.; Abu-Raddad, L.J.; Abualhasan, A.; Adedeji, I.A.; Advani, S.M.; Afarideh, M.; Afshari, M.; Aghaali, M.; Agius, D.; Agrawal, S.; Ahmadi, A.; Ahmadian, E.; Ahmadpour, E.; Ahmed, M.B.; Akbari, M.E.; Akinyemiju, T.; Al-Aly, Z.; AlAbdulKader, A.M.; Alahdab, F.; Alam, T.; Alamene, G.M.; Alemnew, B.T.T.; Alene, K.A.; Alinia, C.; Alipour, V.; Aljunid, S.M.; Bakeshei, F.A.; Almadi, M.A.H.; Almasi-Hashiani, A.; Alsharif, U.; Alsowaidi, S.; Alvis-Guzman, N.; Amini, E.; Amini, S.; Amoako, Y.A.; Anbari, Z.; Anber, N.H.; Andrei, C.L.; Anjomshoa, M.; Ansari, F.; Ansariadi, A.; Appiah, S.C.Y.; Arab-Zozani, M.; Arabloo, J.; Arefi, Z.; Aremu, O.; Areri, H.A.; Artaman, A.; Asayesh, H.; Asfaw, E.T.; Ashagre, A.F.; Assadi, R.; Ataeinia, B.; Atalay, H.T.; Ataro, Z.; Atique, S.; Ausloos, M.; Avila-Burgos, L.; Avokpaho, E.F.G.A.; Awasthi, A.; Awoke, N.; Ayala Quintanilla, B.P.; Ayanore, M.A.; Ayele, H.T.; Babaee, E.; Bacha, U.; Badawi, A.; Bagherzadeh, M.; Bagli, E.; Balakrishnan, S.; Balouchi, A.; Bärnighausen, T.W.; Battista, R.J.; Behzadifar, M.; Behzadifar, M.; Bekele, B.B.; Belay, Y.B.; Belayneh, Y.M.; Berfield, K.K.S.; Berhane, A.; Bernabe, E.; Beuran, M.; Bhakta, N.; Bhattacharyya, K.; Biadgo, B.; Bijani, A.; Bin Sayeed, M.S.; Birungi, C.; Bisignano, C.; Bitew, H.; Bjørge, T.; Bleyer, A.; Bogale, K.A.; Bojia, H.A.; Borzì, A.M.; Bosetti, C.; Bou-Orm, I.R.; Brenner, H.; Brewer, J.D.; Briko, A.N.; Briko, N.I.; Bustamante-Teixeira, M.T.; Butt, Z.A.; Carreras, G.; Carrero, J.J.; Carvalho, F.; Castro, C.; Castro, F.; Catalá-López, F.; Cerin, E.; Chaiah, Y.; Chanie, W.F.; Chattu, V.K.; Chaturvedi, P.; Chauhan, N.S.; Chehrazi, M.; Chiang, P.P.C.; Chichiabellu, T.Y.; Chido-Amajuoyi, O.G.; Chimed-Ochir, O.; Choi, J.Y.J.; Christopher, D.J.; Chu, D.T.; Constantin, M.M.; Costa, V.M.; Crocetti, E.; Crowe, C.S.; Curado, M.P.; Dahlawi, S.M.A.; Damiani, G.; Darwish, A.H.; Daryani, A.; das Neves, J.; Demeke, F.M.; Demis, A.B.; Demissie, B.W.; Demoz, G.T.; Denova-Gutiérrez, E.; Derakhshani, A.; Deribe, K.S.; Desai, R.; Desalegn, B.B.; Desta, M.; Dey, S.; Dharmaratne, S.D.; Dhimal, M.; Diaz, D.; Dinberu, M.T.T.; Djalalinia, S.; Doku, D.T.; Drake, T.M.; Dubey, M.; Dubljanin, E.; Duken, E.E.; Ebrahimi, H.; Effiong, A.; Eftekhari, A.; El Sayed, I.; Zaki, M.E.S.; El-Jaafary, S.I.; El-Khatib, Z.; Elemineh, D.A.; Elkout, H.; Ellenbogen, R.G.; Elsharkawy, A.; Emamian, M.H.; Endalew, D.A.; Endries, A.Y.; Eshrati, B.; Fadhil, I.; Fallah