In silico Prediction of ADMET/Drug-likeness Properties of Bioactive Phloroglucinols from Hypericum Genus

Page: [1002 - 1017] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Background: Dimeric acylphloroglucinols occurring in species from sections Brathys and Trigynobrathys of the genus Hypericum exhibit acylfilicinic acid and acylphloroglucinol moieties linked by a methylene bridge. However, this chemical feature differs from hyperforin, from H. perforatum (Hypericum section). Some dimeric acylphloroglucinols, such as uliginosin B, display similar pharmacological activities, namely antidepressant and antinociceptive. However, there is no knowledge about the pharmacokinetic profile and no toxicity studies of these compounds in intact mammals.

Objective: To perform an in silico evaluation of the similarity, pharmacokinetics and toxicity (ADMET) properties of dimeric acylphloroglucinols from species native to Central and South America.

Methods: ADMET prediction of eleven elected phloroglucinols followed by the chemical space evaluation of thirty-five dimeric acylphloroglucinols derivatives labeled according to their prenylation/ geranylation pattern through principal component analysis (PCA). The similarity analysis was performed using the Tanimoto similarity index. ADMET properties were predicted with the opensource software SwissADME and pkCSM-pharmacokinetics.

Results: Several compounds showed good human intestinal absorption. However, they may present difficulties in crossing the blood-brain barrier, probably due to the high tPSA values. The predicted toxicity parameters indicated that most compounds have low toxicity. Most non-prenylated phloroglucinols were disposed into Lipinski’s rule limits. Uliginosin B, isouliginosin B and japonicin A seem to be druglike compounds. The PCA model explained 77.49% of the total variance, and molecular similarity analyses revealed some expected similarities between isomers and different compounds.

Conclusion: Dimeric acylphloroglucinols may be promising drug candidates and deserve further pharmacological and medicinal chemistry studies.

Graphical Abstract

[1]
Müller, W. Current St. John’s wort research from mode of action to clinical efficacy. Pharmacol. Res., 2003, 47(2), 101-109.
[http://dx.doi.org/10.1016/S1043-6618(02)00266-9] [PMID: 12543057]
[2]
Linde, K.; Mulrow, C.D.; Berner, M.M.; Egger, M. St John's wort for depression. Cochr. Database Syst. Rev., 2005, 18(2), CD000448.
[http://dx.doi.org/10.1002/14651858.CD000448.pub2]
[3]
Linde, K.; Berner, M.M.; Kriston, L. St John's wort for major depression. Cochr. Database Syst. Rev., 2008, 2008(4), CD000448.
[http://dx.doi.org/10.1002/14651858.CD000448.pub3]
[4]
Kasper, S.; Caraci, F.; Forti, B.; Drago, F.; Aguglia, E. Efficacy and tolerability of Hypericum extract for the treatment of mild to moderate depression. Eur. Neuropsychopharmacol., 2010, 20(11), 747-765.
[http://dx.doi.org/10.1016/j.euroneuro.2010.07.005] [PMID: 20708905]
[5]
Avato, P.; Raffo, F.; Guglielmi, G.; Vitali, C.; Rosato, A. Extracts from St John’s wort and their antimicrobial activity. Phytother. Res., 2004, 18(3), 230-232.
[http://dx.doi.org/10.1002/ptr.1430] [PMID: 15103670]
[6]
Crockett, S.L.; Robson, N.K.B. Taxonomy and chemotaxonomy of the genus hypericum. Med. Aromat. Plant Sci. Biotechnol., 2011, 5(S1), 1-13.
[7]
Robson, N.K.B. Studies in the genus Hypericum L.(Hypericaceae) 9. Addenda, corrigenda, keys, lists and general discussion. Phytotaxa, 2012, 72(1), 1-111.
[http://dx.doi.org/10.11646/phytotaxa.72.1.1]
[8]
Verotta, L.; Appendino, G.; Belloro, E.; Jakupovic, J.; Bombardelli, E. Furohyperforin, a prenylated phloroglucinol from st. John’s wort (Hypericum perforatum). J. Nat. Prod., 1999, 62(5), 770-772.
