Searching for Essential Genes and Targeted Drugs Common to Breast Cancer and Osteoarthritis

Page: [238 - 255] Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

Background: It is documented that osteoarthritis can promote the progression of breast cancer (BC).

Objective: This study aims to search for the essential genes associated with breast cancer (BC) and osteoarthritis (OA), explore the relationship between epithelial-mesenchymal transition (EMT)- related genes and the two diseases, and identify the candidate drugs.

Methods: The genes related to both BC and OA were determined by text mining. Protein-protein Interaction (PPI) analysis was carried out, and as a result, the exported genes were found to be related to EMT. PPI and the correlation of mRNA of these genes were also analyzed. Different kinds of enrichment analyses were performed on these genes. A prognostic analysis was performed on these genes for examining their expression levels at different pathological stages, in different tissues, and in different immune cells. Drug–gene interaction database was employed for potential drug discovery.

Results: A total number of 1422 genes were identified as common to BC and OA and 58 genes were found to be related to EMT. We found that HDAC2 and TGFBR1 were significantly poor in overall survival. High expression of HDAC2 plays a vital role in the increase of pathological stages. Four immune cells might play a role in this process. Fifty-seven drugs were identified that could potentially have therapeutic effects.

Conclusion: EMT may be one of the mechanisms by which OA affects BC. Using the drugs can have potential therapeutic effects, which may benefit patients with both diseases and broaden the indications for drug use.

Graphical Abstract

[1]
Henley, S.J.; Ward, E.M.; Scott, S.; Ma, J.; Anderson, R.N.; Firth, A.U.; Thomas, C.C.; Islami, F.; Weir, H.K.; Lewis, D.R.; Sherman, R.L.; Wu, M.; Benard, V.B.; Richardson, L.C.; Jemal, A.; Cronin, K.; Kohler, B.A. Annual report to the nation on the status of cancer, part I: National cancer statistics. Cancer, 2020, 126(10), 2225-2249.
[http://dx.doi.org/10.1002/cncr.32802] [PMID: 32162336]
[2]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin., 2021, 71(1), 7-33.
[http://dx.doi.org/10.3322/caac.21654] [PMID: 33433946]
[3]
Arnedos, M.; Vicier, C.; Loi, S.; Lefebvre, C.; Michiels, S.; Bonnefoi, H.; Andre, F. Precision medicine for metastatic breast cancer-limitations and solutions. Nat. Rev. Clin. Oncol., 2015, 12(12), 693-704.
[http://dx.doi.org/10.1038/nrclinonc.2015.123] [PMID: 26196250]
[4]