Omrani, V.; Faramarzi, M.; Farhangi, M.A.; Farioli, A.; Farzadfar, F.; Fentahun, N.; Fernandes, E.; Feyissa, G.T.; Filip, I.; Fischer, F.; Fisher, J.L.; Force, L.M.; Foroutan, M.; Freitas, M.; Fukumoto, T.; Futran, N.D.; Gallus, S.; Gankpe, F.G.; Gayesa, R.T.; Gebrehiwot, T.T.; Gebremeskel, G.G.; Gedefaw, G.A.; Gelaw, B.K.; Geta, B.; Getachew, S.; Gezae, K.E.; Ghafourifard, M.; Ghajar, A.; Ghashghaee, A.; Gholamian, A.; Gill, P.S.; Ginindza, T.T.G.; Girmay, A.; Gizaw, M.; Gomez, R.S.; Gopalani, S.V.; Gorini, G.; Goulart, B.N.G.; Grada, A.; Ribeiro Guerra, M.; Guimaraes, A.L.S.; Gupta, P.C.; Gupta, R.; Hadkhale, K.; Haj-Mirzaian, A.; Haj-Mirzaian, A.; Hamadeh, R.R.; Hamidi, S.; Hanfore, L.K.; Haro, J.M.; Hasankhani, M.; Hasanzadeh, A.; Hassen, H.Y.; Hay, R.J.; Hay, S.I.; Henok, A.; Henry, N.J.; Herteliu, C.; Hidru, H.D.; Hoang, C.L.; Hole, M.K.; Hoogar, P.; Horita, N.; Hosgood, H.D.; Hosseini, M.; Hosseinzadeh, M.; Hostiuc, M.; Hostiuc, S.; Househ, M.; Hussen, M.M.; Ileanu, B.; Ilic, M.D.; Innos, K.; Irvani, S.S.N.; Iseh, K.R.; Islam, S.M.S.; Islami, F.; Jafari Balalami, N.; Jafarinia, M.; Jahangiry, L.; Jahani, M.A.; Jahanmehr, N.; Jakovljevic, M.; James, S.L.; Javanbakht, M.; Jayaraman, S.; Jee, S.H.; Jenabi, E.; Jha, R.P.; Jonas, J.B.; Jonnagaddala, J.; Joo, T.; Jungari, S.B.; Jürisson, M.; Kabir, A.; Kamangar, F.; Karch, A.; Karimi, N.; Karimian, A.; Kasaeian, A.; Kasahun, G.G.; Kassa, B.; Kassa, T.D.; Kassaw, M.W.; Kaul, A.; Keiyoro, P.N.; Kelbore, A.G.; Kerbo, A.A.; Khader, Y.S.; Khalilarjmandi, M.; Khan, E.A.; Khan, G.; Khang, Y.H.; Khatab, K.; Khater, A.; Khayamzadeh, M.; Khazaee-Pool, M.; Khazaei, S.; Khoja, A.T.; Khosravi, M.H.; Khubchandani, J.; Kianipour, N.; Kim, D.; Kim, Y.J.; Kisa, A.; Kisa, S.; Kissimova-Skarbek, K.; Komaki, H.; Koyanagi, A.; Krohn, K.J.; Bicer, B.K.; Kugbey, N.; Kumar, V.; Kuupiel, D.; La Vecchia, C.; Lad, D.P.; Lake, E.A.; Lakew, A.M.; Lal, D.K.; Lami, F.H.; Lan, Q.; Lasrado, S.; Lauriola, P.; Lazarus, J.V.; Leigh, J.; Leshargie, C.T.; Liao, Y.; Limenih, M.A.; Listl, S.; Lopez, A.D.; Lopukhov, P.D.; Lunevicius, R.; Madadin, M.; Magdeldin, S.; El Razek, H.M.A.; Majeed, A.; Maleki, A.; Malekzadeh, R.; Manafi, A.; Manafi, N.; Manamo, W.A.; Mansourian, M.; Mansournia, M.A.; Mantovani, L.G.; Maroufizadeh, S.; Martini, S.M.S.; Mashamba-Thompson, T.P.; Massenburg, B.B.; Maswabi, M.T.; Mathur, M.R.; McAlinden, C.; McKee, M.; Meheretu, H.A.A.; Mehrotra, R.; Mehta, V.; Meier, T.; Melaku, Y.A.; Meles, G.G.; Meles, H.G.; Melese, A.; Melku, M.; Memiah, P.T.N.; Mendoza, W.; Menezes, R.G.; Merat, S.; Meretoja, T.J.; Mestrovic, T.; Miazgowski, B.; Miazgowski, T.; Mihretie, K.M.M.; Miller, T.R.; Mills, E.J.; Mir, S.M.; Mirzaei, H.; Mirzaei, H.R.; Mishra, R.; Moazen, B.; Mohammad, D.K.; Mohammad, K.A.; Mohammad, Y.; Darwesh, A.M.; Mohammadbeigi, A.; Mohammadi, H.; Mohammadi, M.; Mohammadian, M.; Mohammadian-Hafshejani, A.; Mohammadoo-Khorasani, M.; Mohammadpourhodki, R.; Mohammed, A.S.; Mohammed, J.A.; Mohammed, S.; Mohebi, F.; Mokdad, A.H.; Monasta, L.; Moodley, Y.; Moosazadeh, M.; Moossavi, M.; Moradi, G.; Moradi-Joo, M.; Moradi-Lakeh, M.; Moradpour, F.; Morawska, L.; Morgado-da-Costa, J.; Morisaki, N.; Morrison, S.D.; Mosapour, A.; Mousavi, S.M.; Muche, A.A.; Muhammed, O.S.S.; Musa, J.; Nabhan, A.F.; Naderi, M.; Nagarajan, A.J.; Nagel, G.; Nahvijou, A.; Naik, G.; Najafi, F.; Naldi, L.; Nam, H.S.; Nasiri, N.; Nazari, J.; Negoi, I.; Neupane, S.; Newcomb, P.A.; Nggada, H.A.; Ngunjiri, J.W.; Nguyen, C.T.; Nikniaz, L.; Ningrum, D.N.A.; Nirayo, Y.L.; Nixon, M.R.; Nnaji, C.A.; Nojomi, M.; Nosratnejad, S.; Shiadeh, M.N.; Obsa, M.S.; Ofori-Asenso, R.; Ogbo, F.A.; Oh, I.H.; Olagunju, A.T.; Olagunju, T.O.; Oluwasanu, M.M.; Omonisi, A.E.; Onwujekwe, O.E.; Oommen, A.M.; Oren, E.; Ortega-Altamirano, D.D.V.; Ota, E.; Otstavnov, S.S.; Owolabi, M.O.; P A, M.; Padubidri, J.R.; Pakhale, S.; Pakpour, A.H.; Pana, A.; Park, E.K.; Parsian, H.; Pashaei, T.; Patel, S.; Patil, S.T.; Pennini, A.; Pereira, D.M.; Piccinelli, C.; Pillay, J.D.; Pirestani, M.; Pishgar, F.; Postma, M.J.; Pourjafar, H.; Pourmalek, F.; Pourshams, A.; Prakash, S.; Prasad, N.; Qorbani, M.; Rabiee, M.; Rabiee, N.; Radfar, A.; Rafiei, A.; Rahim, F.; Rahimi, M.; Rahman, M.A.; Rajati, F.; Rana, S.M.; Raoofi, S.; Rath, G.K.; Rawaf, D.L.; Rawaf, S.; Reiner, R.C.; Renzaho, A.M.N.; Rezaei, N.; Rezapour, A.; Ribeiro, A.I.; Ribeiro, D.; Ronfani, L.; Roro, E.M.; Roshandel, G.; Rostami, A.; Saad, R.S.; Sabbagh, P.; Sabour, S.; Saddik, B.; Safiri, S.; Sahebkar, A.; Salahshoor, M.R.; Salehi, F.; Salem, H.; Salem, M.R.; Salimzadeh, H.; Salomon, J.A.; Samy, A.M.; Sanabria, J.; Santric Milicevic, M.M.; Sartorius, B.; Sarveazad, A.; Sathian, B.; Satpathy, M.; Savic, M.; Sawhney, M.; Sayyah, M.; Schneider, I.J.C.; Schöttker, B.; Sekerija, M.; Sepanlou, S.G.; Sepehrimanesh, M.; Seyedmousavi, S.; Shaahmadi, F.; Shabaninejad, H.; Shahbaz, M.; Shaikh, M.A.; Shamshirian, A.; Shamsizadeh, M.; Sharafi, H.; Sharafi, Z.; Sharif, M.; Sharifi, A.; Sharifi, H.; Sharma, R.; Sheikh, A.; Shirkoohi, R.; Shukla, S.R.; Si, S.; Siabani, S.; Silva, D.A.S.; Silveira, D.G.A.; Singh, A.; Singh, J.A.; Sisay, S.; Sitas, F