Exploring the Biochemical Mechanisms of Fluoroquinolone Compounds against Tuberculosis by Utilizing Molecular Docking and Quantitative Structure-amino Acid Relationship

Page: [1521 - 1531] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Background: Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb). It is one of the leading causes of death of 1.5 million people each year. TB can be treated by directly observed treatment short course (DOTS), but due to multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis, consequences can be devastating if the single DOTS dose is missed by the patient. MDR and XDR-TB require much more attention and time to control the infection. The longer period of tuberculosis treatment has side effects and it is expensive.

Objectives: This alarming condition demands the development of novel processes to diagnose the disease in its early stage as well as to produce more promising antimicrobial chemotherapeutics. The current study aimed to explore molecular mechanisms involving docking simulation-based quantitative structureamino acid relationship (QSAAR) in order to have a better understanding of the interactions between the fluoroquinolones and Mtb DNA gyrase.

Methods: In this study, 24 fluoroquinolone (FQ) compounds present in the literature were selected and docked against the Mtb DNA gyrase. Further, the relationship between the minimum inhibitory concentration of the compounds and interacting amino acids was assessed using QSAAR.

Results: The study has established a novel method of formulating a quantitative structure-amino acid relationship. A significant correlation (R-value=0.829) between biological activity and the docked amino acid residues responsible for producing anti-tubercular activities has been obtained.

Conclusion: The predicted residues captured in the developed model have been explored to report the Mtb virulence.

