miR-129-5p/FGF2 Axis is Associated with Homocysteine-induced Human Umbilical Vein Endothelial Cell Injury

Page: [641 - 648] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Purpose: Homocysteine (Hcy)-induced endothelial cell injury is a key event in atherosclerosis pathogenesis. In this study, we aimed to explore the mechanisms underlying Hcy-induced endothelial injury by assessing the effects of Hcy on endothelial cell proliferation and the microRNA (miR)-129-5p/fibroblast growth factor 2 (FGF2) axis.

Methods: Human umbilical vein endothelial cells (HUVECs) were treated with Hcy to construct an endothelial cell injury model. Expression levels of FGF2 in Hcy-induced HUVECs were determined using quantitative real-time polymerase chain reaction and western blotting. An FGF2 overexpression lentiviral vector was constructed to upregulate FGF2 expression in HUVECs via lentivirus transduction. A cell counting kit-8 assay was used to explore the effects of FGF2 overexpression on HUVEC proliferation. An upstream regulatory miRNA was predicted, and its targetbinding relationship with FGF2 was evaluated using a dual-luciferase reporter assay.

Results: We found that FGF2 expression in HUVECs was inhibited by Hcy treatment. Lentivirus transduction led to the overexpression of FGF2 in HUVECs, which significantly reversed the effect of Hcy on endothelial cell proliferation. miR-129-5p was experimentally validated as an upstream regulator of FGF2, and its decreased levels in HUVECs led to increased FGF2 expression. In addition, HUVEC proliferation was enhanced by the knockdown of miR-129-5p, and this effect was reversed by Hcy treatment.

Conclusion: Taken together, the results of this study revealed that Hcy inhibits FGF2 expression in HUVECs, and FGF2 is regulated by upstream miR-129-5p to improve the effect of Hcy on endothelial cell proliferation.