.; Sobngwi, E.; Soofi, M.; Soriano, J.B.; Stathopoulou, V.; Sufiyan, M.B.; Tabarés-Seisdedos, R.; Tabuchi, T.; Takahashi, K.; Tamtaji, O.R.; Tarawneh, M.R.; Tassew, S.G.; Taymoori, P.; Tehrani-Banihashemi, A.; Temsah, M.H.; Temsah, O.; Tesfay, B.E.; Tesfay, F.H.; Teshale, M.Y.; Tessema, G.A.; Thapa, S.; Tlaye, K.G.; Topor-Madry, R.; Tovani-Palone, M.R.; Traini, E.; Tran, B.X.; Tran, K.B.; Tsadik, A.G.; Ullah, I.; Uthman, O.A.; Vacante, M.; Vaezi, M.; Varona Pérez, P.; Veisani, Y.; Vidale, S.; Violante, F.S.; Vlassov, V.; Vollset, S.E.; Vos, T.; Vosoughi, K.; Vu, G.T.; Vujcic, I.S.; Wabinga, H.; Wachamo, T.M.; Wagnew, F.S.; Waheed, Y.; Weldegebreal, F.; Weldesamuel, G.T.; Wijeratne, T.; Wondafrash, D.Z.; Wonde, T.E.; Wondmieneh, A.B.; Workie, H.M.; Yadav, R.; Yadegar, A.; Yadollahpour, A.; Yaseri, M.; Yazdi-Feyzabadi, V.; Yeshaneh, A.; Yimam, M.A.; Yimer, E.M.; Yisma, E.; Yonemoto, N.; Younis, M.Z.; Yousefi, B.; Yousefifard, M.; Yu, C.; Zabeh, E.; Zadnik, V.; Moghadam, T.Z.; Zaidi, Z.; Zamani, M.; Zandian, H.; Zangeneh, A.; Zaki, L.; Zendehdel, K.; Zenebe, Z.M.; Zewale, T.A.; Ziapour, A.; Zodpey, S.; Murray, C.J.L. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017: A systematic analysis for the global burden of disease study. JAMA Oncol., 2019, 5(12), 1749-1768.
[http://dx.doi.org/10.1001/jamaoncol.2019.2996] [PMID: 31560378]
[2]
Kumari, R.; Verma, A.; Sharma, D.; Mishra, S.; Sahi, A.K.; Gundu, S.; Singh, N.; Singh, J.; Azure, A.; Venaik, A. Mechanism ethnomedicinal and phytochemical effect of ayurvedic plants in prevention and management of senile dementia of Alzheimer’s disease: A review. Int. J.Pharmaceut. Res., 2021, 13(2)
[3]
Pires, P.C.; Santos, A.O. Nanosystems in nose-to-brain drug delivery: A review of non-clinical brain targeting studies. J. Control. Release, 2018, 270, 89-100.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.047] [PMID: 29199063]
[4]
Wang, Z.; Xiong, G.; Tsang, W.C.; Schätzlein, A.G.; Uchegbu, I.F. Nose-to-Brain Delivery. J. Pharmacol. Exp. Ther., 2019, 370(3), 593-601.
[http://dx.doi.org/10.1124/jpet.119.258152] [PMID: 31126978]
[5]
Smriti, O.; Shalini, Y.; Ajeet; Babita, A.; Saurabh, G.K.; Sudhanshu, M. Considering the conception of nanotechnology integrated on herbal formulation for the management of cancer. Lett. Drug Des. Discov., 2023, 20(10)
[6]
Ourednik, J.; Ourednik, V.; Lynch, W.P.; Schachner, M.; Snyder, E.Y. Neural stem cells display an inherent mechanism for rescuing dysfunctional neurons. Nat. Biotechnol., 2002, 20(11), 1103-1110.