Koboldt, D.C.; Fulton, R.S.; McLellan, M.D.; Schmidt, H.; Kalicki-Veizer, J.; McMichael, J.F.; Fulton, L.L.; Dooling, D.J.; Ding, L.; Mardis, E.R.; Wilson, R.K.; Ally, A.; Balasundaram, M.; Butterfield, Y.S.N.; Carlsen, R.; Carter, C.; Chu, A.; Chuah, E.; Chun, H.J.E.; Coope, R.J.N.; Dhalla, N.; Guin, R.; Hirst, C.; Hirst, M.; Holt, R.A.; Lee, D.; Li, H.Y.I.; Mayo, M.; Moore, R.A.; Mungall, A.J.; Pleasance, E.; Robertson, A.G.; Schein, J.E.; Shafiei, A.; Sipahimalani, P.; Slobodan, J.R.; Stoll, D.; Tam, A.; Thiessen, N.; Varhol, R.J.; Wye, N.; Zeng, T.; Zhao, Y.J.; Birol, I.; Jones, S.J.M.; Marra, M.A.; Cherniack, A.D.; Saksena, G.; Onofrio, R.C.; Pho, N.H.; Carter, S.L.; Schumacher, S.E.; Tabak, B.; Hernandez, B.; Gentry, J.; Nguyen, H.; Crenshaw, A.; Ardlie, K.; Beroukhim, R.; Winckler, W.; Getz, G.; Gabriel, S.B.; Meyerson, M.; Chin, L.; Park, P.J.; Kucherlapati, R.; Hoadley, K.A.; Auman, J.T.; Fan, C.; Turman, Y.J.; Shi, Y.; Li, L.; Topal, M.D.; He, X.P.; Chao, H.H.; Prat, A.; Silva, G.O.; Iglesia, M.D.; Zhao, W.; Usary, J.; Berg, J.S.; Adams, M.; Booker, J.; Wu, J.Y.; Gulabani, A.; Bodenheimer, T.; Hoyle, A.P.; Simons, J.V.; Soloway, M.G.; Mose, L.E.; Jefferys, S.R.; Balu, S.; Parker, J.S.; Hayes, D.N.; Perou, C.M.; Malik, S.; Mahurkar, S.; Shen, H.; Weisenberger, D.J.; Triche, T.; Lai, P.H.; Bootwalla, M.S.; Maglinte, D.T.; Berman, B.P.; Van den Berg, D.J.; Baylin, S.B.; Laird, P.W.; Creighton, C.J.; Donehower, L.A.; Getz, G.; Noble, M.; Voet, D.; Saksena, G.; Gehlenborg, N.; DiCara, D.; Zhang, J.H.; Zhang, H.L.; Wu, C.J.; Liu, S.Y.; Lawrence, M.S.; Zou, L.H.; Sivachenko, A.; Lin, P.; Stojanov, P.; Jing, R.; Cho, J.; Sinha, R.; Park, R.W.; Nazaire, M.D.; Robinson, J.; Thorvaldsdottir, H.; Mesirov, J.; Park, P.J.; Chin, L.; Reynolds, S.; Kreisberg, R.B.; Bernard, B.; Bressler, R.; Erkkila, T.; Lin, J.; Thorsson, V.; Zhang, W.; Shmulevich, I.; Ciriello, G.; Weinhold, N.; Schultz, N.; Gao, J.J.; Cerami, E.; Gross, B.; Jacobsen, A.; Sinha, R.; Aksoy, B.A.; Antipin, Y.; Reva, B.; Shen, R.L.; Taylor, B.S.; Ladanyi, M.; Sander, C.; Anur, P.; Spellman, P.T.; Lu, Y.L.; Liu, W.B.; Verhaak, R.R.G.; Mills, G.B.; Akbani, R.; Zhang, N.X.; Broom, B.M.; Casasent, T.D.; Wakefield, C.; Unruh, A.K.; Baggerly, K.; Coombes, K.; Weinstein, J.N.; Haussler, D.; Benz, C.C.; Stuart, J.M.; Benz, S.C.; Zhu, J.C.; Szeto, C.C.; Scott, G.K.; Yau, C.; Paul, E.O.; Carlin, D.; Wong, C.; Sokolov, A.; Thusberg, J.; Mooney, S.; Ng, S.; Goldstein, T.C.; Ellrott, K.; Grifford, M.; Wilks, C.; Ma, S.; Craft, B.; Yan, C.H.; Hu, Y.; Meerzaman, D.; Gastier-Foster, J.M.; Bowen, J.; Ramirez, N.C.; Black, A.D.; Pyatt, R.E.; White, P.; Zmuda, E.J.; Frick, J.; Lichtenberg, T.; Brookens, R.; George, M.M.; Gerken, M.A.; Harper, H.A.; Leraas, K.M.; Wise, L.J.; Tabler, T.R.; McAllister, C.; Barr, T.; Hart-Kothari, M.; Tarvin, K.; Saller, C.; Sandusky, G.; Mitchell, C.; Iacocca, M.V.; Brown, J.; Rabeno, B.; Czerwinski, C.; Petrelli, N.; Dolzhansky, O.; Abramov, M.; Voronina, O.; Potapova, O.; Marks, J.R.; Suchorska, W.M.; Murawa, D.; Kycler, W.; Ibbs, M.; Korski, K.; Spychala, A.; Murawa, P.; Brzezinski, J.J.; Perz, H.; Lazniak, R.; Teresiak, M.; Tatka, H.; Leporowska, E.; Bogusz-Czerniewicz, M.; Malicki, J.; Mackiewicz, A.; Wiznerowicz, M.; Le, X.V.; Kohl, B.; Tien, N.V.; Thorp, R.; Bang, N.V.; Sussman, H.; Phu, B.D.; Hajek, R.; Hung, N.P.; Tran, V.T.P.; Thang, H.Q.; Khan, K.Z.; Penny, R.; Mallery, D.; Curley, E.; Shelton, C.; Yena, P.; Ingle, J.N.; Couch, F.J.; Lingle, W.L.; King, T.A.; Gonzalez-Angulo, A.M.; Mills, G.B.; Dyer, M.D.; Liu, S.Y.; Meng, X.L.; Patangan, M.; Waldman, F.; Stoppler, H.; Rathmell, W.K.; Thorne, L.; Huang, M.; Boice, L.; Hill, A.; Morrison, C.; Gaudioso, C.; Bshara, W.; Daily, K.; Egea, S.C.; Pegram, M.D.; Gomez-Fernandez, C.; Dhir, R.; Bhargava, R.; Brufsky, A.; Shriver, C.D.; Hooke, J.A.; Campbell, J.L.; Mural, R.J.; Hu, H.; Somiari, S.; Larson, C.; Deyarmin, B.; Kvecher, L.; Kovatich, A.J.; Ellis, M.J.; King, T.A.; Hu, H.; Couch, F.J.; Mural, R.J.; Stricker, T.; White, K.; Olopade, O.; Ingle, J.N.; Luo, C.Q.; Chen, Y.Q.; Marks, J.R.; Waldman, F.; Wiznerowicz, M.; Bose, R.; Chang, L.W.; Beck, A.H.; Gonzalez-Angulo, A.M.; Pihl, T.; Jensen, M.; Sfeir, R.; Kahn, A.; Chu, A.; Kothiyal, P.; Wang, Z.N.; Snyder, E.; Pontius, J.; Ayala, B.; Backus, M.; Walton, J.; Baboud, J.; Berton, D.; Nicholls, M.; Srinivasan, D.; Raman, R.; Girshik, S.; Kigonya, P.; Alonso, S.; Sanbhadti, R.; Barletta, S.; Pot, D.; Sheth, M.; Demchok, J.A.; Shaw, K.R.M.; Yang, L.M.; Eley, G.; Ferguson, M.L.; Tarnuzzer, R.W.; Zhang, J.S.; Dillon, L.A.L.; Buetow, K.; Fielding, P.; Ozenberger, B.A.; Guyer, M.S.; Sofia, H.J.; Palchik, J.D.; Canc Genome Atlas, N. Comprehensive molecular portraits of human breast tumours. Nature, 2012, 490(7418), 61-70.
[http://dx.doi.org/10.1038/nature11412] [PMID: 23000897]
[5]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[6]
Allemani, C.; Matsuda, T.; Di Carlo, V.; Harewood, R.; Matz, M. Nikšić, M.; Bonaventure, A.; Valkov, M.; Johnson, C.J.; Estève, J.; Ogunbiyi, O.J.; Azevedo e Silva, G.; Chen, W.Q.; Eser, S.; Engholm, G.; Stiller, C.A.; Monnereau, A.; Woods, R.R.; Visser, O.; Lim, G.H.; Aitken, J.; Weir, H.K.; Coleman, M.P.; Bouzbid, S.; Hamdi-Chérif, M.; Zaidi, Z.; Meguenni, K.; Regagba, D.; Bayo, S.; Cheick Bougadari, T.; Manraj, S.S.; Bendahhou, K.; Fabowale, A.; Bradshaw, D.; Somdyala, N.I.M.; Kumcher, I.; Moreno, F.; Calabrano, G.H.; Espinola, S.B.; Carballo