“Thiophene”: A Sulphur Containing Heterocycle as a Privileged Scaffold

Page: [1922 - 1935] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

In the rapidly expanding chemical realm of heterocyclic compounds with interesting therapeutic properties, the thiophene nucleus has established itself as a prospective entity. The biological activity of comparable substances produced via different pathways is of varying magnitudes. Medicinal chemists use their understanding of multiple synthetic pathways and the various physicochemical properties of such compounds to create a combinatorial library and conduct thorough searches for lead molecules. Due to their vast spectrum of biological actions, heterocyclic compounds play a crucial role in Medicinal chemistry and are extensively researched in the field of drug design and development. Thiophene, a sulfur- containing heterocyclic scaffold, has emerged as a rather well-explored scaffold for the synthesis of a library of molecules with biological functions, including antibacterial, antipsychotic, anticancer, analgesic, anti-inflammatory, anti-arrhythmic, and so on. Depending on the kind and position of substitution, thiophene analogues have been shown to bind to a wide spectrum of cancer-specific protein targets. As a result, thiophene analogues have been found to exert their biological effects by inhibiting various cancerrelated signalling pathways. The study of thiophene in Medicinal chemistry resulted in molecules that combine the thiophene moiety with traditional drug components in a single molecule. This review covers the biological and medical activity of compounds containing a thiophene nucleus, as well as information on thiophene behaviour, synthesis, and agents, with a focus on synthetic techniques, biological profiles, and structure-activity relationship (SAR) research.

[1]
Meyer, V. Ueber den begleiter des benzols im steinkohlentheer. Ber. Dtsch. Chem. Ges., 1883, 16(1), 1465-1478.
[http://dx.doi.org/10.1002/cber.188301601324]
[2]
Allen, D.W.; Derbyshire, D.J.; Brooks, J.S.; Smith, P.J. Heteroaryltin compounds. The chemistry and 119Sn Mössbauer spectroscopy of some 3-thienyltin halides, and a comparison with 2-thienyl and 2-furyl analogues. J. Organomet. Chem., 1983, 251(1), 45-52.
[http://dx.doi.org/10.1016/0022-328X(83)80242-3]
[3]
Mishra, R.; Jha, K.K.; Kumar, S.; Tomer, I. Synthesis, properties and biological activity of thiophene: A review. Pharma Chem., 2011, 3(4), 38-54.
[4]
Barnes, S. Mechanisms of action of isoflavones in cancer prevention. In: Bioactive Compounds and Cancer; Humana Press: Totowa, NJ, 2010; pp. 633-670.
[5]
Lin, C.C.; Afraj, S.N.; Velusamy, A.; Yu, P.C.; Cho, C.H.; Chen, J.; Li, Y.H.; Lee, G.H.; Tung, S.H.; Liu, C.L.; Chen, M.C.; Facchetti, A. A Solution Processable Dithioalkyl Dithienothiophene (DSDTT) Based Small Molecule and Its Blends for High Performance Organic Field Effect Transistors. ACS Nano, 2021, 15(1), 727-738.
[http://dx.doi.org/10.1021/acsnano.0c07003] [PMID: 33253536]
[6]
Schwartz, P.O.; Förtsch, S.; Vogt, A.; Mena-Osteritz, E.; Bäuerle, P. Selenophene-containing heterotriacenes by a C–Se coupling/cyclization reaction. Beilstein J. Org. Chem., 2019, 15(1), 1379-1393.
[http://dx.doi.org/10.3762/bjoc.15.138] [PMID: 31293688]
[7]
Macchione, M.; Goujon, A.; Strakova, K.; Humeniuk, H.V.; Licari, G.; Tajkhorshid, E.; Sakai, N.; Matile, S. A Chalcogen‐Bonding Cascade Switch for Planarizable Push–Pull Probes. Angew. Chem. Int. Ed., 2019, 58(44), 15752-15756.
[http://dx.doi.org/10.1002/anie.201909741] [PMID: 31539191]
[8]
Zhang, X.; Sakai, N.; Matile, S. Methyl Scanning for Mechanochemical Chalcogen‐Bonding Cascade Switches. ChemistryOpen, 2020, 9(1), 18-22.
[http://dx.doi.org/10.1002/open.201900288] [PMID: 31921541]
[9]
García-Calvo, J.; López-Andarias, J.; Sakai, N.; Matile, S. Planarizable Push‐Pull Probes with Sulfoximine‐Bridged Dithienothiophene Acceptors. Helv. Chim. Acta, 2022, 105(2), e202100238.
