Atorvastatin Calcium Ameliorates Cognitive Deficits Through the AMPK/Mtor Pathway in Rats with Vascular Dementia

Page: [148 - 156] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Aim: In this study, the protective effects of atorvastatin calcium (AC) on nerve cells and cognitive improvement in vivo and in vitro were investigated by establishing cell models and vascular dementia (VD) rat models.

Background: VD is a neurodegenerative disease characterized by cognitive deficits caused by chronic cerebral hypoperfusion. AC has been studied for its potential to cure VD but its efficacy and underlying mechanism are still unclear.

Objective: The mechanism of action of AC on cognitive deficits in the early stages of VD is unclear. Here, the 2-vessel occlusion (2-VO) model in vivo and the hypoxia/reoxygenation (H/R) cell model in vitro was established to investigate the function of AC in VD.

Methods: The spatial learning and memory abilities of rats were detected by the Morris method. The IL-6, tumour necrosis factor-α (TNF-α), malondialdehyde (MDA) and superoxide dismutase (SOD) in cell supernatant was tested by ELISA kits. After behavioural experiments, rats were anaesthetized and sacrificed, and their brains were extracted. One part was immediately fixed in 4% paraformaldehyde for H&E, Nissl, and immunohistochemical analyses, and the other was stored in liquid nitrogen. All data were shown as mean ± SD. Statistical comparison between the two groups was performed by Student’s t-test. A two-way ANOVA test using GraphPad Prism 7 was applied for escape latency analysis and the swimming speed test. The difference was considered statistically significant at p < 0.05.

Results: AC decreased apoptosis, increased autophagy, and alleviated oxidative stress in primary hippocampal neurons. AC regulated autophagy-related proteins in vitro by western blotting. VD mice improved cognitively in the Morris water maze. Spatial probing tests showed that VD animals administered AC had considerably longer swimming times to the platform than VD rats. H&E and Nissl staining showed that AC reduces neuronal damage in VD rats. Western blot and qRT-PCR indicated that AC in VD rats inhibited Bax and promoted LC3-II, Beclin-1, and Bcl-2 in the hippocampus region. AC also improves cognition via the AMPK/mTOR pathway.

Conclusion: This study found that AC may relieve learning and memory deficits as well as neuronal damage in VD rats by changing the expression of apoptosis/autophagy-related genes and activating the AMPK/mTOR signalling pathway in neurons.