Quintero, B.; Fita, R.; Diumenjo, M.C.; Laspada, W.D.; Ibañez, S.G.; Lima, C.A.; De Souza, P.C.F.; Del Pino, K.; Laporte, C.; Curado, M.P.; de Oliveira, J.C.; Veneziano, C.L.A.; Veneziano, D.B.; Latorre, M.R.D.O.; Tanaka, L.F.; Rebelo, M.S.; Santos, M.O.; Galaz, J.C.; Aparicio Aravena, M.; Sanhueza Monsalve, J.; Herrmann, D.A.; Vargas, S.; Herrera, V.M.; Uribe, C.J.; Bravo, L.E.; Garcia, L.S.; Arias-Ortiz, N.E.; Morantes, D.; Jurado, D.M.; Yépez Chamorro, M.C.; Delgado, S.; Ramirez, M.; Galán Alvarez, Y.H.; Torres, P.; Martínez-Reyes, F.; Jaramillo, L.; Quinto, R.; Castillo, J.; Mendoza, M.; Cueva, P.; Yépez, J.G.; Bhakkan, B.; Deloumeaux, J.; Joachim, C.; Macni, J.; Carrillo, R.; Shalkow, K.J.; Rivera, G.R.; Poquioma, E.; Tortolero-Luna, G.; Zavala, D.; Alonso, R.; Barrios, E.; Eckstrand, A.; Nikiforuk, C.; Noonan, G.; Turner, D.; Kumar, E.; Zhang, B.; McCrate, F.R.; Ryan, S.; MacIntyre, M.; Saint-Jacques, N.; Nishri, D.E.; McClure, C.A.; Vriends, K.A.; Kozie, S.; Stuart-Panko, H.; Freeman, T.; George, J.T.; Brockhouse, J.T.; O’Brien, D.K.; Holt, A.; Almon, L.; Kwong, S.; Morris, C.; Rycroft, R.; Mueller, L.; Phillips, C.E.; Brown, H.; Cromartie, B.; Schwartz, A.G.; Vigneau, F.; Levin, G.M.; Wohler, B.; Bayakly, R.; Ward, K.C.; Gomez, S.L.; McKinley, M.; Cress, R.; Green, M.D.; Miyagi, K.; Ruppert, L.P.; Lynch, C.F.; Huang, B.; Tucker, T.C.; Deapen, D.; Liu, L.; Hsieh, M.C.; Wu, X.C.; Schwenn, M.; Gershman, S.T.; Knowlton, R.C.; Alverson, G.; Copeland, G.E.; Bushhouse, S.; Rogers, D.B.; Jackson-Thompson, J.; Lemons, D.; Zimmerman, H.J.; Hood, M.; Roberts-Johnson, J.; Rees, J.R.; Riddle, B.; Pawlish, K.S.; Stroup, A.; Key, C.; Wiggins, C.; Kahn, A.R.; Schymura, M.J.; Radhakrishnan, S.; Rao, C.; Giljahn, L.K.; Slocumb, R.M.; Espinoza, R.E.; Khan, F.; Aird, K.G.; Beran, T.; Rubertone, J.J.; Slack, S.J.; Garcia, L.; Rousseau, D.L.; Janes, T.A.; Schwartz, S.M.; Bolick, S.W.; Hurley, D.M.; Whiteside, M.A.; Miller-Gianturco, P.; Williams, M.A.; Herget, K.; Sweeney, C.; Johnson, A.T.; Keitheri Cheteri, M.B.; Migliore Santiago, P.; Blankenship, S.E.; Farley, S.; Borchers, R.; Malicki, R.; Espinoza, J.R.; Grandpre, J.; Wilson, R.; Edwards, B.K.; Mariotto, A.; Lei, Y.; Wang, N.; Chen, J.S.; Zhou, Y.; He, Y.T.; Song, G.H.; Gu, X.P.; Mei, D.; Mu, H.J.; Ge, H.M.; Wu, T.H.; Li, Y.Y.; Zhao, D.L.; Jin, F.; Zhang, J.H.; Zhu, F.D.; Junhua, Q.; Yang, Y.L.; Jiang, C.X.; Biao, W.; Wang, J.; Li, Q.L.; Yi, H.; Zhou, X.; Dong, J.; Li, W.; Fu, F.X.; Liu, S.Z.; Chen, J.G.; Zhu, J.; Li, Y.H.; Lu, Y.Q.; Fan, M.; Huang, S.Q.; Guo, G.P.; Zhaolai, H.; Wei, K.; Zeng, H.; Demetriou, A.V.; Mang, W.K.; Ngan, K.C.; Kataki, A.C.; Krishnatreya, M.; Jayalekshmi, P.A.; Sebastian, P.; Nandakumar, A.; Malekzadeh, R.; Roshandel, G.; Keinan-Boker, L.; Silverman, B.G.; Ito, H.; Nakagawa, H.; Sato, M.; Tobori, F.; Nakata, I.; Teramoto, N.; Hattori, M.; Kaizaki, Y.; Moki, F.; Sugiyama, H.; Utada, M.; Nishimura, M.; Yoshida, K.; Kurosawa, K.; Nemoto, Y.; Narimatsu, H.; Sakaguchi, M.; Kanemura, S.; Naito, M.; Narisawa, R.; Miyashiro, I.; Nakata, K.; Sato, S.; Yoshii, M.; Oki, I.; Fukushima, N.; Shibata, A.; Iwasa, K.; Ono, C.; Nimri, O.; Jung, K.W.; Won, Y.J.; Alawadhi, E.; Elbasmi, A.; Ab Manan, A.; Adam, F.; Sanjaajmats, E.; Tudev, U.; Ochir, C.; Al Khater, A.M.; El Mistiri, M.M.; Teo, Y.Y.; Chiang, C.J.; Lee, W.C.; Buasom, R.; Sangrajrang, S.; Kamsa-ard, S.; Wiangnon, S.; Daoprasert, K.; Pongnikorn, D.; Leklob, A.; Sangkitipaiboon, S.; Geater, S.L.; Sriplung, H.; Ceylan, O.; Kög, I.; Dirican, O.; Köse, T.; Gurbuz, T.; Karaşahin, F.E.; Turhan, D.; Aktaş U.; Halat, Y.; Yakut, C.I.; Altinisik, M.; Cavusoglu, Y.; Türkköylü, A.; Üçüncü, N.; Hackl, M.; Zborovskaya, A.A.; Aleinikova, O.V.; Henau, K.; Van Eycken, L.; Valerianova, Z.; Yordanova, M.R.; Šekerija, M.; Dušek, L.; Zvolský, M.; Storm, H.; Innos, K.; Mägi, M.; Malila, N.; Seppä, K.; Jégu, J.; Velten, M.; Cornet, E.; Troussard, X.; Bouvier, A.M.; Guizard, A.V.; Bouvier, V.; Launoy, G.; Arveux, P.; Maynadié, M.; Mounier, M.; Woronoff, A.S.; Daoulas, M.; Robaszkiewicz, M.; Clavel, J.; Goujon, S.; Lacour, B.; Baldi, I.; Pouchieu, C.; Amadeo, B.; Coureau, G.; Orazio, S.; Preux, P.M.; Rharbaoui, F.; Marrer, E.; Trétarre, B.; Colonna, M.; Delafosse, P.; Ligier, K.; Plouvier, S.; Cowppli-Bony, A.; Molinié, F.; Bara, S.; Ganry, O.; Lapôtre-Ledoux, B.; Grosclaude, P.; Bossard, N.; Uhry, Z.; Bray, F.; Piñeros, M.; Stabenow, R.; Wilsdorf-Köhler, H.; Eberle, A.; Luttmann, S.; Löhden, I.; Nennecke, A.L.; Kieschke, J.; Sirri, E.; Emrich, K.; Zeissig, S.R.; Holleczek, B.; Eisemann, N.; Katalinic, A.; Asquez, R.A.; Kumar, V.; Petridou, E.; Ólafsdóttir, E.J.; Tryggvadóttir, L.; Clough-Gorr, K.; Walsh, P.M.; Sundseth, H.; Mazzoleni, G.; Vittadello, F.; Coviello, E.; Cuccaro, F.; Galasso, R.; Sampietro, G.; Giacomin, A.; Magoni, M.; Ardizzone, A.; D’Argenzio, A.; Castaing, M.; Grosso, G.; Lavecchia, A.M.; Sutera Sardo, A.; Gola, G.; Gatti, L.; Ricci, P.; Ferretti, S.; Serraino, D.; Zucchetto, A.; Celesia, M.V.; Filiberti, R.A.; Pannozzo, F.; Melcarne, A.; Quarta, F.; Russo, A.G.; Carrozzi, G.; Cirilli, C.; Cavalieri