[http://dx.doi.org/10.1002/hlca.202100238]
[10]
Afraj, S.N.; Lin, C.C.; Velusamy, A.; Cho, C.H.; Liu, H.Y.; Chen, J.; Lee, G.H.; Fu, J.C.; Ni, J.S.; Tung, S.H.; Yau, S.; Liu, C-L.; Chen, M-C.; Facchetti, A. Heteroalkyl‐Substitution in Molecular Organic Semiconductors: Chalcogen Effect on Crystallography, Conformational Lock, and Charge Transport. Adv. Funct. Mater., 2022, 32(27), 2200880.
[http://dx.doi.org/10.1002/adfm.202200880]
[11]
Gangadhar, P.S.; Gonuguntla, S.; Madanaboina, S.; Islavath, N.; Pal, U.; Giribabu, L. Unravelling the impact of thiophene auxiliary in new porphyrin sensitizers for high solar energy conversion. J. Photochem. Photobiol. Chem., 2020, 392(4), 112408.
[http://dx.doi.org/10.1016/j.jphotochem.2020.112408]
[12]
Cai, Y.; Du, L.; Samedov, K.; Gu, X.; Qi, F.; Sung, H.H.Y.; Patrick, B.O.; Yan, Z.; Jiang, X.; Zhang, H.; Lam, J.W.Y.; Williams, I.D.; Lee Phillips, D.; Qin, A.; Tang, B.Z. Deciphering the working mechanism of aggregation-induced emission of tetraphenylethylene derivatives by ultrafast spectroscopy. Chem. Sci. (Camb.), 2018, 9(20), 4662-4670.
[http://dx.doi.org/10.1039/C8SC01170B] [PMID: 29899960]
[13]
Isci, R.; Tekin, E.; Kaya, K.; Piravadili Mucur, S.; Gorkem, S.F.; Ozturk, T. Tetraphenylethylene substituted thienothiophene and dithienothiophene derivatives: synthesis, optical properties and OLED applications. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2020, 8(23), 7908-7915.
[http://dx.doi.org/10.1039/D0TC01715A]
[14]
Vegiraju, S.; Luo, X.L.; Li, L.H.; Afraj, S.N.; Lee, C.; Zheng, D.; Hsieh, H.C.; Lin, C.C.; Hong, S.H.; Tsai, H.C.; Lee, G.H.; Tung, S-H.; Liu, C-L.; Chen, M-C.; Facchetti, A. Solution processable pseudo n-thienoacenes via intramolecular S··· S lock for high performance organic field effect transistors. Chem. Mater., 2020, 32(4), 1422-1429.
[http://dx.doi.org/10.1021/acs.chemmater.9b03967]
[15]
Orr, W.L.; White, C.M. Geochemistry of sulfur in fossil fuels; American Chemical Society: Washington, DC (US), 1990.
[http://dx.doi.org/10.1021/bk-1990-0429]
[16]
Kropp, K.G.; Fedorak, P.M. A review of the occurrence, toxicity,and biodegradation of condensed thiophenes found in petroleum. Can. J. Microbiol., 1998, 44(7), 605-622.
[http://dx.doi.org/10.1139/w98-045] [PMID: 9783422]
[17]
Urban, S.; Beiring, B.; Ortega, N.; Paul, D.; Glorius, F. Asymmetric hydrogenation of thiophenes and benzothiophenes. J. Am. Chem. Soc., 2012, 134(37), 15241-15244.
[http://dx.doi.org/10.1021/ja306622y] [PMID: 22934527]
[18]
Bianchini, C.; Meli, A. Hydrogenation and hydrogenolysis of thiophenic molecules catalysed by soluble metal complexes. J. Chem. Soc., Dalton Trans., 1996, (6), 801-814.
[http://dx.doi.org/10.1039/dt9960000801]
[19]
Pleus, R.J.; Waden, H.; Saak, W.; Haase, D.; Pohl, S. Preparation of the first sulfur-containing cobalt and nickel complexes stabilised by the macrocyclic cyclam ligand; observation of S–H bond activation. J. Chem. Soc., Dalton Trans., 1999, (15), 2601-2610.
[http://dx.doi.org/10.1039/a902015b]
[20]
Choong, I.C.; Lew, W.; Lee, D.; Pham, P.; Burdett, M.T.; Lam, J.W.; Wiesmann, C.; Luong, T.N.; Fahr, B.; DeLano, W.L.; McDowell, R.S.; Allen, D.A.; Erlanson, D.A.; Gordon, E.M.; O’Brien, T. Identification of potent and selective small-molecule inhibitors of caspase-3 through the use of extended tethering and structure-based drug design. J. Med. Chem., 2002, 45(23), 5005-5022.