[http://dx.doi.org/10.1038/nbt750] [PMID: 12379867]
[7]
Elfawy, H.A.; Das, B. Crosstalk between mitochondrial dysfunction, oxidative stress, and age related neurodegenerative disease: Etiologies and therapeutic strategies. Life Sci., 2019, 218, 165-184.
[http://dx.doi.org/10.1016/j.lfs.2018.12.029] [PMID: 30578866]
[8]
Choonara, Y.; Pillay, V.; Du Toit, L.; Modi, G.; Naidoo, D.; Ndesendo, V.; Sibambo, S. Trends in the molecular pathogenesis and clinical therapeutics of common neurodegenerative disorders. Int. J. Mol. Sci., 2009, 10(6), 2510-2557.
[http://dx.doi.org/10.3390/ijms10062510] [PMID: 19582217]
[9]
Khan, A.; Jahan, S.; Imtiyaz, Z.; Alshahrani, S.; Antar Makeen, H.; Mohammed Alshehri, B.; Kumar, A.; Arafah, A.; Rehman, M. Neuroprotection: targeting multiple pathways by naturally occurring phytochemicals. Biomedicines, 2020, 8(8), 284.
[http://dx.doi.org/10.3390/biomedicines8080284] [PMID: 32806490]
[10]
Przedborski, S.; Vila, M.; Jackson-Lewis, V. Series Introduction: Neurodegeneration: What is it and where are we? J. Clin. Invest., 2003, 111(1), 3-10.
[http://dx.doi.org/10.1172/JCI200317522] [PMID: 12511579]
[11]
Shohag, S.; Akhter, S.; Islam, S.; Sarker, T.; Sifat, M.K.; Rahman, M.M.; Islam, M.R.; Sharma, R. Perspectives on the molecular mediators of oxidative stress and antioxidant strategies in the context of neuroprotection and neurolongevity: An extensive review. Oxid. Med. Cell. Longev., 2022, 2022, 1-20.
[http://dx.doi.org/10.1155/2022/7743705] [PMID: 36062188]
[12]
Wang, L.; Peng, J.; Ou-Yang, J.; Gan, L.; Zeng, S.; Wang, H.Y.; Zuo, G.C.; Qiu, L. Effects of rhythmic auditory stimulation on gait and motor function in Parkinson’s disease: A systematic review and meta-analysis of clinical randomized controlled studies. Front. Neurol., 2022, 13, 818559.
[http://dx.doi.org/10.3389/fneur.2022.818559] [PMID: 35493833]
[13]
Baker, J.; Schott, J.M. AD and its comorbidities: An obstacle to develop a clinically efficient treatment? Rev. Neurol., 2022, 178(5), 450-459.
[http://dx.doi.org/10.1016/j.neurol.2022.03.001] [PMID: 35513932]
[14]
Chen, J.; Martin, A.R.; Finlay, W.H. Recent in vitro and In Silico Advances in the Understanding of Intranasal Drug Delivery. Curr. Pharm. Des., 2021, 27(12), 1482-1497.
[http://dx.doi.org/10.2174/1381612826666201112143230] [PMID: 33183191]
[15]
Hummel, T.; Whitcroft, K.L.; Andrews, P.; Altundag, A.; Cinghi, C.; Costanzo, R.M.; Damm, M.; Frasnelli, J.; Gudziol, H.; Gupta, N.; Haehne, A.; Holbrook, E.; Hong, S.C.; Hornung, D.; Hüttenbrink, K.B.; Kamel, R.; Kobayashi, M.; Konstantinidis, I.; Landis, B.N.; Leopold, D.A.; Macchi, A.; Miwa, T.; Moesges, R.; Mullol, J.; Mueller, C.A.; Ottaviano, G.; Passali, G.C.; Philpott, C.; Pinto, J.M.; Ramakrishnan, V.J.; Rombaux, P.; Roth, Y.; Schlosser, R.A.; Shu, B.; Soler, G.; Stjärne, P.; Stuck, B.A.; Vodicka, J.; Welge-Luessen, A. Position paper on olfactory dysfunction. Rhinology, 2017, 54(26), 1-30.
[http://dx.doi.org/10.4193/Rhino16.248] [PMID: 29528615]
[16]
Selvaraj, K.; Gowthamarajan, K.; Karri, V.V.S.R. Nose to brain transport pathways an overview: Potential of nanostructured lipid carriers in nose to brain targeting. Artif. Cells Nanomed. Biotechnol., 2018, 46(8), 2088-2095.