d’Oro, L.; Rognoni, M.; Fusco, M.; Vitale, M.F.; Usala, M.; Cusimano, R.; Mazzucco, W.; Michiara, M.; Sgargi, P.; Boschetti, L.; Borciani, E.; Seghini, P.; Maule, M.M.; Merletti, F.; Tumino, R.; Mancuso, P.; Vicentini, M.; Cassetti, T.; Sassatelli, R.; Falcini, F.; Giorgetti, S.; Caiazzo, A.L.; Cavallo, R.; Cesaraccio, R.; Pirino, D.R.; Contrino, M.L.; Tisano, F.; Fanetti, A.C.; Maspero, S.; Carone, S.; Mincuzzi, A.; Candela, G.; Scuderi, T.; Gentilini, M.A.; Piffer, S.; Rosso, S.; Barchielli, A.; Caldarella, A.; Bianconi, F.; Stracci, F.; Contiero, P.; Tagliabue, G.; Rugge, M.; Zorzi, M.; Beggiato, S.; Brustolin, A.; Berrino, F.; Gatta, G.; Sant, M.; Buzzoni, C.; Mangone, L.; Capocaccia, R.; De Angelis, R.; Zanetti, R.; Maurina, A.; Pildava, S.; Lipunova, N.; Vincerževskiené, I.; Agius, D.; Calleja, N.; Siesling, S.; Larønningen, S.; Møller, B.; Dyzmann-Sroka, A.; Trojanowski, M.; Góźdź, S.Mężyk, R.; Mierzwa, T.; Molong, L.; Rachtan, J.; Szewczyk, S.; BBłaszczyk, J.; Kępska, K.; Kościańska, B.; Tarocińska, K.; Zwierko, M.; Drosik, K.; Maksimowicz, K.M.; Purwin-Porowska, E.; Reca, E.; Wójcik-Tomaszewska, J.; Tukiendorf, A.; Grądalska-Lampart, M.; Radziszewska, A.U.; Gos, A.; Talerczyk, M.; Wyborska, M.; Didkowska, J.A.; Wojciechowska, U.; Bielska-Lasota, M.; Forjaz de Lacerda, G.; Rego, R.A.; Bastos, J.; Silva, M.A.; Antunes, L.; Laranja Pontes, J.; Mayer-da-Silva, A.; Miranda, A.; Blaga, L.M.; Coza, D.; Gusenkova, L.; Lazarevich, O.; Prudnikova, O.; Vjushkov, D.M.; Egorova, A.G.; Orlov, A.E.; Kudyakov, L.A.; Pikalova, L.V.; Adamcik, J.; Safaei Diba, C.; Primic-Žakelj, M.; Zadnik, V.; Larrañaga, N.; Lopez de Munain, A.; Herrera, A.A.; Redondas, R.; Marcos-Gragera, R.; Vilardell Gil, M.L.; Molina, E.; Sánchez Perez, M.J.; Franch Sureda, P.; Ramos Montserrat, M.; Chirlaque, M.D.; Navarro, C.; Ardanaz, E.E.; Guevara, M.M.; Fernández-Delgado, R.; Peris-Bonet, R.; Carulla, M.; Galceran, J.; Alberich, C.; Vicente-Raneda, M.; Khan, S.; Pettersson, D.; Dickman, P.; Avelina, I.; Staehelin, K.; Camey, B.; Bouchardy, C.; Schaffar, R.; Frick, H.; Herrmann, C.; Bulliard, J.L.; Maspoli-Conconi, M.; Kuehni, C.E.; Redmond, S.M.; Bordoni, A.; Ortelli, L.; Chiolero, A.; Konzelmann, I.; Matthes, K.L.; Rohrmann, S.; Broggio, J.; Rashbass, J.; Fitzpatrick, D.; Gavin, A.; Clark, D.I.; Deas, A.J.; Huws, D.W.; White, C.; Montel, L.; Rachet, B.; Turculet, A.D.; Stephens, R.; Chalker, E.; Phung, H.; Walton, R.; You, H.; Guthridge, S.; Johnson, F.; Gordon, P.; D’Onise, K.; Priest, K.; Stokes, B.C.; Venn, A.; Farrugia, H.; Thursfield, V.; Dowling, J.; Currow, D.; Hendrix, J.; Lewis, C. Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): Analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet, 2018, 391(10125), 1023-1075.
[http://dx.doi.org/10.1016/S0140-6736(17)33326-3] [PMID: 29395269]
[7]
Tulotta, C.; Ottewell, P. The role of IL-1B in breast cancer bone metastasis. Endocr. Relat. Cancer, 2018, 25(7), R421-R434.