[http://dx.doi.org/10.1021/jm020230j] [PMID: 12408711]
[21]
Ribeiro da Silva, M.A.V.; Santos, A.F.L.O.M. Thermochemistry of substituted thiophenecarbonitrile derivatives. J. Chem. Thermodyn., 2008, 40(2), 225-231.
[http://dx.doi.org/10.1016/j.jct.2007.06.020]
[22]
Novák, P.; Müller, K.; Santhanam, K.S.V.; Haas, O. Electrochemically active polymers for rechargeable batteries. Chem. Rev., 1997, 97(1), 207-282.
[http://dx.doi.org/10.1021/cr941181o] [PMID: 11848869]
[23]
Barbarella, G.; Melucci, M.; Sotgiu, G. The versatile thiophene: an overview of recent research on thiophene‐based materials. Adv. Mater., 2005, 17(13), 1581-1593.
[http://dx.doi.org/10.1002/adma.200402020]
[24]
Mancuso, R.; Gabriele, B. Recent advances in the synthesis of thiophene derivatives by cyclization of functionalized alkynes. Molecules, 2014, 19(10), 15687-15719.
[http://dx.doi.org/10.3390/molecules191015687] [PMID: 25268722]
[25]
Satonaka, H. The substituent effects in thiophene compounds. I. 1H NMR and IR studies in methyl (substituted 2-thiophenecarboxylate) s. Bulletin of the chemical society of Japan, 1983, 56(8), 2463-8.
[26]
Kan, X.; Yang, X.; Hu, F.; Wang, Y.; Liu, Y.; Zou, X.; Li, H.; Li, H.; Zhang, Q. Et3N mediated synthesis of polysubstituted thiophenes from α-oxo ketene dithioacetals. Tetrahedron Lett., 2015, 56(45), 6198-6201.
[http://dx.doi.org/10.1016/j.tetlet.2015.09.089]
[27]
Dagoneau, D.; Kolleth, A.; Lumbroso, A.; Tanriver, G.; Catak, S.; Sulzer-Mossé, S.; De Mesmaeker, A. Straightforward Synthesis of 3‐Aminothiophenes Using Activated Amides. Helv. Chim. Acta, 2019, 102(4), e1900031.
[http://dx.doi.org/10.1002/hlca.201900031]
[28]
Hosmane, R.S.; Liebman, J.F. Aromaticity of heterocycles: experimental realization of dewar-breslow definition of aromaticity. Tetrahedron Lett., 1991, 32(32), 3949-3952.
[http://dx.doi.org/10.1016/0040-4039(91)80597-Y]
[29]
Freeman, F.; Lee, M.Y.; Lu, H.; Wang, X.; Rodriguez, E. 1-Thia-Cope Rearrangements during the Thionation of 2-endo-3-endo-Bis(aroyl)bicyclo[2.2.1]hept-5-enes. J. Org. Chem., 1994, 59(13), 3695-3698.
[http://dx.doi.org/10.1021/jo00092a034]
[30]
Hartough, H.D.; Kosak, A.I. Acylation studies in the thiophene and furan series. IV. Strong inorganic oxyacids as catalysts. J. Am. Chem. Soc., 1947, 69(12), 3093-3096.
[http://dx.doi.org/10.1021/ja01204a049]
[31]
Maccarone, E.; Tomaselli, G.A. Leaving group effect in the reaction of 2-thiophenesulfonyl halides with anilines in methanol. J. Org. Chem., 1974, 39(22), 3286-3288.
[http://dx.doi.org/10.1021/jo00936a030]
[32]
Olah, G.A.; Prakash, G.S. Eds.; Across Conventional Lines: Selected Papers Of George A Olah (In 2 Volumes); World scientific, 2003.
[33]
Östman, B.; Ullenius, C.; Blom, U-Å.; Zaidi, N.A. Preparation of 2-nitrothiophene of high isomeric purity. Acta Chem. Scand., 1968, 22(5), 1687-1689.
[http://dx.doi.org/10.3891/acta.chem.scand.22-1687]
[34]
Marino, G. A quantitative study of the uncatalysed halogenation of thiophene in acetic acid solution. Tetrahedron, 1965, 21(4), 843-848.