[PMID: 29282995]
[17]
Lochhead, J.J.; Wolak, D.J.; Pizzo, M.E.; Thorne, R.G. Rapid transport within cerebral perivascular spaces underlies widespread tracer distribution in the brain after intranasal administration. J. Cereb. Blood Flow Metab., 2015, 35(3), 371-381.
[http://dx.doi.org/10.1038/jcbfm.2014.215] [PMID: 25492117]
[18]
Thorne, R.G.; Pronk, G.J.; Padmanabhan, V.; Frey, W.H., II Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience, 2004, 127(2), 481-496.
[http://dx.doi.org/10.1016/j.neuroscience.2004.05.029] [PMID: 15262337]
[19]
Roco, M.C. Nanoparticles and nanotechnology research. J. Nanopart. Res., 1999, 1(1), 1-6.
[http://dx.doi.org/10.1023/A:1010093308079]
[20]
Babazadeh, A.; Mohammadi Vahed, F.; Jafari, S.M. Nanocarrier-mediated brain delivery of bioactives for treatment/prevention of neurodegenerative diseases. J. Control. Release, 2020, 321, 211-221.
[http://dx.doi.org/10.1016/j.jconrel.2020.02.015] [PMID: 32035189]
[21]
Gao, H.; Pang, Z.; Jiang, X. Targeted delivery of nano-therapeutics for major disorders of the central nervous system. Pharm. Res., 2013, 30(10), 2485-2498.
[http://dx.doi.org/10.1007/s11095-013-1122-4] [PMID: 23797465]
[22]
Pathak, K.; Akhtar, N. Nose to brain delivery of nanoformulations for neurotherapeutics in Parkinson’s disease: Defining the preclinical, clinical and toxicity issues. Curr. Drug Deliv., 2016, 13(8), 1205-1221.
[http://dx.doi.org/10.2174/1567201813666160607123409] [PMID: 27280392]
[23]
Md, S.; Bhattmisra, S.K.; Zeeshan, F.; Shahzad, N.; Mujtaba, M.A.; Srikanth Meka, V.; Radhakrishnan, A.; Kesharwani, P.; Baboota, S.; Ali, J. Nano-carrier enabled drug delivery systems for nose to brain targeting for the treatment of neurodegenerative disorders. J. Drug Deliv. Sci. Technol., 2018, 43, 295-310.
[http://dx.doi.org/10.1016/j.jddst.2017.09.022]
[24]
Martin-Banderas, L.; Holgado, M.A.; Venero, J.L.; Alvarez-Fuentes, J.; Fernández-Arévalo, M. Nanostructures for drug delivery to the brain. Curr. Med. Chem., 2011, 18(34), 5303-5321.
[http://dx.doi.org/10.2174/092986711798184262] [PMID: 22087827]
[25]
Lee, D.; Minko, T. Nanotherapeutics for nose-to-brain drug delivery: An approach to bypass the blood brain barrier. Pharmaceutics, 2021, 13(12), 2049.
[http://dx.doi.org/10.3390/pharmaceutics13122049] [PMID: 34959331]
[26]
Zhang, R.X.; Ahmed, T.; Li, L.Y.; Li, J.; Abbasi, A.Z.; Wu, X.Y. Design of nanocarriers for nanoscale drug delivery to enhance cancer treatment using hybrid polymer and lipid building blocks. Nanoscale, 2017, 9(4), 1334-1355.
[http://dx.doi.org/10.1039/C6NR08486A] [PMID: 27973629]
[27]
Shao, M.; Hussain, Z.; Thu, H.E.; Khan, S.; Katas, H.; Ahmed, T.A.; Tripathy, M.; Leng, J.; Qin, H.L.; Bukhari, S.N.A. Drug nanocarrier, the future of atopic diseases: Advanced drug delivery systems and smart management of disease. Colloids Surf. B Biointerfaces, 2016, 147, 475-491.
[http://dx.doi.org/10.1016/j.colsurfb.2016.08.027] [PMID: 27592075]
[28]
Ganesan, P.; Narayanasamy, D. Lipid nanoparticles: Different preparation techniques, characterization, hurdles, and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery. Sustain. Chem. Pharm., 2017, 6, 37-56.