Graphical Abstract

[1]
Dichgans, M.; Leys, D. Vascular cognitive impairment. Circ. Res., 2017, 120(3), 573-591.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.308426] [PMID: 28154105]
[2]
Rincon, F.; Wright, C.B. Vascular cognitive impairment. Curr. Opin. Neurol., 2013, 26(1), 29-36.
[http://dx.doi.org/10.1097/WCO.0b013e32835c4f04]
[3]
Fortin, N.J.; Agster, K.L.; Eichenbaum, H.B. Critical role of the hippocampus in memory for sequences of events. Nat. Neurosci., 2002, 5(5), 458-462.
[http://dx.doi.org/10.1038/nn834] [PMID: 11976705]
[4]
Lazarov, O.; Hollands, C. Hippocampal neurogenesis: Learning to remember. Prog. Neurobiol., 2016, 138-140, 1-18.
[http://dx.doi.org/10.1016/j.pneurobio.2015.12.006] [PMID: 26855369]
[5]
Burke, M.J.C.; Nelson, L.; Slade, J.Y.; Oakley, A.E.; Khundakar, A.A.; Kalaria, R.N. Morphometry of the hippocampal microvasculature in post-stroke and age-related dementias. Neuropathol. Appl. Neurobiol., 2014, 40(3), 284-295.
[http://dx.doi.org/10.1111/nan.12085] [PMID: 24003901]
[6]
Counts, S.E.; Alldred, M.J.; Che, S.; Ginsberg, S.D.; Mufson, E.J. Synaptic gene dysregulation within hippocampal CA1 pyramidal neurons in mild cognitive impairment. Neuropharmacology, 2014, 79, 172-179.
[http://dx.doi.org/10.1016/j.neuropharm.2013.10.018] [PMID: 24445080]
[7]
Singh, R.K.; Prasad, D.N.; Bhardwaj, T.R. Synthesis in vitro/in vivo evaluation and in silico physicochemical study of prodrug approach for brain targeting of alkylating agent. Med. Chem. Res., 2013, 22(11), 5324-5336.
[http://dx.doi.org/10.1007/s00044-013-0537-0]
[8]
Singh, R.K.; Devi, S.; Prasad, D.N. Synthesis, physicochemical and biological evaluation of 2-amino-5-chlorobenzophenone derivatives as potent skeletal muscle relaxants. Arab. J. Chem., 2015, 8(3), 307-312.
[http://dx.doi.org/10.1016/j.arabjc.2011.11.013]
[9]
Corsini, A.; Bellosta, S.; Baetta, R.; Fumagalli, R.; Paoletti, R.; Bernini, F. New insights into the pharmacodynamic and pharmacokinetic properties of statins. Pharmacol. Ther., 1999, 84(3), 413-428.
[http://dx.doi.org/10.1016/S0163-7258(99)00045-5] [PMID: 10665838]
[10]
Inoue, T.; Node, K. Statin therapy for vascular failure. Cardiovasc. Drugs Ther., 2007, 21(4), 281-295.
[http://dx.doi.org/10.1007/s10557-007-6038-y] [PMID: 17682928]
[11]
Zuo, Y.; Wang, Y.; Hu, H.; Cui, W. Atorvastatin protects myocardium against ischemia-reperfusion injury through inhibiting miR-199a-5p. Cell. Physiol. Biochem., 2016, 39(3), 1021-1030.
[http://dx.doi.org/10.1159/000447809] [PMID: 27537066]
[12]
Yue, Y.H.; Bai, X.; Zhang, H.; Li, Y.; Hu, L.; Liu, L.; Mao, J.; Yang, X.; Dila, N. Gene polymorphisms affect the effectiveness of atorvastatin in treating ischemic stroke patients. Cell. Physiol. Biochem., 2016, 39(2), 630-638.
[http://dx.doi.org/10.1159/000445654] [PMID: 27415775]
[13]
Torrandell-Haro, G.; Branigan, G.L.; Vitali, F.; Geifman, N.; Zissimopoulos, J.M.; Brinton, R.D. Statin therapy and risk of Alzheimer’s and age‐related neurodegenerative diseases. Alzheimers Dement. (N. Y.), 2020, 6(1), e12108.
[http://dx.doi.org/10.1002/trc2.12108] [PMID: 33283039]
[14]
Schultz, B.G.; Patten, D.K.; Berlau, D.J. The role of statins in both cognitive impairment and protection against dementia: A tale of two mechanisms. Transl. Neurodegener., 2018, 7(1), 5.
[http://dx.doi.org/10.1186/s40035-018-0110-3] [PMID: 29507718]
[15]