[http://dx.doi.org/10.1016/0040-4020(65)80018-7]
[35]
Porter, A.E.A. The chemistry of thiophenium salts and thiophenium ylids. Adv. Heterocycl. Chem., 1989, 45, 151-184.
[http://dx.doi.org/10.1016/S0065-2725(08)60330-X]
[36]
Reinecke, M.G. Five-membered hetarynes. InReactive Intermediates; Springer: Boston, MA, 1982, pp. 367-526.
[http://dx.doi.org/10.1007/978-1-4613-3192-6_5]
[37]
Jones, R.A.; Civcir, P.U. Extended heterocyclic systems 2. The synthesis and characterisation of (2-furyl)pyridines, (2-thienyl)pyridines, and furan-pyridine and thiophene-pyridine oligomers. Tetrahedron, 1997, 53(34), 11529-11540.
[http://dx.doi.org/10.1016/S0040-4020(97)00745-X]
[38]
Paal, C. Synthese von Thiophen‐ und Pyrrolderivaten. Ber. Dtsch. Chem. Ges., 1885, 18(2), 2251-2254.
[http://dx.doi.org/10.1002/cber.18850180290]
[39]
Campaigne, E.; Foye, W.O. The synthesis of 2, 5-diarylthiophenes. J. Org. Chem., 1952, 17(10), 1405-1412.
[http://dx.doi.org/10.1021/jo50010a023]
[40]
Li, JJ Fiesselmann thiophene synthesis. In: Name Reactions: A Collection of Detailed Reaction Mechanisms; , 2006; pp. 230-232.
[41]
Woodward, R.B.; Eastman, R.H. Tetrahydrothiophene (thiophane) derivatives. J. Am. Chem. Soc., 1946, 68(11), 2229-2235.
[http://dx.doi.org/10.1021/ja01215a034] [PMID: 21002227]
[42]
Gewald, K.; Schinke, E.; Böttcher, H. Heterocyclen aus CH‐aciden nitrilen, VIII. 2‐amino‐thiophene aus methylenaktiven nitrilen, carbonylverbindungen und Schwefel. Chem. Ber., 1966, 99(1), 94-100.
[http://dx.doi.org/10.1002/cber.19660990116]
[43]
Peet, N.P.; Sunder, S.; Barbuch, R.J.; Vinogradoff, A.P. Mechanistic observations in the gewald syntheses of 2-aminothiophenes. J. Heterocycl. Chem., 1986, 23(1), 129-134.
[http://dx.doi.org/10.1002/jhet.5570230126]
[44]
Pinto, I.L.; Jarvest, R.L.; Serafinowska, H.T. The synthesis of 5-alkoxy and 5-amino substituted thiophenes. Tetrahedron Lett., 2000, 41(10), 1597-1600.
[http://dx.doi.org/10.1016/S0040-4039(99)02338-2]
[45]
Bardasov, I.N.; Mihailov, D.L.; Alekseeva, A.U.; Ershov, O.V.; Nasakin, O.E. Heterocyclization of arylmethylidene derivatives of malononitrile dimer: synthesis of 4-amino-6-aryl-2-halopyridine-3,5-dicarbonitriles. Tetrahedron Lett., 2013, 54(1), 21-22.
[http://dx.doi.org/10.1016/j.tetlet.2012.10.015]
[46]
Noe, C.R.; Buchstaller, H.P. Siebert, C Synthesis of 4‐n‐Alkyl‐2‐amino‐3‐thiophenecarboxylates. ChemInform, 1997, 28(12)
[http://dx.doi.org/10.1002/chin.199712104]
[47]
Stanetty, P.; Puschautz, E. Herbizide thienylharnstoffe, II. Monatsh. Chem., 1989, 120(1), 65-72.
[48]
Wynberg, H.; Kooreman, H.J. The Mechanism of the Hinsberg Thiophene Ring Synthesis 1,2. J. Am. Chem. Soc., 1965, 87(8), 1739-1742.
[http://dx.doi.org/10.1021/ja01086a022]
[49]
Vatansever, E.C.; Kılıç, K.; Özer, M.S.; Koza, G.; Menges, N.; Balci, M. Intermolecular heterocyclization of alkynones with 2-mercaptoacetaldehyde under metal-free conditions: synthesis of 2,3-disubstituted thiophenes. Tetrahedron Lett., 2015, 56(40), 5386-5389.