[http://dx.doi.org/10.1021/np980470v] [PMID: 10346967]
[9]
Verotta, L.; Appendino, G.; Jakupovic, J.; Bombardelli, E. Hyperforin analogues from St. John’s wort (Hypericum perforatum). J. Nat. Prod., 2000, 63(3), 412-415.
[http://dx.doi.org/10.1021/np9903752] [PMID: 10757735]
[10]
Butterweck, V.; Schmidt, M.St. John’s wort: Role of active compounds for its mechanism of action and efficacy. Wien. Med. Wochenschr., 2007, 157(13-14), 356-361.
[http://dx.doi.org/10.1007/s10354-007-0440-8] [PMID: 17704987]
[11]
Ccana-Ccapatinta, G.V.; de Barros, F.M.C.; Bridi, H.; von Poser, G.L. Dimeric acylphloroglucinols in Hypericum species from sections brathys and trigynobrathys. Phytochem. Rev., 2015, 14(1), 25-50.
[http://dx.doi.org/10.1007/s11101-013-9332-2]
[12]
Socolsky, C.; Rates, S.M.K.; Stein, A.C.; Asakawa, Y.; Bardón, A. Acylphloroglucinols from Elaphoglossum crassipes: Antidepressant-like activity of crassipin A. J. Nat. Prod., 2012, 75(6), 1007-1017.
[http://dx.doi.org/10.1021/np200436h] [PMID: 22686708]
[13]
Bridi, H.; Meirelles, G.C.; von Poser, G.L. Structural diversity and biological activities of phloroglucinol derivatives from Hypericum species. Phytochemistry, 2018, 155, 203-232.
[http://dx.doi.org/10.1016/j.phytochem.2018.08.002] [PMID: 30153613]
[14]
Viana, A.F.; Heckler, A.P.; Fenner, R.; Rates, S.M.K. Antinociceptive activity of Hypericum caprifoliatum and Hypericum polyanthemum (Guttiferae). Braz. J. Med. Biol. Res., 2003, 36(5), 631-634.
[http://dx.doi.org/10.1590/S0100-879X2003000500011] [PMID: 12715083]
[15]
Bridi, H.; Ccana-Ccapatinta, G.V.; Stolz, E.D.; Meirelles, G.C.; Bordignon, S.A.L.; Rates, S.M.K.; von Poser, G.L. Dimeric acylphloroglucinols from Hypericum austrobrasiliense exhibiting antinociceptive activity in mice. Phytochemistry, 2016, 122, 178-183.
[http://dx.doi.org/10.1016/j.phytochem.2015.12.012] [PMID: 26723883]
[16]
Ccana-Ccapatinta, G.V.; Stolz, E.D.; da Costa, P.F.; Rates, S.M.K.; von Poser, G.L. Acylphloroglucinol derivatives from Hypericum andinum: Antidepressant-like activity of andinin A. J. Nat. Prod., 2014, 77(10), 2321-2325.
[http://dx.doi.org/10.1021/np500426m] [PMID: 25264905]
[17]
Haas, J.; Viana, A.; Machado Heckler, A.; Poser, G.; Kuze Rates, S. The antinociceptive effect of a benzopyran (HP1) isolated from Hypericum polyanthemum in mice hot-plate test is blocked by naloxone. Planta Med., 2010, 76(13), 1419-1423.
[http://dx.doi.org/10.1055/s-0029-1240942] [PMID: 20309796]
[18]
Stein, A.C.; Viana, A.F.; Müller, L.G.; Nunes, J.M.; Stolz, E.D.; Do Rego, J.C.; Costentin, J.; von Poser, G.L.; Rates, S.M.K.; Uliginosin, B. Uliginosin B, a phloroglucinol derivative from Hypericum polyanthemum: A promising new molecular pattern for the development of antidepressant drugs. Behav. Brain Res., 2012, 228(1), 66-73.
