[4]
de Siqueira, L.R.P.; de Moraes, P.A.T.G.; de Lima, L.P.F.; de Melo, M.J.B.R.; Ana, C.L.L. Multi-target compounds acting in cancer progression: Focus on thiosemicarbazone, thiazole and thiazolidinone analogues. Eur. J. Med. Chem., 2019, 170, 237-260.
[8]
Venkatesh, K.; Banothu, V.; Chandra, S.K. Synthesis, characterization & biological activity of some new thiosemicarbazide derivatives and their transition metal complexes. J. Chem. Pharm. Res., 2015, 7(8), 437-445.
[9]
Aljahdali, M.; Ahmed, A. Synthesis, characterization, molecular modeling and biological activity of moxed ligand complexes of Cu(II), Ni(II), and Co(II) based on 1,10-phenanthroline and novel thiosemicarbazone. InorganicaChim. Acta., 2013, 407, 58-68.
[11]
Ishak, N.N.M.; Jamsari, J.; Ismail, A.Z.; Tahir, M.I.M.; Tiekink, E.R.T.; Abhi, V.; Ravoof, T.B.S.A. Synthesis, characterization and biological studies of mixed-ligand nickel (II) complexes containing imidazole derivatives and thiosemicarbazide Schiff bases. Core.au.ck., 2019, 1-39.
[14]
Prajapati, N.P.; Patel, H.D. Novel thiosemicarbazone derivatives and their metal complexes: Recent development. Synth. Commun., 2019, 49(21)
[15]
Metwally, M.A.; Bondock, S.; El-Azap, H.; Kandeel, E-E.M. Thiosemicarbazides: synthesis and reactions, Journal of sulfur Chemistry, 32:5, 489-519. Thiosemicarbazides: synthesis and reactions. J. Sulfur Chem., 2011, 32(9), 490-519.
[17]
Tokali, F.S.; Taslimi, P.; Usanmaz, H.; Karaman, M.; Sendil, K. Synthesis, characterization, biological activity and molecular docking studies of novel schiff bases derived from thiosemicarbazide: Biochemical and computational approach. J. Mol. Struct., 2020, 12-21.
[20]
Kozyra, P.; Korga-Plewko, A.; Karczmarzyk, Z.; Hawryl, A.; Wysocki, W.; Czlapski, M.; Iawn, M.; Ostrowska-Le, M.S.; Emilia, F.; Monika, P. Potential anticancer agents against melanoma cells based on an as-synthesized thiosemicarbazide derivative. Biomolecules, 2022, 12(151), 2-19.
[22]
Dziduch, K.; Przemyslaw, K.; Agata, P.; Bogucka-Kocka, A.; Wujec, M. Synthesis and anthelmintic activity of new thiosemicarbazide derivatives – a preliminary study. Molecules, 2020, 2770(25), 2-8.
[23]
Dincel, E.D.; Guzeldemirci, N.U. Synthesis and computer-aided drug design studies of novel thiosemicarbazide derivatives as potent and target-oriented anti-cancer agents. Medicine, 2020, 9(2), 305-313.
[28]
Shashidhar, K.S.; Halli, M.B. Synthesis, characterization and antimicrobial studies on metal complexes with a napthofuranthiosemicarbazide derivatives. J. Coord. Chem., 2006, 59(16), 1848-1855.
[29]
Patel, D.B.; Patel, K.D.; Prajapati, N.P.; Patel, K.R.; Rajani, D.P.; Rajani, S.D.; Shah, N.S.; Devendra, D. Design, synthesis, and biological and in silico study of fluorine-containing quinoline hybrid thiosemicarbazide analogues. J. Heterocycl. Chem., 2009, 000, 1-18.
[30]
Govender, H.; Chunderika, M.; Hezekiel, M.K.; Neil, A.K. Synthesis, antibacterial activity and docking studies of substituted quinolone thiosemicarbazones. Phosphorus Sulfur Silicon Relat. Elem., 2019, 194(11)
[31]
Molecular docking, synthesis and anticancer activity of thiosemicarbazone derivatives against MCF-7 human breast cancer cell line. Life Sci., 2021, 273, 2-11.
[32]
ZelekeSibuh, B.; Piyush, K.G.; Pankaj, T.; Sonia, K.; Paratpar, S.; Sanya, P.; Abrar, A.K.; Niraj, K.J.; Kamal, D.; Sachin, K.S.; Sadanand, P.; Petr, S.; Kavindra, K.K.; Shubhadeep, R. Synthesis, In Silico Study, and Anti-Cancer Activity of Thiosemicarbazide Derivatives. Biomedicines, 2021, 1375(9), 2-19.