[http://dx.doi.org/10.1016/j.tetlet.2015.07.090]
[50]
Prim, D.; Kirsch, G. Synthesis of New 3-Methylthio-4, 5, 6, 7-tetrahydro Benzo[c]thiophene-4-ones. Synth. Commun., 1995, 25(16), 2449-2455.
[http://dx.doi.org/10.1080/00397919508015449]
[51]
Reddy, K.V.; Rajappa, S Synthesis and Conformation of 3‐Nitro‐2‐(1‐(L)‐prolyl) thiophene Derivatives. ChemInform., 1994, 25(19)
[52]
Nakamura, I.; Sato, T.; Yamamoto, Y. Gold-catalyzed intramolecular carbothiolation of alkynes: synthesis of 2,3-disubstituted benzothiophenes from (α-alkoxy alkyl) (ortho-alkynyl phenyl) sulfides. Angew. Chem. Int. Ed., 2006, 45(27), 4473-4475.
[http://dx.doi.org/10.1002/anie.200601178] [PMID: 16767784]
[53]
Payne, D.J.; Gwynn, M.N.; Holmes, D.J.; Rosenberg, M. Genomic approaches to antibacterial discovery. In: Genomics, Proteomics, and Clinical Bacteriology; Humana Press, 2004; pp. 231-259.
[http://dx.doi.org/10.1385/1-59259-763-7:231]
[54]
Kamboj, A.; Randhawa, H. Pharmacological action and sar of thiophene derivatives: A review. J. Pharm. Res., 2012, 5, 2676-2682.
[55]
Tripathi, K.D. Essentials of medical pharmacology; JP Medical Ltd, 2013.
[http://dx.doi.org/10.5005/jp/books/12256]
[56]
Abdel-Hafez, N.A.; Mohamed, S.F.; Abdalla, M.M. Synthesis, reactions, and antiarrhythmic activities of some novel pyrimidines and pyridines fused with thiophene moiety. Turk. J. Chem., 2009, 33(3), 421-432.
[57]
Romagnoli, R.; Baraldi, P.G.; Sarkar, T.; Carrion, M.D.; Cruz-Lopez, O.; Lopez Cara, C.; Tolomeo, M.; Grimaudo, S.; Di Cristina, A.; Pipitone, M.R.; Balzarini, J.; Gambari, R.; Ilaria, L.; Saletti, R.; Brancale, A.; Hamel, E. Synthesis and biological evaluation of 2-(3′,4′,5′-trimethoxybenzoyl)-3-N,N-dimethylamino benzo[b]furan derivatives as inhibitors of tubulin polymerization. Bioorg. Med. Chem., 2008, 16(18), 8419-8426.
[http://dx.doi.org/10.1016/j.bmc.2008.08.029] [PMID: 18755591]
[58]
Goswami, L.; Neog, K.; Sharma, K.; Gogoi, P. A metal-free cascade reaction of β-halo-α,β-unsaturated aldehydes and 1,4-dithiane-2,5-diols: synthesis of polycyclic 2-formylthiophenes. Org. Biomol. Chem., 2017, 15(31), 6470-6473.
[http://dx.doi.org/10.1039/C7OB01641G] [PMID: 28737177]
[59]
Sivadas, A.; Satyaseela, M.P.; Bharani, T.; Upparapalli, S.K.; Subbaraya, N. Synthesis of new series of thienyl acrylate derivatives via baylis-hillman reaction and evaluation of antimicrobial activity. Int. J. Pharm. Sci. Res., 2011, 2(4), 893.
[60]
Sarankar, S.K.; Tomar, K.; Bajaj, J.; Mehta, P.; Pathak, A.K.; Tailang, M. QSAR Study of Novel Benzothiophene Derivatives as Potent Anticancer Agent. International Journal of Advances in Pharmaceutical Sciences, 2010, 1(3), 309-318.
[61]
Abedinifar, F.; Babazadeh Rezaei, E.; Biglar, M.; Larijani, B.; Hamedifar, H.; Ansari, S.; Mahdavi, M. Recent strategies in the synthesis of thiophene derivatives: highlights from the 2012–2020 literature. Mol. Divers., 2021, 25(4), 2571-2604.
[http://dx.doi.org/10.1007/s11030-020-10128-9] [PMID: 32734589]
[62]
Caballero, R.; Cohen, B.; Gutiérrez, M. Thiophene-Based Covalent Organic Frameworks: Synthesis, Photophysics and Light-Driven Applications. Molecules, 2021, 26(24), 7666.