Graphical Abstract

[1]
Kubota, Y.; Alonso, A.; Heckbert, S.R.; Norby, F.L.; Folsom, A.R. Homocysteine and incident atrial fibrillation: The atherosclerosis risk in communities study and the multi-ethnic study of atherosclerosis. Heart Lung Circ., 2019, 28(4), 615-622.
[http://dx.doi.org/10.1016/j.hlc.2018.03.007] [PMID: 29685716]
[2]
Gimbrone, M.A., Jr; García-Cardeña, G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ. Res., 2016, 118(4), 620-636.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306301] [PMID: 26892962]
[3]
Li, S.; Sun, L.; Qi, L.; Jia, Y.; Cui, Z.; Wang, Z.; Li, F.; Zhao, X. Effect of high homocysteine level on the severity of coronary heart disease and prognosis after stent implantation. J. Cardiovasc. Pharmacol., 2020, 76(1), 101-105.
[http://dx.doi.org/10.1097/FJC.0000000000000829] [PMID: 32304562]
[4]
Zhang, H.P.; Wang, Y.H.; Ma, S.C.; Zhang, H.; Yang, A.N.; Yang, X.L.; Zhang, M.H.; Sun, J.M.; Hao, Y.J.; Jiang, Y.D. Homocysteine inhibits endothelial progenitor cells proliferation via DNMT1-mediated hypomethylation of Cyclin A. Exp. Cell Res., 2018, 362(1), 217-226.
[http://dx.doi.org/10.1016/j.yexcr.2017.11.021] [PMID: 29155363]
[5]
Chang, P.Y.; Lu, S.C.; Lee, C.M.; Chen, Y.J.; Dugan, T.A.; Huang, W.H.; Chang, S.F.; Liao, W.S.L.; Chen, C.H.; Lee, Y.T. Homocysteine inhibits arterial endothelial cell growth through transcriptional downregulation of fibroblast growth factor-2 involving G protein and DNA methylation. Circ. Res., 2008, 102(8), 933-941.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.171082] [PMID: 18309099]
[6]
Medina, M.Á. Hyperhomocysteinemia and occlusive vascular disease: An emergent role for fibroblast growth factor 2. Circ. Res., 2008, 102(8), 869-870.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.175588] [PMID: 18436800]
[7]
Hui, Q.; Jin, Z.; Li, X.; Liu, C.; Wang, X. FGF family: From drug development to clinical application. Int. J. Mol. Sci., 2018, 19(7), 1875.
[http://dx.doi.org/10.3390/ijms19071875] [PMID: 29949887]
[8]
Yu, P.; Wilhelm, K.; Dubrac, A.; Tung, J.K.; Alves, T.C.; Fang, J.S.; Xie, Y.; Zhu, J.; Chen, Z.; De Smet, F.; Zhang, J.; Jin, S.W.; Sun, L.; Sun, H.; Kibbey, R.G.; Hirschi, K.K.; Hay, N.; Carmeliet, P.; Chittenden, T.W.; Eichmann, A.; Potente, M.; Simons, M. FGF-dependent metabolic control of vascular development. Nature, 2017, 545(7653), 224-228.
[http://dx.doi.org/10.1038/nature22322] [PMID: 28467822]
[9]
Seo, H.R.; Jeong, H.E.; Joo, H.J.; Choi, S.C.; Park, C.Y.; Kim, J.H.; Choi, J.H.; Cui, L.H.; Hong, S.J.; Chung, S.; Lim, D.S. Intrinsic FGF2 and FGF5 promotes angiogenesis of human aortic endothelial cells in 3D microfluidic angiogenesis system Scientific Reports, 2016, 6(1), 1-11.
[10]
Geng, K.; Wang, J.; Liu, P.; Tian, X.; Liu, H.; Wang, X.; Hu, C.; Yan, H. Electrical stimulation facilitates the angiogenesis of human umbilical vein endothelial cells through MAPK/ERK signaling pathway by stimulating FGF2 secretion. Am. J. Physiol. Cell Physiol., 2019, 317(2), C277-C286.
[http://dx.doi.org/10.1152/ajpcell.00474.2018] [PMID: 30995109]
[11]
Lu, T.X.; Rothenberg, M.E. MicroRNA. J. Allergy Clin. Immunol., 2018, 141(4), 1202-1207.
[http://dx.doi.org/10.1016/j.jaci.2017.08.034] [PMID: 29074454]
[12]
Kim, D.; Chang, H.R.; Baek, D. Rules for functional microRNA targeting. BMB Rep., 2017, 50(11), 554-559.
[http://dx.doi.org/10.5483/BMBRep.2017.50.11.179] [PMID: 28946941]
[13]
Zhou, Y.; Chen, Z.; Chen, A.; Ma, J.; Qian, J.; Ge, J. Elevated serum miR-133a predicts patients at risk of periprocedural myocardial injury after elective percutaneous coronary intervention. Cardiol. J., 2020.
[http://dx.doi.org/10.1016/j.jjcc.2020.03.008] [PMID: 32207842]
[14]
Wu, S.; Sun, H.; Sun, B. MicroRNA-145 is involved in endothelial cell dysfunction and acts as a promising biomarker of acute coronary syndrome. Eur. J. Med. Res., 2020, 25(1), 2.
[http://dx.doi.org/10.1186/s40001-020-00403-8] [PMID: 32178736]
[15]
Lian, Z.; Lv, F.F.; Yu, J.; Wang, J.W. Retracted: The anti‐inflammatory effect of microRNA‐383‐3p interacting with IL1R2 against homocysteine‐induced endothelial injury in rat coronary arteries. J. Cell. Biochem., 2018, 119(8), 6684-6694.
[http://dx.doi.org/10.1002/jcb.26854] [PMID: 29693751]
[16]
Li, F.; Chen, Q.; Song, X.; Zhou, L.; Zhang, J. MiR-30b is involved in the homocysteine-induced apoptosis in human coronary artery endothelial cells by regulating the expression of caspase 3. Int. J. Mol. Sci., 2015, 16(8), 17682-17695.