[35]
Wenlin, X.; Shimin, X.; Ying, Z.; Xufu, T.; Jian, L.; Wenqian, Y.; Minghua, Q. Design and synthesis of novel 5,6-disubstituted pyridine-2,3-dione-3-thiosemicarbazone derivatives as potential anticancer agents. Eur. J. Med. Chem., 2014, 81, 23-27.
[36]
Sever, B.; Gulsen, A.C.; Ahmet, O.; Mehlik, D.A. Design, synthesis and in vitro evaluation of new thiosemicarbazone derivatives as potential anticancer agents. J. Pharm. Res., 2018, 23(1), 17-24.
[38]
Wang, Y.; Gu, W.; Shan, Y.; Liu, F.; Xu, X.; Yang, Y.; Zhang, Q.; Hongbo, K.; Zhonglong, W.; Shifa, W. Design, synthesis and anticancer activity of novel nopinone-based thiosemicarbazone derivatives. Bioorg. Med. Chem. Lett., 2017, 27, 2361-2362.
[41]
Patel, D.B.; Darji, D.G.; Patel, K.R.; Rajani, D.P.; Rajani, S.D.; Patel, H.D. Synthesis of novel quinolone-thiosemicarbazide hybrids and evaluation of their biological activities, molecular docking, molecular dynamics, pharmacophore model studies, and ADME-Tox properties. J. Heterocycl. Chem., 2019, 1-18.
[43]
Vitalino de Almeida, S.M.; Lafayette, E.A.; da Silva, L.P.B.G. Synthesis, DNA Binding, and Antiproliferative Acticity of Novel Acridine-Thiosemicarbazone Derivatives. Int. J. Mol. Sci., 2015, 16, 13026-13038.
[44]
Tan, O.U. Synthesis and antimycobacterial activities of some new N-acylhydrazone and thiosemicarbazide derivatives of 6-methyl-4,5-dihydropyridazin-3(2H)-one. Med. Chem. Res., 2011, 21, 2388-2392. [KerimanOzadali, Perumal Yogeeswari, Dharmarajan Sriram, Ayla Balkan.]
[49]
Bhakiaraj, D.; Elavarasan, T.; Mathavan, M.; Megala, S.; Enbaraj, E.; Gopalakrishnan, M. Synthesis, spectral analysis, antibacterial activity and molecular docking studies of some novel derivatives of combined tetrazole and thiosemicarbazide moieties. Int. J. Adv. Sci. Res., 2021, 12(4), 210-218.
[51]
Arora, M.; Dhawan, R.K.; Sharma, B.; Kaur, N.; Mir, P.A.; Uppal, J.; Nagpal, N. Synthesis and evaluation of antimicrobial and antioxidant activity of thiosemicarbazone derivatives. EJPMR, 2021, 8(10), 553-559.
[54]
Sayed, M.; El-Dean, A.M.K.; El-Dean, A.M.K.; Hassanien-Dean, M.A.R. Synthesis of some heterocyclic compounds derived from indole as antimicrobial agents. Synth. Commun., 2018, 2-9.
[59]
Bisceglie, F.; Degola, F.; Rogolino, D.; Giannelli, G.; Orsoni, N.; Spadola, G.; Pioli, M.; Restivo, F.M.; Carcelli, M.; Pelosi, G. Sisters in structure but different in character, some benzaldehyde and cinnamaldehyde derivatives differentially favus secondary metabolism. Sci. Rep., 2020, 10(17), 1-14.
[60]
Munir, R. Zia-ur-Rehman, M.; Shahzad, M.; Sumera, Z.; Noman, J.; Sana, J.A.; Kiran, I.; Muhammad, M.A.; Imtiaz, A. Microwave-assisted synthesis of (Piperidin-1-yl)quinolin-3-yl)methylene)hydrazinecarbothioamides as potent inhibitors of cholinesterases: A biochemical and in silico approach. Molecules, 2021, 656(26), 1-31.
[61]
Altaf, A.A.; Shahzad, A.; Gul, Z.; Rasool, N.; Badshah, A.; Lal, B.; Khan, E. A review on the medicinal importance of pyridine derivatives. JMCDD, 2015, 1(1), 1-11.
[63]
Jamal, S.E.; Iqbal, A.; Rahman, K.A.; Tahmeena, K. Thiosemicarbazone complexes as versatile medicinal chemistry agents: A review. JDDT, 2019, 9(3), 689-703.