[http://dx.doi.org/10.1016/j.bbr.2011.11.031] [PMID: 22155486]
[19]
Stolz, E.D.; Müller, L.G.; Antonio, C.B.; da Costa, P.F.; von Poser, G.L.; Noël, F.; Rates, S.M.K. Determination of pharmacological interactions of uliginosin B, a natural phloroglucinol derivative, with amitriptyline, clonidine and morphine by isobolographic analysis. Phytomedicine, 2014, 21(12), 1684-1688.
[http://dx.doi.org/10.1016/j.phymed.2014.08.009] [PMID: 25442277]
[20]
Stolz, E.D.; Viana, A.F.; Hasse, D.R.; von Poser, G.L.; do Rego, J.C.; Rates, S.M.K. Uliginosin B presents antinociceptive effect mediated by dopaminergic and opioid systems in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2012, 39(1), 80-87.
[http://dx.doi.org/10.1016/j.pnpbp.2012.05.012] [PMID: 22627196]
[21]
Viana, A.F.; Rego, J-C.; Munari, L.; Dourmap, N.; Heckler, A.P.; Costa, T.D.; von Poser, G.L.; Costentin, J.; Rates, S.M.K. Hypericum caprifoliatum (Guttiferae) Cham. & Schltdl.: A species native to South Brazil with antidepressant-like activity. Fundam. Clin. Pharmacol., 2006, 20(6), 507-514.
[http://dx.doi.org/10.1111/j.1472-8206.2006.00440.x] [PMID: 17109644]
[22]
de Carvalho, M.G.; Bridi, H.; Rates, S.M.K.; von Poser, G.L. Southern Brazilian Hypericum species, promising sources of bioactive metabolites. In: Studies in Natural Products Chemistry; Elsevier: Amsterdam, Netherlands, 2018, 59, pp. 491-507.
[23]
Duarte, M.O.; Lunardelli, S.; Kiekow, C.J.; Stein, A.C.; Müller, L.; Stolz, E.; Rates, S.M.K.; Gosmann, G. Phloroglucinol derivatives present an antidepressant-like effect in the mice tail suspension test (TST). Nat. Prod. Commun., 2014, 9(5), 1934578X1400900522.
[24]
Rocha, L.; Marston, A.; Potterat, O.; Kaplan, M.A.C.; Stoeckli-Evans, H.; Hostettmann, K. Antibacterial phloroglucinols and flavonoids from Hypericum brasiliense. Phytochemistry, 1995, 40(5), 1447-1452.
[http://dx.doi.org/10.1016/0031-9422(95)00507-4] [PMID: 8534402]
[25]
Nör, C.; Albring, D.; Ferraz, A.B.F.; Schripsema, J.; Pires, V.; Sonnet, P.; Guillaume, D.; von Poser, G.L. Phloroglucinol derivatives from four Hypericum species belonging to the Trigynobrathys section. Biochem. Syst. Ecol., 2004, 32(5), 517-519.
[http://dx.doi.org/10.1016/j.bse.2003.10.011]
[26]
Bernardi, A.P.M. Chemical analysis, assessment of antioxidant activity and obtaining in vitro cultures of Hypericum species native to Rio Grande do Sul., 2007.
[27]
Centurião, F.; Sakamoto, S.; Stein, A.; Müller, L.; Chagas, P.; Poser, G.; Nogueira, C.; Rates, S. The antidepressant-like effect of hyperbrasilol B, a natural dimeric phloroglucinol derivative is prevented by veratrine, a sensitive-voltage Na+ channel opener. European J. Med. Plants, 2014, 4(11), 1268-1281.
[http://dx.doi.org/10.9734/EJMP/2014/7702]
[28]
França, H.S.; Kuster, R.M.; Rito, P.N.; Oliveira, A.P.; Teixeira, L.A.; Rocha, L. Antibacterial activity of phloroglucinols and hexane extract of Hypericum brasiliense Choysi. Quim. Nova, 2009, 32(5), 1103-1106.
[http://dx.doi.org/10.1590/S0100-40422009000500004]
[29]
Cargnin, S.T.; Vieira, P.B.; Cibulski, S.; Cassel, E.; Vargas, R.M.F.; Montanha, J.; Roehe, P.; Tasca, T.; von Poser, G.L. Anti-Trichomonas vaginalis activity of Hypericum polyanthemum extract obtained by supercritical fluid extraction and isolated compounds. Parasitol. Int., 2013, 62(2), 112-117.
[http://dx.doi.org/10.1016/j.parint.2012.10.006] [PMID: 23142570]
[30]
Menezes, C.B.; Rigo, G.V.; Bridi, H.; Trentin, D.S.; Macedo, A.J.; von Poser, G.L.; Tasca, T. The anti- Trichomonas vaginalis phloroglucinol derivative isoaustrobrasilol B modulates extracellular nucleotide hydrolysis. Chem. Biol. Drug Des., 2017, 90(5), 811-819.
[http://dx.doi.org/10.1111/cbdd.13002] [PMID: 28390095]
[31]
Pinhatti, A.V.; de Barros, F.M.C.; de Farias, C.B.; Schwartsmann, G.; Poser, G.L.; Abujamra, A.L. Antiproliferative activity of the dimeric phloroglucinol and benzophenone derivatives of Hypericum spp. native to southern Brazil. Anticancer Drugs, 2013, 24(7), 699-703.
[http://dx.doi.org/10.1097/CAD.0b013e3283626626] [PMID: 23669242]
[32]
Dragunow, M. The adult human brain in preclinical drug development. Nat. Rev. Drug Discov., 2008, 7(8), 659-666.
[http://dx.doi.org/10.1038/nrd2617] [PMID: 18617887]
[33]
Mohs, R.C.; Greig, N.H. Drug discovery and development: Role of basic biological research. Alzheimers Dement., 2017, 3(4), 651-657.
[http://dx.doi.org/10.1016/j.trci.2017.10.005] [PMID: 29255791]
[34]
Segall, M.; Champness, E.; Obrezanova, O.; Leeding, C. Beyond profiling: Using ADMET models to guide decisions. Chem. Biodivers., 2009, 6(11), 2144-2151.
[http://dx.doi.org/10.1002/cbdv.200900148] [PMID: 19937845]
[35]
Guido, R.; Andricopulo, A.D.; Oliva, G. Drug design, biotechnology and medicinal chemistry: Applications to infectious diseases. Estud. Av., 2010, 24(70), 81-98.
[http://dx.doi.org/10.1590/S0103-40142010000300006]
[36]
Moda, T.L.; Carrara, A.E.; Andricopulo, A.D. A fragment-based approach for the in silico prediction of blood-brain barrier permeation. J. Braz. Chem. Soc., 2012, 23(12), 2191-2196.
[http://dx.doi.org/10.1590/S0103-50532013005000001]
[37]
Moda, T.L.; Montanari, C.A.; Andricopulo, A.D. Hologram QSAR model for the prediction of human oral bioavailability. Bioorg. Med. Chem., 2007, 15(24), 7738-7745.
[http://dx.doi.org/10.1016/j.bmc.2007.08.060] [PMID: 17870541]
[38]
Tropsha, A. Best practices for QSAR model development, validation, and exploitation. Mol. Inform., 2010, 29(6-7), 476-488.
[http://dx.doi.org/10.1002/minf.201000061] [PMID: 27463326]
[39]
Alqahtani, S. In silico ADME-Tox modeling: Progress and prospects. Expert Opin. Drug Metab. Toxicol., 2017, 13(11), 1147-1158.
[http://dx.doi.org/10.1080/17425255.2017.1389897] [PMID: 28988506]
[40]
Ghosh, J. Modeling ADMET. In: In Silico Methods for Predicting Drug Toxicity; Springer: Berlin, Germany, 2016, pp. 63-83.