[http://dx.doi.org/10.3390/ijms160817682] [PMID: 26263983]
[17]
Soufi-zomorrod, M.; Hajifathali, A.; Kouhkan, F.; Mehdizadeh, M.; Rad, S.M.A.H.; Soleimani, M. MicroRNAs modulating angiogenesis: miR-129-1 and miR-133 act as angio-miR in HUVECs. Tumour Biol., 2016, 37(7), 9527-9534.
[http://dx.doi.org/10.1007/s13277-016-4845-0] [PMID: 26790441]
[18]
Yang, Y.; Gong, B.; Wu, Z.Z.; Shuai, P.; Li, D.F.; Liu, L.L.; Yu, M. Inhibition of microRNA‐129‐5p expression ameliorates ultraviolet ray‐induced corneal epithelial cell injury via upregulation of EGFR. J. Cell. Physiol., 2019, 234(7), 11692-11707.
[http://dx.doi.org/10.1002/jcp.27837] [PMID: 30515795]
[19]
Ahmad, A.; Corban, M.T.; Toya, T.; Sara, J.D.; Lerman, B.; Park, J.Y.; Lerman, L.O.; Lerman, A. Coronary microvascular endothelial dysfunction in patients with angina and nonobstructive coronary artery disease is associated with elevated serum homocysteine levels. J. Am. Heart Assoc., 2020, 9(19), e017746.
[http://dx.doi.org/10.1161/JAHA.120.017746] [PMID: 32993421]
[20]
Armitage, J.M.; Bowman, L.; Clarke, R.J.; Wallendszus, K.; Bulbulia, R.; Rahimi, K.; Haynes, R.; Parish, S.; Sleight, P.; Peto, R.; Collins, R. Effects of homocysteine-lowering with folic acid plus vitamin B12 vs placebo on mortality and major morbidity in myocardial infarction survivors: A randomized trial. JAMA, 2010, 303(24), 2486-2494.
[http://dx.doi.org/10.1001/jama.2010.840] [PMID: 20571015]
[21]
Kakudo, N.; Morimoto, N.; Ogawa, T.; Kusumoto, K. Effects of fibroblast growth factor-2 combined with a collagen/gelatin sponge for adipogenesis in the mouse subcutis. Ann. Plast. Surg., 2020, 84(2), 216-221.
[http://dx.doi.org/10.1097/SAP.0000000000002046] [PMID: 31688113]
[22]
Wang, K.; Jiang, Y.; Chen, D.; Zheng, J. Hypoxia enhances FGF2- and VEGF-stimulated human placental artery endothelial cell proliferation: Roles of MEK1/2/ERK1/2 and PI3K/AKT1 pathways. Placenta, 2009, 30(12), 1045-1051.
[http://dx.doi.org/10.1016/j.placenta.2009.10.007] [PMID: 19892399]
[23]
Wang, H.; Fu, L.; Wei, D.; Wang, B.; Zhang, C.; Zhu, T.; Ma, Z.; Li, Z.; Wu, Y.; Yu, G. MiR-29c-3p suppresses the migration, invasion and cell cycle in esophageal carcinoma via CCNA2/p53 axis. Bioeng. Biotechnol., 2020, 8, 75.
[24]
Huang, S.; Xu, T.; Huang, X.; Li, S.; Qin, W.; Chen, W.; Zhang, Z. miR-21 regulates vascular smooth muscle cell function in arteriosclerosis obliterans of lower extremities through AKT and ERK1/2 pathways. Arch. Med. Sci., 2019, 15(6), 1490-1497.
[http://dx.doi.org/10.5114/aoms.2018.78885] [PMID: 31749878]
[25]
Chen, L.; Zheng, S.Y.; Yang, C.Q.; Ma, B.M.; Jiang, D. MiR-155-5p inhibits the proliferation and migration of VSMCs and HUVECs in atherosclerosis by targeting AKT1. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(5), 2223-2233.
[PMID: 30915770]
[26]
Fu, W.; Liu, Z.; Zhang, J.; Shi, Y.; Zhao, R.; Zhao, H. Effect of microRNA-144-5p on the proliferation, invasion and migration of human umbilical vein endothelial cells by targeting SMAD1. Exp. Ther. Med., 2020, 19(1), 165-171.
[PMID: 31853287]
[27]
Zeng, A.; Yin, J.; Li, Y.; Li, R.; Wang, Z.; Zhou, X.; Jin, X.; Shen, F.; Yan, W.; You, Y. miR-129-5p targets Wnt5a to block PKC/ERK/NF-κB and JNK pathways in glioblastoma. Cell Death Dis., 2018, 9(3), 394.
[http://dx.doi.org/10.1038/s41419-018-0343-1] [PMID: 29531296]
[28]
Wang, Y.F.; Yang, H.Y.; Shi, X.Q.; Wang, Y. Upregulation of microRNA-129-5p inhibits cell invasion, migration and tumor angiogenesis by inhibiting ZIC2 via downregulation of the Hedgehog signaling pathway in cervical cancer. Cancer Biol. Ther., 2018, 19(12), 1162-1173.
[http://dx.doi.org/10.1080/15384047.2018.1491497] [PMID: 30260270]
[29]
Yan, P.; Sun, C.; Ma, J.; Jin, Z.; Guo, R.; Yang, B. MicroRNA‐128 confers protection against cardiac microvascular endothelial cell injury in coronary heart disease via negative regulation of IRS1. J. Cell. Physiol., 2019, 234(8), 13452-13463.
[http://dx.doi.org/10.1002/jcp.28025] [PMID: 30701536]
[30]
Xie, L.; Ma, S.; Ding, N.; Wang, Y.; Lu, G.; Xu, L.; Wang, Q.; Liu, K.; Jie, Y.; Zhang, H.; Yang, A.; Gao, Y.; Zhang, H.; Jiang, Y. Homocysteine induces podocyte apoptosis by regulating miR-1929-5p expression through c-Myc, DNMT1 and EZH2. Mol. Oncol., 2021, 15(11), 3203-3221.
[31]
Kalani, A.; Kamat, P.K.; Tyagi, S.C.; Tyagi, N. Synergy of homocysteine, microRNA, and epigenetics: A novel therapeutic approach for stroke. Mol. Neurobiol., 2013, 48(1), 157-168.
[http://dx.doi.org/10.1007/s12035-013-8421-y] [PMID: 23430482]