[http://dx.doi.org/10.3390/molecules26247666] [PMID: 34946748]
[63]
Anandan, S.; Manoharan, S.; Narendran, N.K.S.; Girisun, T.C.S.; Asiri, A.M. Donor-acceptor substituted thiophene dyes for enhanced nonlinear optical limiting. Opt. Mater., 2018, 85, 18-25.
[http://dx.doi.org/10.1016/j.optmat.2018.08.004]
[64]
Pillai, A.D.; Rathod, P.D.; Xavier, F.P.; Padh, H.; Sudarsanam, V.K.; Vasu, K. Tetra substituted thiophenes as anti-inflammatory agents: exploitation of analogue-based drug design. Bioorg. Med. Chem., 2005, 13(24), 6685-6692.
[http://dx.doi.org/10.1016/j.bmc.2005.07.044] [PMID: 16125391]
[65]
Nasr, T.; Bondock, S.; Eid, S. Design, synthesis, antimicrobial evaluation and molecular docking studies of some new thiophene, pyrazole and pyridone derivatives bearing sulfisoxazole moiety. Eur. J. Med. Chem., 2014, 84, 491-504.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.052] [PMID: 25050881]
[66]
Oertel, R.; Rahn, R.; Kirch, W. Clinical pharmacokinetics of articaine. Clin. Pharmacokinet., 1997, 33(6), 417-425.
[http://dx.doi.org/10.2165/00003088-199733060-00002] [PMID: 9435991]
[67]
Shi, W.; Wan, L.; Hu, Y.; Sun, S.; Li, W.; Peng, Y.; Wu, M.; Guo, H.; Wang, J. Facile synthesis of 3-aldehyde-2-substituted thiophenes through Lewis base catalyzed [3+2] cycloaddition of 1,4-dithiane-2,5-diols with ynals. Tetrahedron Lett., 2015, 56(16), 2083-2085.
[http://dx.doi.org/10.1016/j.tetlet.2015.03.023]
[68]
Wang, H. Comprehensive Organic Name Reactions; Wiley, 2010.
[http://dx.doi.org/10.1002/9780470638859]
[69]
Chowdhury, S.; Chanda, T.; Koley, S.; Ramulu, B.J.; Jones, R.C.F.; Singh, M.S. Organoindium mediated Csp3–S cross-coupling/migratory allenylation/thioannulation cascade: expedient synthesis of highly substituted thiophene frameworks. Tetrahedron, 2015, 71(12), 1844-1850.
[http://dx.doi.org/10.1016/j.tet.2015.01.065]
[70]
Ge, L.S.; Wang, Z.L.; An, X.L.; Luo, X.; Deng, W.P. Direct synthesis of polysubstituted 2-aminothiophenes by Cu(II)-catalyzed addition/oxidative cyclization of alkynoates with thioamides. Org. Biomol. Chem., 2014, 12(42), 8473-8479.
[http://dx.doi.org/10.1039/C4OB01534G] [PMID: 25227952]
[71]
Wen, M.; Sun, P.P.; Luo, X.; Deng, W.P. Cu(II)-catalyzed one-pot synthesis of fully substituted dihydrothiophenes and thiophenes from thioamides and enynones. Tetrahedron, 2018, 74(31), 4168-4173.
[http://dx.doi.org/10.1016/j.tet.2018.02.035]
[72]
Wu, Y.N.; Fu, R.; Wang, N.N.; Hao, W.J.; Li, G.; Tu, S.J.; Jiang, B. Catalytic sulfur-enabled dehydrobicyclization of 1, 6-enynes toward arylated indeno[1,2-c] thiophenes. J. Org. Chem., 2016, 81(11), 4762-4770.
[http://dx.doi.org/10.1021/acs.joc.6b00692] [PMID: 27176454]
[73]
Kurandina, D.; Gevorgyan, V. Rhodium thiavinyl carbenes from 1, 2, 3-thiadiazoles enable modular synthesis of multisubstituted thiophenes. Org. Lett., 2016, 18(8), 1804-1807.
[http://dx.doi.org/10.1021/acs.orglett.6b00541] [PMID: 27015356]
[74]
Tan, W.W.; Yoshikai, N. Copper-catalyzed coupling of 2-siloxy-1-alkenes and diazocarbonyl compounds: approach to multisubstituted furans, pyrroles, and thiophenes. J. Org. Chem., 2016, 81(13), 5566-5573.
[http://dx.doi.org/10.1021/acs.joc.6b00904] [PMID: 27259097]
[75]
Ishikawa, S.; Noda, Y.; Wada, M.; Nishikata, T. A copper-catalyzed formal [3+2]-cycloaddition for the synthesis of all different aryl-substituted furans and thiophenes. J. Org. Chem., 2015, 80(15), 7555-7563.