[41]
Lipinski, C.A. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods, 2000, 44(1), 235-249.
[http://dx.doi.org/10.1016/S1056-8719(00)00107-6] [PMID: 11274893]
[42]
Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem., 2002, 45(12), 2615-2623.
[http://dx.doi.org/10.1021/jm020017n] [PMID: 12036371]
[43]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[44]
Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem., 2015, 58(9), 4066-4072.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00104] [PMID: 25860834]
[45]
Durán-Iturbide, N.A.; Díaz-Eufracio, B.I.; Medina-Franco, J.L. In silico ADME/Tox profiling of natural products: A focus on BIOFACQUIM. ACS Omega, 2020, 5(26), 16076-16084.
[http://dx.doi.org/10.1021/acsomega.0c01581] [PMID: 32656429]
[46]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open babel: An open chemical toolbox. J. Cheminform., 2011, 3(1), 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[47]
Gonçalves, I.L. das Neves, G.M.; Kagami, L.P.; Gonçalves, G.A.; Davi, L.; Eifler-Lima, V.L. Exploring the N1 position of biginelli compounds: New insights and trends for chemical diversity generation of bioactive derivatives. Mini Rev. Med. Chem., 2021, 22(11), 1545-1558.
[48]
Pollastri, M.P. Overview on the rule of five. Curr. Protocols Pharmacol., 2010, 9(1), 12.
[PMID: 22294375]
[49]
Shultz, M.D. Two decades under the influence of the rule of five and the changing properties of approved oral drugs. Miniperspective. J. Med. Chem., 2019, 62(4), 1701-1714.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00686] [PMID: 30212196]
[50]
Prasanna, S.; Doerksen, R. Topological polar surface area: A useful descriptor in 2D-QSAR. Curr. Med. Chem., 2009, 16(1), 21-41.
[http://dx.doi.org/10.2174/092986709787002817] [PMID: 19149561]
[51]
Xiong, B.; Wang, Y.; Chen, Y.; Xing, S.; Liao, Q.; Chen, Y.; Li, Q.; Li, W.; Sun, H. Strategies for structural modification of small molecules to improve blood–brain barrier penetration: A recent perspective. J. Med. Chem., 2021, 64(18), 13152-13173.
[http://dx.doi.org/10.1021/acs.jmedchem.1c00910] [PMID: 34505508]
[52]
Wager, T.T.; Hou, X.; Verhoest, P.R.; Villalobos, A. Central nervous system multiparameter optimization desirability: Application in drug discovery. ACS Chem. Neurosci., 2016, 7(6), 767-775.
[http://dx.doi.org/10.1021/acschemneuro.6b00029] [PMID: 26991242]
[53]
Vazquez-Rodriguez, S.; Vilar, S.; Kachler, S.; Klotz, K.N.; Uriarte, E.; Borges, F.; Matos, M.J. Adenosine receptor ligands: Coumarin–chalcone hybrids as modulating agents on the activity of hARs. Molecules, 2020, 25(18), 4306.
[http://dx.doi.org/10.3390/molecules25184306] [PMID: 32961824]
[54]
Chagas, C.M.; Moss, S.; Alisaraie, L. Drug metabolites and their effects on the development of adverse reactions. Revisiting Lipinski’s Rule of Five. Int. J. Pharm., 2018, 549(1-2), 133-149.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.046] [PMID: 30040971]
[55]
Lipinski, C.A. Rule of five in 2015 and beyond: Target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. Adv. Drug Deliv. Rev., 2016, 101, 34-41.
[http://dx.doi.org/10.1016/j.addr.2016.04.029] [PMID: 27154268]
[56]
Lu, J.J.; Crimin, K.; Goodwin, J.T.; Crivori, P.; Orrenius, C.; Xing, L.; Tandler, P.J.; Vidmar, T.J.; Amore, B.M.; Wilson, A.G.E.; Stouten, P.F.W.; Burton, P.S. Influence of molecular flexibility and polar surface area metrics on oral bioavailability in the rat. J. Med. Chem., 2004, 47(24), 6104-6107.
