Letters in Drug Design & Discovery

Author(s): Fansheng Ran, Lun Dong, Yang Liu and Guisen Zhao*

DOI: 10.2174/1570180820666230602093051

DownloadDownload PDF Flyer Cite As
Novel 1,3,4-trisubstituted Pyrazolopyrimidine Derivatives Show Potent Antiproliferative Activity in Mantle Cell Lymphoma

Page: [2063 - 2071] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Pyrazolopyrimidine scaffold is an important pharmacophore in drug discovery. This pharmacophore has been reported to produce numerous biological activities, of which anticancer is an important one. The development of novel pyrazolopyrimidine derivatives is of great importance for antitumor drug research.

Objective: Compound 6, a pyrazolopyrimidine derivative reported by our group, showed weak antiproliferative activity with IC50 values of over 30 μM against mantle cell lymphoma (MCL) cell lines. In this study, we will further perform the structural optimization of compound 6 to screen highly active pyrazolopyrimidine derivatives.

Methods: A novel series of 1,3,4-trisubstituted pyrazolopyrimidine derivatives were synthesized and their structures were elucidated by 1H-NMR, 13C-NMR, and HRMS. The antiproliferative activities of target compounds against MCL cell lines (Mino, Jeko-1, and Z138) were evaluated by the CellTiter-Glo luminescent cell viability assay. The effect of representative compounds to induce apoptosis was evaluated by Annexin V/Propidium Iodide (PI)-binding assay. Mitochondrial membrane potential and reactive oxygen species (ROS) levels in 15c-treated Z138 cells were tested by JC-1 and DCFH-DA probes, respectively.

Results: Most compounds demonstrated improved antiproliferative activity against MCL cell lines compared to the lead compound 6, especially 15c, 15f, 15g, 15j, and 15o, with IC50 values at low micromolar levels. In addition, compound 15c could induce apoptosis in a dose-dependent manner in Z138 cells through reduction of mitochondrial membrane potential and enhancing reactive oxygen species production.

Conclusion: The results showed that 1,3,4-trisubstituted pyrazolopyrimidine derivatives could be valuable lead compounds for the further development of anti-lymphoma agents.

Keywords: Pyrazolopyrimidine, mantle cell lymphoma, antiproliferation, apoptosis, mitochondrial membrane potential, annexin V.