[http://dx.doi.org/10.1530/ERC-17-0309] [PMID: 29760166]
[8]
Chaffer, C.L.; San Juan, B.P.; Lim, E.; Weinberg, R.A. EMT, cell plasticity and metastasis. Cancer Metastasis Rev., 2016, 35(4), 645-654.
[http://dx.doi.org/10.1007/s10555-016-9648-7] [PMID: 27878502]
[9]
Karamanou, K.; Franchi, M.; Vynios, D.; Brézillon, S. Epithelial-to-mesenchymal transition and invadopodia markers in breast cancer: Lumican a key regulator. Semin. Cancer Biol., 2020, 62, 125-133.
[http://dx.doi.org/10.1016/j.semcancer.2019.08.003] [PMID: 31401293]
[10]
Kalluri, R.; Weinberg, R.A. The basics of epithelial-mesenchymal transition. J. Clin. Invest., 2009, 119(6), 1420-1428.
[http://dx.doi.org/10.1172/JCI39104] [PMID: 19487818]
[11]
Kong, D.; Zhou, H.; Neelakantan, D.; Hughes, C.J.; Hsu, J.Y.; Srinivasan, R.R.; Lewis, M.T.; Ford, H.L. VEGF-C mediates tumor growth and metastasis through promoting EMT-epithelial breast cancer cell crosstalk. Oncogene, 2021, 40(5), 964-979.
[http://dx.doi.org/10.1038/s41388-020-01539-x] [PMID: 33299122]
[12]
Gupta, G.P. Massagué, J. Cancer metastasis: Building a framework. Cell, 2006, 127(4), 679-695.
[http://dx.doi.org/10.1016/j.cell.2006.11.001] [PMID: 17110329]
[13]
Davis, F.M.; Azimi, I.; Faville, R.A.; Peters, A.A.; Jalink, K.; Putney, J.W., Jr; Goodhill, G.J.; Thompson, E.W.; Roberts-Thomson, S.J.; Monteith, G.R. Induction of epithelial–mesenchymal transition (EMT) in breast cancer cells is calcium signal dependent. Oncogene, 2014, 33(18), 2307-2316.
[http://dx.doi.org/10.1038/onc.2013.187] [PMID: 23686305]
[14]
Zeng, K.; He, B.; Yang, B.B.; Xu, T.; Chen, X.; Xu, M.; Liu, X.; Sun, H.; Pan, Y.; Wang, S. The pro-metastasis effect of circANKS1B in breast cancer. Mol. Cancer, 2018, 17(1), 160.
[http://dx.doi.org/10.1186/s12943-018-0914-x] [PMID: 30454010]
[15]
Samuel, S.M.; Varghese, E.; Varghese, S.; Büsselberg, D. Challenges and perspectives in the treatment of diabetes associated breast cancer. Cancer Treat. Rev., 2018, 70, 98-111.
[http://dx.doi.org/10.1016/j.ctrv.2018.08.004] [PMID: 30130687]
[16]
Sin, A.; Tang, W.; Wen, C.Y.; Chung, S.K.; Chiu, K.Y. The emerging role of endothelin-1 in the pathogenesis of subchondral bone disturbance and osteoarthritis. Osteoarthr. Cartil., 2015, 23(4), 516-524.
[http://dx.doi.org/10.1016/j.joca.2014.11.002] [PMID: 25463446]
[17]
Astephen Wilson, J.L.; Kobsar, D. Osteoarthritis year in review 2020: Mechanics. Osteoarthr. Cartil., 2021, 29(2), 161-169.
[http://dx.doi.org/10.1016/j.joca.2020.12.009] [PMID: 33421562]
[18]
Jacob, L.; Kostev, K. Osteoarthritis and the incidence of fracture in the United Kingdom: A retrospective cohort study of 258,696 patients. Osteoarthr. Cartil., 2021, 29(2), 215-221.
[http://dx.doi.org/10.1016/j.joca.2020.12.006] [PMID: 33359250]
[19]
Glyn-Jones, S.; Palmer, A.J.R.; Agricola, R.; Price, A.J.; Vincent, T.L.; Weinans, H.; Carr, A.J. Osteoarthritis. Lancet, 2015, 386(9991), 376-387.