[http://dx.doi.org/10.1021/jm0306529] [PMID: 15537364]
[57]
Vieth, M.; Sutherland, J.J. Dependence of molecular properties on proteomic family for marketed oral drugs. J. Med. Chem., 2006, 49(12), 3451-3453.
[http://dx.doi.org/10.1021/jm0603825] [PMID: 16759087]
[58]
Avram, S.; Stan, M.S.; Udrea, A.M.; Buiu, C.; Boboc, A.A.; Mernea, M. 3D-ALMOND-QSAR models to predict the antidepressant effect of some natural compounds. Pharmaceutics, 2021, 13(9), 1449.
[http://dx.doi.org/10.3390/pharmaceutics13091449] [PMID: 34575524]
[59]
Bharate, S.S.; Kumar, V.; Vishwakarma, R.A. Determining partition coefficient (Log P), distribution coefficient (Log D) and ionization constant (pKa) in early drug discovery. Comb. Chem. High Throughput Screen., 2016, 19(6), 461-469.
[http://dx.doi.org/10.2174/1386207319666160502123917] [PMID: 27137915]
[60]
Pires, D.E.V.; Kaminskas, L.M.; Ascher, D.B. Prediction and optimization of pharmacokinetic and toxicity properties of the ligand. In: Computational Drug Discovery and Design; Springer: Berlin, Germany, 2018, pp. 271-284.
[http://dx.doi.org/10.1007/978-1-4939-7756-7_14]
[61]
Roy, D.; Hinge, V.K.; Kovalenko, A. To pass or not to pass: Predicting the blood–brain barrier permeability with the 3D-RISM-KH molecular solvation theory. ACS Omega, 2019, 4(16), 16774-16780.
[http://dx.doi.org/10.1021/acsomega.9b01512] [PMID: 31646222]
[62]
Gupta, M.; Lee, H.J.; Barden, C.J.; Weaver, D.F. The blood–brain barrier (BBB) score. J. Med. Chem., 2019, 62(21), 9824-9836.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01220] [PMID: 31603678]
[63]
Nicolussi, S.; Drewe, J.; Butterweck, V. Meyer zu, S.H.E. Clinical relevance of St. John’s wort drug interactions revisited. Br. J. Pharmacol., 2020, 177(6), 1212-1226.
[http://dx.doi.org/10.1111/bph.14936] [PMID: 31742659]
[64]
Kubinyi, H. Chemical similarity and biological activities. J. Braz. Chem. Soc., 2002, 13(6), 717-726.
[http://dx.doi.org/10.1590/S0103-50532002000600002]
[65]
Martin, Y.C.; Kofron, J.L.; Traphagen, L.M. Do structurally similar molecules have similar biological activity? J. Med. Chem., 2002, 45(19), 4350-4358.
[http://dx.doi.org/10.1021/jm020155c] [PMID: 12213076]
[66]
Lo, Y.C.; Rensi, S.E.; Torng, W.; Altman, R.B. Machine learning in chemoinformatics and drug discovery. Drug Discov. Today, 2018, 23(8), 1538-1546.
[http://dx.doi.org/10.1016/j.drudis.2018.05.010] [PMID: 29750902]
[67]
Winter, R.; Montanari, F.; Noé, F.; Clevert, D.A. Learning continuous and data-driven molecular descriptors by translating equivalent chemical representations. Chem. Sci., 2019, 10(6), 1692-1701.
[http://dx.doi.org/10.1039/C8SC04175J] [PMID: 30842833]
[68]
Lee, A.A.; Yang, Q.; Bassyouni, A.; Butler, C.R.; Hou, X.; Jenkinson, S.; Price, D.A. Ligand biological activity predicted by cleaning positive and negative chemical correlations. Proc. Natl. Acad. Sci., 2019, 116(9), 3373-3378.
[http://dx.doi.org/10.1073/pnas.1810847116] [PMID: 30808733]