Graphical Abstract

[2]
News-room, fact-sheets, tuberculosis. Available from: https://www.who.int/news-room/fact-sheets/detail/tuberculosis
[4]
Yang, T.W.; Park, H.O.; Jang, H.N.; Yang, J.H.; Kim, S.H.; Moon, S.H.; Byun, J.H.; Lee, C.E.; Kim, J.W.; Kang, D.H. Side effects associated with the treatment of multidrug-resistant tuberculosis at a tuberculosis referral hospital in South Korea. Medicine ., 2017, 96(28), e7482.
[http://dx.doi.org/10.1097/MD.0000000000007482] [PMID: 28700490]
[5]
Nandi, S.; Ahmed, S.; Saxena, A.K. Combinatorial design and virtual screening of potent anti-tubercular fluoroquinolone and isothiazoloquinolone compounds utilizing QSAR and pharmacophore modelling. SAR QSAR Environ. Res., 2018, 29(2), 151-170.
[http://dx.doi.org/10.1080/1062936X.2017.1419375] [PMID: 29347843]
[6]
Dey, R.; Nandi, S.; Samadder, A.; Saxena, A.; Saxena, A.K. Exploring the potential inhibition of candidate drug molecules for clinical investigation based on their docking or crystallographic analyses against m. tuberculosis Enzyme Targets. Curr. Top. Med. Chem., 2020, 20(29), 2662-2680.
[http://dx.doi.org/10.2174/1568026620666200903163921] [PMID: 32885754]
[7]
Saxena, A.K.; Roy, K.K.; Singh, S.; Vishnoi, S.P.; Kumar, A.; Kashyap, V.K.; Kremer, L.; Srivastava, R.; Srivastava, B.S. Identification and characterisation of small-molecule inhibitors of Rv3097c-encoded lipase (LipY) of Mycobacterium tuberculosis that selectively inhibit growth of bacilli in hypoxia. Int. J. Antimicrob. Agents, 2013, 42(1), 27-35.
[http://dx.doi.org/10.1016/j.ijantimicag.2013.03.007] [PMID: 23684389]
[8]
Khan, S.R.; Singh, S.; Roy, K.K.; Akhtar, M.S.; Saxena, A.K.; Krishnan, M.Y. Biological evaluation of novel substituted chloroquinolines targeting mycobacterial ATP synthase. Int. J. Antimicrob. Agents, 2013, 41(1), 41-46.
[http://dx.doi.org/10.1016/j.ijantimicag.2012.09.012] [PMID: 23141113]
[9]
Nandi, S.; Saxena, A.K. Exploring targets of cell wall protein synthesis and overexpression mediated drug resistance for the discovery of potential M. tb inhibitors. Curr. Top. Med. Chem., 2021, 21(21), 1922-1942.
[http://dx.doi.org/10.2174/1568026621666210727165742] [PMID: 34315374]
[10]
Saxena, A.K.; Singh, A. Mycobacterial tuberculosis enzyme targets and their inhibitors. Curr. Top. Med. Chem., 2019, 19(5), 337-355.
[http://dx.doi.org/10.2174/1568026619666190219105722] [PMID: 30806318]
[11]
Koul, A.; Dendouga, N.; Vergauwen, K.; Molenberghs, B.; Vranckx, L.; Willebrords, R.; Ristic, Z.; Lill, H.; Dorange, I.; Guillemont, J.; Bald, D.; Andries, K. Diarylquinolines target subunit c of mycobacterial ATP synthase. Nat. Chem. Biol., 2007, 3(6), 323-324.
[http://dx.doi.org/10.1038/nchembio884] [PMID: 17496888]
[12]
Kaliaa, D.; Kumar, A.; Meenaa, G.; Sethia, M.; Sharma, R.; Trivedi, P.; Khan, S.R.; Singh, A.; Sinhg, A.S.; Sharma, S.; Roy, K.K.; Kant, R.; Krishnan, M.Y.; Singh, B.N.; Sinha, S.; Chaturvedi, V.; Saxena, A.K.; Dikshit, D.K. Synthesis and anti-tubercular activity of conformationally-constrained and bisquinoline analogs of TMC207. MedChemComm, 2015, 6(8), 1554-1563.
[http://dx.doi.org/10.1039/C5MD00131E]
[13]
Ahmed, S.; Nandi, S.; Saxena, A.K. An updated patent review on drugs for the treatment of tuberculosis (2018-present). Expert Opin. Ther. Pat., 2022, 32(3), 243-260.
[http://dx.doi.org/10.1080/13543776.2022.2012151] [PMID: 34846976]
[14]
Shen, L.L.; Mitscher, L.A.; Sharma, P.N.; O’Donnell, T.J.; Chu, D.W.T.; Cooper, C.S.; Rosen, T.; Pernet, A.G. Mechanism of inhibition of DNA gyrase by quinolone antibacterials: A cooperative drug-DNA binding model. Biochemistry, 1989, 28(9), 3886-3894.
[http://dx.doi.org/10.1021/bi00435a039] [PMID: 2546585]
[15]
Fadeeva, N.I.; Shul’gina, M.V.; Glushkov, R.G. Molecular biological characteristics of the antibacterial action of 4-quinolone-3-carboxylic acid derivatives. (review) Pharm. Chem. J. , 1993, 27(5), 295-315.
[http://dx.doi.org/10.1007/BF00819959]
[16]
Piddock, L.J.V. Quinolone resistance and Campylobacter spp. J. Antimicrob. Chemother., 1995, 36(6), 891-898.
[http://dx.doi.org/10.1093/jac/36.6.891] [PMID: 8821589]
[17]
Drlica, K.; Zhao, X. DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol. Mol. Biol. Rev., 1997, 61(3), 377-392.
[PMID: 9293187]
[18]
Briguglio, I.; Piras, S.; Corona, P.; Maria, A.P.; Jabes, D.; Carta, A. SAR and Anti-Mycobacterial Activity of Quinolones and Triazoloquinolones. An Update. Antiinfect. Agents, 2013, 11, 76-90.
[19]
Halgren, T.A. Merck molecular force field. III. Molecular geometries and vibrational frequencies for MMFF94. J. Comput. Chem., 1996, 17(5-6), 553-586.
[http://dx.doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<553:AID-JCC3>3.0.CO;2-T]
[20]
Mills, N. ChemDraw Ultra 10.0 CambridgeSoft, 100 Cambridge- Park Drive, Cambridge, MA 02140. www.cambridgesoft.com. Commercial Price: $1910 for download, $2150 for CD-ROM; Academic Price: $710 for download, $800 for CD-ROM. J. Am. Chem. Soc., 2006, 128(41), 13649-13650.
[http://dx.doi.org/10.1021/ja0697875]
[21]
Stahl, M.; Rarey, M. Detailed analysis of scoring functions for virtual screening. J. Med. Chem., 2001, 44(7), 1035-1042.
[http://dx.doi.org/10.1021/jm0003992] [PMID: 11297450]
[22]
Nandi, S.; Bagchi, M.C. 3D-QSAR and molecular docking studies of 4-anilinoquinazoline derivatives: A rational approach to anticancer drug design. Mol. Divers., 2010, 14(1), 27-38.
[http://dx.doi.org/10.1007/s11030-009-9137-9] [PMID: 19330460]
[23]
Lee, J.E.; Cornell, K.A.; Riscoe, M.K.; Howell, P.L. Structure of E. coli 5′-methylthioadenosine/S-adenosylhomocysteine nucleosidase reveals similarity to the purine nucleoside phosphorylases. Structure, 2001, 9(10), 941-953.
[http://dx.doi.org/10.1016/S0969-2126(01)00656-6] [PMID: 11591349]
[24]
Dey, R.; Nandi, S.; Samadder, A. Pelargonidin mediated selective activation of p53 and parp proteins in preventing food additive induced genotoxicity: An in vivo coupled in silico molecular docking study. Eur. J. Pharm. Sci., 2021, 156, 105586.
[http://dx.doi.org/10.1016/j.ejps.2020.105586] [PMID: 33039567]
[25]
Nandi, S.; Kumar, M.; Saxena, M.; Saxena, A.K. The antiviral and antimalarial drug repurposing in quest of chemotherapeutics to combat COVID-19 utilizing structure-based molecular docking. Comb. Chem. High Throughput Screen., 2021, 24(7), 1055-1068.
[http://dx.doi.org/10.2174/1386207323999200824115536] [PMID: 32838713]
[26]
Blower, T.R.; Williamson, B.H.; Kerns, R.J.; Berger, J.M. Crystal structure and stability of gyrase–fluoroquinolone cleaved complexes from Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. , 2016, 113(7), 1706-1713.
[http://dx.doi.org/10.1073/pnas.1525047113] [PMID: 26792525]
[27]
Thompson, M.A.; Zerner, M.C. A theoretical examination of the electronic structure and spectroscopy of the photosynthetic reaction center from Rhodopseudomonas viridis. J. Am. Chem. Soc., 1991, 113(22), 8210-8215.
[http://dx.doi.org/10.1021/ja00022a003]
[28]
Ahmed, S.; Prabahar, A.E.; Saxena, A.K. Molecular docking-based interactions in QSAR studies on Mycobacterium tuberculosis ATP synthase inhibitors. SAR QSAR Environ. Res., 2022, 33(4), 289-305.
[http://dx.doi.org/10.1080/1062936X.2022.2066175] [PMID: 35532308]