Wang, S.; Zhang, X.; Zhai, L.; Sheng, X.; Zheng, W.; Chu, H.; Zhang, G. Atorvastatin attenuates cognitive deficits and neuroinflammation induced by Aβ1–42 involving modulation of TLR4/TRAF6/NF-κB pathway. J. Mol. Neurosci., 2018, 64(3), 363-373.
[http://dx.doi.org/10.1007/s12031-018-1032-3] [PMID: 29417448]
[16]
Zhao, L.; Chen, T.; Wang, C.; Li, G.; Zhi, W.; Yin, J.; Wan, Q.; Chen, L. Atorvastatin in improvement of cognitive impairments caused by amyloid β in mice: Involvement of inflammatory reaction. BMC Neurol., 2016, 16(1), 18.
[http://dx.doi.org/10.1186/s12883-016-0533-3] [PMID: 26846170]
[17]
Sun, B.; Chen, L.; Wei, X.; Xiang, Y.; Liu, X.; Zhang, X. The Akt/GSK-3β pathway mediates flurbiprofen-induced neuroprotection against focal cerebral ischemia/reperfusion injury in rats. Biochem. Biophys. Res. Commun., 2011, 409(4), 808-813.
[http://dx.doi.org/10.1016/j.bbrc.2011.05.095] [PMID: 21624354]
[18]
Jing, Z.; Shi, C.; Zhu, L.; Xiang, Y.; Chen, P.; Xiong, Z.; Li, W.; Ruan, Y.; Huang, L. Chronic cerebral hypoperfusion induces vascular plasticity and hemodynamics but also neuronal degeneration and cognitive impairment. J. Cereb. Blood Flow Metab., 2015, 35(8), 1249-1259.
[http://dx.doi.org/10.1038/jcbfm.2015.55] [PMID: 25853908]
[19]
Nixon, R.A.; Yang, D.S. Autophagy and neuronal cell death in neurological disorders. Cold Spring Harb. Perspect. Biol., 2012, 4(10), a008839.
[http://dx.doi.org/10.1101/cshperspect.a008839] [PMID: 22983160]
[20]
Son, J.H.; Shim, J.H.; Kim, K.H.; Ha, J.Y.; Han, J.Y. Neuronal autophagy and neurodegenerative diseases. Exp. Mol. Med., 2012, 44(2), 89-98.
[http://dx.doi.org/10.3858/emm.2012.44.2.031] [PMID: 22257884]
[21]
Tung, Y.T.; Wang, B.J.; Hu, M.K.; Hsu, W.M.; Lee, H.; Huang, W.P.; Liao, Y.F. Autophagy: A double-edged sword in Alzheimer’s disease. J. Biosci., 2012, 37(1), 157-165.
[http://dx.doi.org/10.1007/s12038-011-9176-0] [PMID: 22357213]
[22]
Xu, Z.; Wang, H.; Cui, X.; Jin, Y.; Xu, Z. Role of autophagy in myocardial reperfusion injury. Front. Biosci. (Elite Ed.), 2010, E2(3), 1147-1153.
[http://dx.doi.org/10.2741/e174] [PMID: 20515786]
[23]
Yu, Y.; Feng, L.; Li, J.; Lan, X. A, L.; Lv, X.; Zhang, M.; Chen, L. The alteration of autophagy and apoptosis in the hippocampus of rats with natural aging-dependent cognitive deficits. Behav. Brain Res., 2017, 334, 155-162.
[http://dx.doi.org/10.1016/j.bbr.2017.07.003] [PMID: 28688896]
[24]
Menzies, F.M.; Fleming, A.; Rubinsztein, D.C. Compromised autophagy and neurodegenerative diseases. Nat. Rev. Neurosci., 2015, 16(6), 345-357.
[http://dx.doi.org/10.1038/nrn3961] [PMID: 25991442]
[25]
Mihaylova, M.M.; Shaw, R.J. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol., 2011, 13(9), 1016-1023.
[http://dx.doi.org/10.1038/ncb2329] [PMID: 21892142]
[26]
Dhiman, A.; Sharma, R.; Singh, R.K. Target-based anticancer indole derivatives and insight into structure‒activity relationship: A mechanistic review update (2018–2021). Acta Pharm. Sin. B, 2022, 12(7), 3006-3027.
[http://dx.doi.org/10.1016/j.apsb.2022.03.021] [PMID: 35865090]
[27]
Garza-Lombó, C.; Schroder, A.; Reyes-Reyes, E.M.; Franco, R. mTOR/AMPK signaling in the brain: Cell metabolism, proteostasis and survival. Curr. Opin. Toxicol., 2018, 8, 102-110.
[http://dx.doi.org/10.1016/j.cotox.2018.05.002] [PMID: 30417160]
[29]