[http://dx.doi.org/10.1016/j.scp.2017.07.002]
[29]
Giuliano, E.; Paolino, D.; Fresta, M.; Cosco, D. Drug-loaded biocompatible nanocarriers embedded in poloxamer 407 hydrogels as therapeutic formulations. Medicines, 2018, 6(1), 7.
[http://dx.doi.org/10.3390/medicines6010007] [PMID: 30597953]
[30]
Shrestha, N.; Khan, S.; Neupane, Y.R.; Dang, S.; Md, S.; Fahmy, U.A.; Kotta, S.; Alhakamy, N.A.; Baboota, S.; Ali, J. Tailoring midazolam-loaded chitosan nanoparticulate formulation for enhanced brain delivery via intranasal route. polymers, 2020, 12(11), 2589.
[http://dx.doi.org/10.3390/polym12112589] [PMID: 33158148]
[31]
Shah, P.; Dubey, P.; Vyas, B.; Kaul, A.; Mishra, A.K.; Chopra, D.; Patel, P. Lamotrigine loaded PLGA nanoparticles intended for direct nose to brain delivery in epilepsy: Pharmacokinetic, pharmacodynamic and scintigraphy study. Artif. Cells Nanomed. Biotechnol., 2021, 49(1), 511-522.
[http://dx.doi.org/10.1080/21691401.2021.1939709] [PMID: 34151674]
[32]
Jani, P.; Vanza, J.; Pandya, N.; Tandel, H. Formulation of polymeric nanoparticles of antidepressant drug for intranasal delivery. Ther. Deliv., 2019, 10(11), 683-696.
[http://dx.doi.org/10.4155/tde-2019-0060] [PMID: 31744396]
[33]
de Oliveira Junior, E.R.; Santos, L.C.R.; Salomão, M.A.; Nascimento, T.L.; de Almeida Ribeiro Oliveira, G.; Lião, L.M.; Lima, E.M. Nose-to-brain drug delivery mediated by polymeric nanoparticles: Influence of PEG surface coating. Drug Deliv. Transl. Res., 2020, 10(6), 1688-1699.
[http://dx.doi.org/10.1007/s13346-020-00816-2] [PMID: 32613550]
[34]
Yuwanda, A.; Surini, S.; Harahap, Y.; Jufri, M. Study of valproic acid liposomes for delivery into the brain through an intranasal route. Heliyon, 2022, 8(3), e09030.
[http://dx.doi.org/10.1016/j.heliyon.2022.e09030] [PMID: 35284670]
[35]
Arumugam, K.; Subramanian, G.; Mallayasamy, S.; Averineni, R.; Reddy, M.; Udupa, N. A study of rivastigmine liposomes for delivery into the brain through intranasal route. Acta Pharm., 2008, 58(3), 287-297.
[http://dx.doi.org/10.2478/v10007-008-0014-3] [PMID: 19103565]
[36]
Praveen, A.; Aqil, M.; Imam, S.S.; Ahad, A.; Moolakkadath, T.; Ahmad, F.J. Lamotrigine encapsulated intra-nasal nanoliposome formulation for epilepsy treatment: Formulation design, characterization and nasal toxicity study. Colloids Surf. B Biointerfaces, 2019, 174, 553-562.
[http://dx.doi.org/10.1016/j.colsurfb.2018.11.025] [PMID: 30502666]
[37]
Yasir, M.; Sara, U.V.; Chauhan, I.; Gaur, P.K.; Singh, A.P.; Puri, D. Ameeduzzafar. Solid lipid nanoparticles for nose to brain delivery of donepezil: Formulation, optimization by Box–Behnken design, in vitro and in vivo evaluation. Artif. Cells Nanomed. Biotechnol., 2018, 46(8), 1838-1851.
[38]
Cometa, S.; Bonifacio, M.A.; Trapani, G.; Di Gioia, S.; Dazzi, L.; De Giglio, E.; Trapani, A. in vitro investigations on dopamine loaded Solid Lipid Nanoparticles. J. Pharm. Biomed. Anal., 2020, 185, 113257.
[http://dx.doi.org/10.1016/j.jpba.2020.113257] [PMID: 32199326]
[39]
Trapani, A.; De Giglio, E.; Cometa, S.; Bonifacio, M.A.; Dazzi, L.; Di Gioia, S.; Hossain, M.N.; Pellitteri, R.; Antimisiaris, S.G.; Conese, M. Dopamine-loaded lipid based nanocarriers for intranasal administration of the neurotransmitter: A comparative study. Eur. J. Pharm. Biopharm., 2021, 167, 189-200.