[65]
Ramkishore, M.; Meenakshi, K.; Hoti, S.L.; Tharanikkarasu, K. Thiosemicarbazone derivatives: Design, synthesis and in vitro antimalarial activities studies. Eur. J. Pharm. Sci., 2019, 137, 2-12.
[69]
Julia, H.; Bormio, N.; Sonja, H.; Marlene, M.; Vivien, P.; Alexander, R.; Eva, A.E.; Alessia, S.; Walter, B.; Bernhard, K.P.; Petra, H.; Christian, R.K. Cancer cell resistance against the clinically investigated thiosemicarbazone COTI-2 Is Based on Formation of Intracellular Copper Glutathione Adducts and ABCC 1-Mediated Efflux. J. Med. Chem., 2020, 63, 13719-13732.
[71]
Trotsko, N. Influence of Thiazolidine-2,4-Dione Derivatives with Azolidine or Thiosemicarbazone Moieties on Haemophilus spp. Planktonic orBioflim-Forming Cells. Molecules, 2019, 1051(24), 1-12.
[77]
Kassenhin, U.C.; Gbaguidi, F.A.; McCurdy, C.R.; Poupaert, J.H. Trypanocidal activity of a thioacyl-thiosemicarbazide derivative associating both immunostimulating thalidomide and anti-parasitic thiosemicarbazide pharmacophores. J. Chem. Pharm. Res., 2015, 7(7), 48-55.
[79]
Asif, M. Chemical characteristics, synthetic methods, and biological potential of quinazoline and quinazolinone derivatives. Int. Med. Chem, 2014, 2014, 395637.
[80]
Singh, M.; Singh, S.K.; Gangwar, M.; Nath, G.; Singh, S.K. Design, synthesis and mode of action of novel 2-(4-aminophentyl)benzothiazole derivatives bearing semicarbazone and thiosemicarbazone moiety as potent antimicrobial agents. Med. Chem. Res., 2015.
[81]
Jones, L.M.; Pinney, K.G. Design and Synthesis of Functionalized Small-Molecule Inhibitors of Cathepsins L and K., 2012.
[84]
The Tamil, M.G.R.. Medicinal Univercity Chennai-600 032. Molecular Design, Synthesis, Characterization & Biological Evaluation of New Series of Substituted 1,4 Dihydro Pyridine Derivatives. 2012, 1-114.
[87]
Abu Khalaf, R.; Abdula, A.M.; Mubarak, M.S.; Taha, M.O. Tryptophan and thiosemicarbazide derivatives: design, synthesis, and biological evaluation as potential β-D-glucosidase inhibitors. Med. Chem. Res., 2014.
[89]
Sumera, Z.; Rubina, M.; Muhammad, T.Y.; Naghmana, K.; Aliya, I.; Sehar, A.; Noorma, S.; Tahira, T.A.; Hashem, O.A.; Imtiaz, K. Hybrid Quinoline-Thiosemicarbazone Therapeutics as a New Treatment Opportunity for Alzheimer’s Disease—Synthesis, in vitro Cholinesterase Inhibitory Potential and Computational Modeling Analysis. Molecules, 2021, 26, 1-23.
[91]
Summersa, K.L. A Structural Chemistry Perspective on the Antimalarial Properties of Thiosemicarbazone Metal Complexes. Mini Rev. Med. Chem., 2017, 0, 1-21.
[95]
Cihan-Ustundag, G.; Elif, G.; Lieve, N.; Ulusoy-Guzeldemirci, N.G. Synthesis and antiviral properties of novel indole-based thiosemicarbazides and 4-thiazolidinones. Bioorg. Med. Chem., 2015, 24, 240-246.
[96]
Kishore Kumar, G.D.; Gustavo, E.C.; Charlton-Sevcik, A.K.; Grace, K.Y. Functionalized benzophenone, thiophene, pyridine, and fluorene thiosemicarbazone derivatives as inhibitors of cathepsin L. Bioorg. Med. Chem. Lett., 2010, 20, 6610-6615.
[98]
Patel, J.J.; Modh, R.P.; Manjoorahmed, A.; Kishor, H.C. Comparative biological study between quinazolinyl-triazinylsemicarbazide and thiosemicarbazide hybrid derivatives. Mol. Divers., 2020, 25(4), 2271-2287.
[101]
Phan, V.H.; Thi, P.D.P.; Phan, D.C.; Vu, B.D. Synthesis and Bioactivity of Thiosemicarbazones Containing Adamantane Skeletons. Molecules, 2020, 324(14), 1-14.