Graphical Abstract

[1]
Kumar, D.; Kumar Jain, S. A comprehensive review of N-heterocycles as cytotoxic agents. Curr. Med. Chem., 2016, 23(38), 4338-4394.
[http://dx.doi.org/10.2174/0929867323666160809093930] [PMID: 27516198]
[2]
Cherukupalli, S.; Hampannavar, G.A.; Chinnam, S.; Chandrasekaran, B.; Sayyad, N.; Kayamba, F.; Reddy Aleti, R.; Karpoormath, R. An appraisal on synthetic and pharmaceutical perspectives of pyrazolo[4,3-d]pyrimidine scaffold. Bioorg. Med. Chem., 2018, 26(2), 309-339.
[http://dx.doi.org/10.1016/j.bmc.2017.10.012] [PMID: 29273417]
[3]
Singh, S.P.; Parmar, S.S.; Raman, K.; Stenberg, V.I. Chemistry and biological activity of thiazolidinones. Chem. Rev., 1981, 81(2), 175-203.
[http://dx.doi.org/10.1021/cr00042a003]
[4]
Wang, S.; Yuan, X.H.; Wang, S.Q.; Zhao, W.; Chen, X.B.; Yu, B. FDA-approved pyrimidine-fused bicyclic heterocycles for cancer therapy: Synthesis and clinical application. Eur. J. Med. Chem., 2021, 214, 113218.
[http://dx.doi.org/10.1016/j.ejmech.2021.113218] [PMID: 33540357]
[5]
Sochacka-Ćwikła, A.; Mączyński, M.; Regiec, A. FDA-approved small molecule compounds as drugs for solid cancers from early 2011 to the end of 2021. Molecules, 2022, 27(7), 2259.
[http://dx.doi.org/10.3390/molecules27072259] [PMID: 35408658]
[6]
Dorababu, A. Pyrazolopyrimidines as attractive pharmacophores in efficient drug design: A recent update. Arch. Pharm., 2022, 355(10), 2200154.
[http://dx.doi.org/10.1002/ardp.202200154] [PMID: 35698212]
[7]
Asati, V.; Anant, A.; Patel, P.; Kaur, K.; Gupta, G.D. Pyrazolopyrimidines as anticancer agents: A review on structural and target-based approaches. Eur. J. Med. Chem., 2021, 225, 113781.
[http://dx.doi.org/10.1016/j.ejmech.2021.113781] [PMID: 34438126]
[8]
C S Pinheiro, L.; M Feitosa, L.; O Gandi, M.; F Silveira, F.; Boechat, N. The development of novel compounds against malaria: Quinolines, triazolpyridines, pyrazolopyridines and pyrazolopyrimidines. Molecules, 2019, 24(22), 4095.
[http://dx.doi.org/10.3390/molecules24224095] [PMID: 31766184]
[9]
Elgemeie, G.H.; Azzam, R.A.; Zaghary, W.A.; Khedr, M.A.; Elsherif, G.E. Medicinal chemistry of pyrazolopyrimidine scaffolds substituted with different heterocyclic nuclei. Curr. Pharm. Des., 2022, 28(41), 3374-3403.
[http://dx.doi.org/10.2174/1381612829666221102162000] [PMID: 36330628]
[10]
Rao, R.N.; Chanda, K. An assessment study of known pyrazolopyrimidines: Chemical methodology and cellular activity. Bioorg. Chem., 2020, 99, 103801.
[http://dx.doi.org/10.1016/j.bioorg.2020.103801] [PMID: 32278206]
[11]
Saini, A.; Patel, R.; Gaba, S.; Singh, G.; Gupta, G.D.; Monga, V. Adenosine receptor antagonists: Recent advances and therapeutic perspective. Eur. J. Med. Chem., 2022, 227, 113907.
[http://dx.doi.org/10.1016/j.ejmech.2021.113907] [PMID: 34695776]
[12]
Ran, F.; Liu, Y.; Xu, Z.; Meng, C.; Yang, D.; Qian, J.; Deng, X.; Zhang, Y.; Ling, Y. Recent development of BTK-based dual inhibitors in the treatment of cancers. Eur. J. Med. Chem., 2022, 233, 114232.
[http://dx.doi.org/10.1016/j.ejmech.2022.114232] [PMID: 35247756]
[13]
Ran, F.; Liu, Y.; Yu, S.; Guo, K.; Tang, W.; Chen, X.; Zhao, G. Design and synthesis of novel 1-substituted 3-(6-phenoxypyridin-3-yl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine analogs as selective BTK inhibitors for the treatment of mantle cell lymphoma. Bioorg. Chem., 2020, 94, 103367.
[http://dx.doi.org/10.1016/j.bioorg.2019.103367] [PMID: 31685258]
[14]
Ran, F.; Liu, Y.; Chen, X.; Zhuo, H.; Xu, C.; Li, Y.; Duan, X.; Zhao, G. Design and synthesis of novel substituted benzyl pyrrolopyrimidine derivatives as selective BTK inhibitors for treating mantle cell lymphoma. Bioorg. Chem., 2021, 112, 104968.
[http://dx.doi.org/10.1016/j.bioorg.2021.104968] [PMID: 34000704]
[15]
Schimmer, A.D.; Hedley, D.W.; Penn, L.Z.; Minden, M.D. Receptor- and mitochondrial-mediated apoptosis in acute leukemia: A translational view. Blood, 2001, 98(13), 3541-3553.
[http://dx.doi.org/10.1182/blood.V98.13.3541] [PMID: 11739155]
[16]
Cui, M.; Zhang, Y.; Liu, S.; Xie, W.; Ji, M.; Lou, H.; Li, X. 1-oxoeudesm-11(13)-ene-12,8α-lactone-induced apoptosis via ROS generation and mitochondria activation in MCF-7 cells. Arch. Pharm. Res., 2011, 34(8), 1323-1329.
[http://dx.doi.org/10.1007/s12272-011-0812-x] [PMID: 21910054]
[17]
Robertson, J.D.; Orrenius, S. Role of mitochondria in toxic cell death. Toxicology, 2002, 181-182, 491-496.
[http://dx.doi.org/10.1016/S0300-483X(02)00464-X] [PMID: 12505358]
[18]
Qi, J.; Zhao, W.; Zheng, Y.; Wang, R.; Chen, Q.; Wang, F.A.; Fan, W.; Gao, H.; Xia, X. Single-crystal structure and intracellular localization of Zn(II)-thiosemicarbazone complex targeting mitochondrial apoptosis pathways. Bioorg. Med. Chem. Lett., 2020, 30(16), 127340.
[http://dx.doi.org/10.1016/j.bmcl.2020.127340] [PMID: 32631541]
[19]
Kalpage, H.A.; Bazylianska, V.; Recanati, M.A.; Fite, A.; Liu, J.; Wan, J.; Mantena, N.; Malek, M.H.; Podgorski, I.; Heath, E.I.; Vaishnav, A.; Edwards, B.F.; Grossman, L.I.; Sanderson, T.H.; Lee, I.; Hüttemann, M. Tissue‐specific regulation of cytochrome c by post‐translational modifications: Respiration, the mitochondrial membrane potential, ROS, and apoptosis. FASEB J., 2019, 33(2), 1540-1553.
[http://dx.doi.org/10.1096/fj.201801417R] [PMID: 30222078]
[20]
Mieczkowski, A.; Psurski, M.; Bagiński, M.; Bieszczad, B.; Mroczkowska, M.; Wilczek, M.; Czajkowska, J.; Trzybiński, D.; Woźniak, K.; Wietrzyk, J. Novel (S)-1,3,4,12a-tetrahydropyrazino[2,1-c][1,4]benzodiazepine-6,12(2H,11H)-dione derivatives: Selective inhibition of MV-4-11 biphenotypic B myelomonocytic leukemia cells’ growth is accompanied by reactive oxygen species overproduction and apoptosis. Bioorg. Med. Chem. Lett., 2018, 28(4), 618-625.
[http://dx.doi.org/10.1016/j.bmcl.2018.01.034] [PMID: 29395971]
[21]
Qian, J.; Xu, Z.; Meng, C.; Liu, J.; Hsu, P.L.; Li, Y.; Zhu, W.; Yang, Y.; Morris-Natschke, S.L.; Lee, K.H.; Zhang, Y.; Ling, Y. Design and synthesis of benzylidenecyclohexenones as TrxR inhibitors displaying high anticancer activity and inducing ROS, apoptosis, and autophagy. Eur. J. Med. Chem., 2020, 204, 112610.
[http://dx.doi.org/10.1016/j.ejmech.2020.112610] [PMID: 32736231]