[http://dx.doi.org/10.1021/acs.joc.5b01139] [PMID: 26158487]
[76]
Acharya, A.; Vijay Kumar, S.; Saraiah, B.; Ila, H. One-pot synthesis of functionalized benzo[b]thiophenes and their hetero-fused analogues via intramolecular copper-catalyzed S-arylation of in situ generated enethiolates. J. Org. Chem., 2015, 80(5), 2884-2892.
[http://dx.doi.org/10.1021/acs.joc.5b00032] [PMID: 25658978]
[77]
Irudayanathan, F.M.; Edwin Raja, G.C.; Lee, S. Copper-catalyzed direct synthesis of furans and thiophenes viadecarboxylative coupling of alkynyl carboxylic acids with H2O or Na2S. Tetrahedron, 2015, 71(26-27), 4418-4425.
[http://dx.doi.org/10.1016/j.tet.2015.05.017]
[78]
Franchetti, P.; Cappellacci, L.; Grifantini, M.; Barzi, A.; Nocentini, G.; Yang, H.; O’Connor, A.; Jayaram, H.N.; Carrell, C.; Goldstein, B.M. Furanfurin and thiophenfurin: two novel tiazofurin analogues. Synthesis, structure, antitumor activity, and interactions with inosine monophosphate dehydrogenase. J. Med. Chem., 1995, 38(19), 3829-3837.
[http://dx.doi.org/10.1021/jm00019a013] [PMID: 7562914]
[79]
Hamedani, N.F.; Ghazvini, M.; Sheikholeslami-Farahani, F.; Bagherian-Jamnani, M.T. ZnO nanorods as efficient catalyst for the green synthesis of thiophene derivatives: Investigation of antioxidant and antimicrobial activity. J. Heterocycl. Chem., 2020, 57(4), 1588-1598.
[http://dx.doi.org/10.1002/jhet.3884]
[80]
Santana, A.S.; Carvalho, D.B.; Cassemiro, N.S.; Viana, L.H.; Hurtado, G.R.; Amaral, M.S.; Kassab, N.M.; Guerrero, P.G., Jr; Barbosa, S.L.; Dabdoub, M.J.; Baroni, A.C.M. Synthesis of 3-iodothiophenes via iodocyclization of (Z)-thiobutenynes. Tetrahedron Lett., 2014, 55(1), 52-55.
[http://dx.doi.org/10.1016/j.tetlet.2013.10.118]
[81]
Zali-Boeini, H.; Fadaei, N. Novel route to thiophene-2, 4-diamines. Synlett, 2015, 26(13), 1819-1822.
[http://dx.doi.org/10.1055/s-0034-1378724]
[82]
Su, Z.; Qian, S.; Xue, S.; Wang, C. DBU-mediated [4+1] annulations of donor–acceptor cyclopropanes with carbon disulfide or thiourea for synthesis of 2-aminothiophene-3-carboxylates. Org. Biomol. Chem., 2017, 15(37), 7878-7886.
[http://dx.doi.org/10.1039/C7OB01886J] [PMID: 28891577]
[83]
Maity, P.; Ranu, B.C. Iodine-Catalyzed Synthesis of Chalcogenophenes by the Reaction of 1,3-Dienyl Bromides and Potassium Selenocyanate/Potassium Sulfide (KSeCN/K2 S). Adv. Synth. Catal., 2017, 359(24), 4369-4378.
[http://dx.doi.org/10.1002/adsc.201701232]
[84]
Bilheri, F.N.; Stein, A.L.; Zeni, G. Synthesis of Chalcogenophenes via Cyclization of 1,3-Diynes Promoted by Iron(III). Chloride and Dialkyl Dichalcogenides. Adv. Synth. Catal., 2015, 357(6), 1221-1228.
[http://dx.doi.org/10.1002/adsc.201401159]
[85]
Han, T.; Wang, Y.; Li, H.L.; Luo, X.; Deng, W.P. Synthesis of polysubstituted 3-aminothiophenes from thioamides and allenes via tandem thio-michael addition/oxidative annulation and 1, 2-sulfur migration. J. Org. Chem., 2018, 83(3), 1538-1542.
[http://dx.doi.org/10.1021/acs.joc.7b02616] [PMID: 29281879]
[86]
Zali-Boeini, H.; Ghani, M. An aquatic pseudo-four-component reaction for the synthesis of highly substituted thiophenes. Synthesis, 2013, 45(7), 913-918.