[http://dx.doi.org/10.1016/j.ejpb.2021.07.015] [PMID: 34333085]
[40]
Ahmad, N.; Ahmad, R.; Alam, M.A.; Ahmad, F.J.; Amir, M. Impact of ultrasonication techniques on the preparation of novel Amiloride-nanoemulsion used for intranasal delivery in the treatment of epilepsy. Artif. Cells Nanomed. Biotechnol., 2018, 46(S3), S192-S207.
[http://dx.doi.org/10.1080/21691401.2018.1489826] [PMID: 30032652]
[41]
Rassu, G.; Soddu, E.; Posadino, A.M.; Pintus, G.; Sarmento, B.; Giunchedi, P.; Gavini, E. Nose-to-brain delivery of BACE1 siRNA loaded in solid lipid nanoparticles for Alzheimer’s therapy. Colloids Surf. B Biointerfaces, 2017, 152, 296-301.
[http://dx.doi.org/10.1016/j.colsurfb.2017.01.031] [PMID: 28126681]
[42]
Meng, Q.; Wang, A.; Hua, H.; Jiang, Y.; Wang, Y.; Mu, H.; Wu, Z.; Sun, K. Intranasal delivery of Huperzine A to the brain using lactoferrin-conjugated N-trimethylated chitosan surface-modified PLGA nanoparticles for treatment of Alzheimer’s disease. Int. J. Nanomedicine, 2018, 13, 705-718.
[http://dx.doi.org/10.2147/IJN.S151474] [PMID: 29440896]
[43]
Iqbal, R.; Ahmed, S.; Jain, G.K.; Vohora, D. Design and development of letrozole nanoemulsion: A comparative evaluation of brain targeted nanoemulsion with free letrozole against status epilepticus and neurodegeneration in mice. Int. J. Pharm., 2019, 565, 20-32.
[http://dx.doi.org/10.1016/j.ijpharm.2019.04.076] [PMID: 31051232]
[44]
Frey, I.W.; Hanson, L.R.; Pokropinski, S.; Rausa, F.M., III Treatment of central nervous system disorders by intranasal administration of immunoglobulin g. United States patent application US 17/121,553, 2021.
[45]
Kaufman, R.C. Methods of treating inflammatory disorders and global inflammation with compositions comprising phospholipid nanoparticle encapsulations of NSAIDS. U.S. Patent 15/536,134, 2018.
[46]
Morgan, T.M. Intranasal compositions for treatment of neurological and neurodegenerative diseases and disorders. U.S. Patent 17/160,009, 2021.
[47]
Slusher, B.S.; Rais, R. Intranasal administration of glutamate carboxypeptidase (gcp-ii) inhibitors. U.S. Patent 15/542,175, 2018.
[48]
Semwal, R.; Upadhyaya, K.; Semwal, R.B.; Semwal, D.K. Acceptability of nose-to-brain drug targeting in context to its advances and challenges. Drug Deliv. Lett., 2018, 8(1), 20-28.
[http://dx.doi.org/10.2174/2210303107666170929120304]
[49]
Vitorino, C.; Silva, S.; Bicker, J.; Falcão, A.; Fortuna, A. Antidepressants and nose-to-brain delivery: Drivers, restraints, opportunities and challenges. Drug Discov. Today, 2019, 24(9), 1911-1923.
[http://dx.doi.org/10.1016/j.drudis.2019.06.001] [PMID: 31181188]
[50]
Chatterjee, B.; Gorain, B.; Mohananaidu, K.; Sengupta, P.; Mandal, U.K.; Choudhury, H. Targeted drug delivery to the brain via intranasal nanoemulsion: Available proof of concept and existing challenges. Int. J. Pharm., 2019, 565, 258-268.
[http://dx.doi.org/10.1016/j.ijpharm.2019.05.032] [PMID: 31095983]
[51]
Kashyap, K.; Shukla, R. Drug delivery and targeting to the brain through nasal route: Mechanisms, applications and challenges. Curr. Drug Deliv., 2019, 16(10), 887-901.
[http://dx.doi.org/10.2174/1567201816666191029122740] [PMID: 31660815]