Yang, S.; Zhou, G.; Liu, H.; Zhang, B.; Li, J.; Cui, R.; Du, Y. Protective effects of p38 MAPK inhibitor SB202190 against hippocampal apoptosis and spatial learning and memory deficits in a rat model of vascular dementia. BioMed Res. Int., 2013, 2013, 1-9.
[http://dx.doi.org/10.1155/2013/215798] [PMID: 24455679]
[30]
Zong, W.; Zeng, X.; Chen, S.; Chen, L.; Zhou, L.; Wang, X.; Gao, Q.; Zeng, G.; Hu, K.; Ouyang, D. Ginsenoside compound K attenuates cognitive deficits in vascular dementia rats by reducing the Aβ deposition. J. Pharmacol. Sci., 2019, 139(3), 223-230.
[http://dx.doi.org/10.1016/j.jphs.2019.01.013] [PMID: 30799178]
[31]
Qian, X.; Xu, Q.; Li, G.; Bu, Y.; Sun, F.; Zhang, J. Therapeutic effect of idebenone on rats with vascular dementia via the MicroRNA-216a/RSK2/NF-κB axis. Neuropsychiatr. Dis. Treat., 2021, 17, 533-543.
[http://dx.doi.org/10.2147/NDT.S293614] [PMID: 33628024]
[32]
Luca, M.; Luca, A.; Calandra, C. The role of oxidative damage in the pathogenesis and progression of alzheimer’s disease and vascular dementia. Oxid. Med. Cell. Longev., 2015, 2015, 1-8.
[http://dx.doi.org/10.1155/2015/504678] [PMID: 26301043]
[33]
Zhang, L.; Fang, Y.; Cheng, X.; Lian, Y.; Xu, H.; Zeng, Z.; Zhu, H. TRPML1 participates in the progression of alzheimer’s disease by regulating the PPARγ/AMPK/Mtor signalling pathway. Cell. Physiol. Biochem., 2017, 43(6), 2446-2456.
[http://dx.doi.org/10.1159/000484449] [PMID: 29131026]
[34]
Singh, R.K.; Prasad, D.N.; Bhardwaj, T.R. Design, synthesis and in vitro cytotoxicity study of benzodiazepine-mustard conjugates as potential brain anticancer agents. J. Saudi Chem. Soc., 2017, 21(Suppl. 1), S86-S93.
[http://dx.doi.org/10.1016/j.jscs.2013.10.004]
[35]
Li, X.; Xiao, H.; Lin, C.; Sun, W.; Wu, T.; Wang, J.; Chen, B.; Chen, X.; Cheng, D. Synergistic effects of liposomes encapsulating atorvastatin calcium and curcumin and targeting dysfunctional endothelial cells in reducing atherosclerosis. Int. J. Nanomedicine, 2019, 14, 649-665.
[http://dx.doi.org/10.2147/IJN.S189819] [PMID: 30697048]
[36]
Wei, C.; Xu, X.; Zhu, H.; Zhang, X.; Gao, Z. Promotive role of microRNA 150 in hippocampal neurons apoptosis in vascular dementia model rats. Mol. Med. Rep., 2021, 23(4), 257.
[http://dx.doi.org/10.3892/mmr.2021.11896] [PMID: 33576461]
[37]
Tian, Z.; Ji, X.; Liu, J. Neuroinflammation in vascular cognitive impairment and dementia: Current evidence, advances, and prospects. Int. J. Mol. Sci., 2022, 23(11), 6224.
[http://dx.doi.org/10.3390/ijms23116224] [PMID: 35682903]
[38]
Ni, M.; Zhang, J.; Huang, L.; Liu, G.; Li, Q. A Rho-kinase inhibitor reverses learning and memory deficits in a Rat model of chronic cerebral ischemia by altering Bcl-2/Bax-NMDAR signaling in the cerebral cortex. J. Pharmacol. Sci., 2018, 138(2), 107-115.
[http://dx.doi.org/10.1016/j.jphs.2018.08.012] [PMID: 30366873]
[39]
Kim, J.; Kundu, M.; Viollet, B.; Guan, K.L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol., 2011, 13(2), 132-141.
[http://dx.doi.org/10.1038/ncb2152] [PMID: 21258367]
[40]
Alers, S.; Löffler, A.S.; Wesselborg, S.; Stork, B. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: Cross talk, shortcuts, and feedbacks. Mol. Cell. Biol., 2012, 32(1), 2-11.
[http://dx.doi.org/10.1128/MCB.06159-11] [PMID: 22025673]
[41]
Shinojima, N.; Yokoyama, T.; Kondo, Y.; Kondo, S. Roles of the Akt/mTOR/p70S6K and ERK1/2 signaling pathways in curcumin-induced autophagy. Autophagy, 2007, 3(6), 635-637.
[http://dx.doi.org/10.4161/auto.4916] [PMID: 17786026]