[http://dx.doi.org/10.1055/s-0032-1316866]
[87]
Mancuso, R.; Pomelli, C.S.; Chiappe, C.; Larock, R.C.; Gabriele, B. A recyclable and base-free method for the synthesis of 3-iodothiophenes by the iodoheterocyclisation of 1-mercapto-3-alkyn-2-ols in ionic liquids. Org. Biomol. Chem., 2014, 12(4), 651-659.
[http://dx.doi.org/10.1039/C3OB41928B] [PMID: 24297046]
[88]
Bharathiraja, G.; Sathishkannan, G.; Punniyamurthy, T. Domino synthesis of tetrasubstituted thiophenes from 1, 3-enynes with mercaptoacetaldehyde. J. Org. Chem., 2016, 81(6), 2670-2674.
[http://dx.doi.org/10.1021/acs.joc.6b00231] [PMID: 26925978]
[89]
McNabola, N.; O’Connor, C.J.; Roydhouse, M.D.; Wall, M.D.; Southern, J.M. A one-pot synthesis of 3-nitrothiophene and 3-nitro-2-substituted thiophenes. Tetrahedron, 2015, 71(28), 4598-4603.
[http://dx.doi.org/10.1016/j.tet.2015.05.032]
[90]
(a) Bergmann, U.; Erwin, H.; Guenter, H.; Helmut, R. Azofarbstoffe mit Thiophen-Diazokomponenten. Patent, EP0197471A1., ;
(b) Kyriaki, L.; Georgiadou, E.G.; Tsatsaroni, A.H. Synthesis and characterization of hetarylazo disperse dyes derived from substituted N-β-acetoxyethylanilines—Application on cellulose acetate. J. Appl. Polym. Sci., 2004, 92, 3479.;
(c) Georgiadou, K.L.; Tsatsaroni, E.G. Synthesis, characterisation and application of disperse dyes derived from N-2-hydroxyethyl-1-naphthylamine. Dyes Pigm., 2001, 50, 93.;
(d) Abd-El-Aziz, A.S.; Tarek, H.A. Novel azo disperse dyes derived from aminothiophenes: Synthesis and UV–visible studies. Dyes Pigm., 2006, 70(1), 8-17.
[91]
Katsumura, S.; Li, Y.; Iwabuchi, H.; Onishi, M.; Murakami, Y. inventors; San Ei Gen FFI Inc, assignee. Thiophene compound and process for producing caffenofuran or analogue thereof from the same. United States patent US 7,897,790, March 1, 2011.
[92]
(a) McNabola, N. Thienothiophene derivatives. US6818260B2, 1999.;
(b) Matthijs, J.J.; Feike, D.J. Synthesis, oxidation, and electronic spectra of four dithienothiophenes. J. Org. Chem., 1971, 36(12), 1645-1648.;
(c) Seiji, I.; David, M.C. Synthesis, polymerization and characterization of substituted dithieno[3,4-b:3′,4′-d]thiophenes. J. Mater. Chem., 1999, 9, 1719-1726.;
(d) Sirringhaus, H.; Friend, R.H.; Li, X.C.; Moratti, S.C.; Holmes, A.B.; Feeder, N. Synthesis, polymerization and characterization of substituted dithieno[3,4-b:3′,4′-d]thiophenes. Appl. Phys. Lett., 1997, 71, 3871-3873.;
(e) Iao-Chang, L.; Henning, S.; Francis, G.; Andrew, B.H.; Stephen, C.M.; Neil, F.; William, C.; Simon, J.T.; Richard, H.F. A highly π-stacked organic semiconductor for thin film transistors based on fused thiophenes. J. Am. Chem. Soc., 1998, 120(9), 2206-2207.
[93]
Utz, A; Dahlman, C. Promoting inclusive innovation. Unleashing India’s innovation,Oct 15:105 2007.
[94]
Sim, T.B.; Woo, Y.H.; Chi, M.S.; Ho, J.H.; Seung, H.C.; Han, N.C.; Hwan, G.C.; Nam, D.K.; Jung, B.C.; Eun, H.K.; Hyun, K.K.; Joong, H.C.; Seock, Y.K.; So, Y.K.; Yi, K.K.; Seung, Y.L.; Suk, K.Y.; Jae, H.B. 2, 3, 5-substituted thiophene compound as protein kinase inhibitor. U.S. Patent 10,442,796., 2019.