[http://dx.doi.org/10.1016/S0140-6736(14)60802-3] [PMID: 25748615]
[20]
Sharma, T.; Radosevich, J.A.; Pachori, G.; Mandal, C.C. A molecular view of pathological microcalcification in breast cancer. J. Mammary Gland Biol. Neoplasia, 2016, 21(1-2), 25-40.
[http://dx.doi.org/10.1007/s10911-015-9349-9] [PMID: 26769216]
[21]
Quigley, D.A.; Tahiri, A.; Lüders, T.; Riis, M.H.; Balmain, A.; Børresen-Dale, A.L.; Bukholm, I.; Kristensen, V. Age, estrogen, and immune response in breast adenocarcinoma and adjacent normal tissue. OncoImmunology, 2017, 6(11), e1356142.
[http://dx.doi.org/10.1080/2162402X.2017.1356142] [PMID: 29147603]
[22]
Clemenceau, A.; Michou, L.; Diorio, C.; Durocher, F. Breast cancer and microcalcifications: An osteoimmunological disorder? Int. J. Mol. Sci., 2020, 21(22), 8613.
[http://dx.doi.org/10.3390/ijms21228613] [PMID: 33203195]
[23]
Wagner, P.; Olsson, H.; Lidgren, L.; Robertsson, O.; Ranstam, J. Increased cancer risks among arthroplasty patients: 30year follow-up of the Swedish knee arthroplasty register. Eur. J. Cancer, 2011, 47(7), 1061-1071.
[http://dx.doi.org/10.1016/j.ejca.2010.11.023] [PMID: 21227681]
[24]
Ward, M.M.; Alehashemi, S. Risks of solid cancers in elderly persons with osteoarthritis or ankylosing spondylitis. Rheumatology, 2020, 59(12), 3817-3825.
[http://dx.doi.org/10.1093/rheumatology/keaa166] [PMID: 32442295]
[25]
Bonfiglio, R.; Scimeca, M.; Toschi, N.; Pistolese, C.A.; Giannini, E.; Antonacci, C.; Ciuffa, S.; Tancredi, V.; Tarantino, U.; Albonici, L.; Bonanno, E. Radiological, histological and chemical analysis of breast microcalcifications: Diagnostic value and biological significance. J. Mammary Gland Biol. Neoplasia, 2018, 23(1-2), 89-99.
[http://dx.doi.org/10.1007/s10911-018-9396-0] [PMID: 29744755]
[26]
Gnant, M.; Pfeiler, G.; Steger, G.G.; Egle, D.; Greil, R.; Fitzal, F.; Wette, V.; Balic, M.; Haslbauer, F.; Melbinger-Zeinitzer, E.; Bjelic-Radisic, V.; Jakesz, R.; Marth, C.; Sevelda, P.; Mlineritsch, B.; Exner, R.; Fesl, C.; Frantal, S.; Singer, C.F. Adjuvant denosumab in postmenopausal patients with hormone receptor-positive breast cancer (ABCSG-18): disease-free survival results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol., 2019, 20(3), 339-351.
[http://dx.doi.org/10.1016/S1470-2045(18)30862-3] [PMID: 30795951]
[27]
Vetter, M.; Landin, J.; Szczerba, B.M.; Castro-Giner, F.; Gkountela, S.; Donato, C.; Krol, I.; Scherrer, R.; Balmelli, C.; Malinovska, A.; Zippelius, A.; Kurzeder, C.; Heinzelmann-Schwarz, V.; Weber, W.P.; Rochlitz, C.; Aceto, N. Denosumab treatment is associated with the absence of circulating tumor cells in patients with breast cancer. Breast Cancer Res., 2018, 20(1), 141.
[http://dx.doi.org/10.1186/s13058-018-1067-y] [PMID: 30458879]
[28]
Holen, I.; Lefley, D.V.; Francis, S.E.; Rennicks, S.; Bradbury, S.; Coleman, R.E.; Ottewell, P. IL-1 drives breast cancer growth and bone metastasis in vivo. Oncotarget, 2016, 7(46), 75571-75584.
[http://dx.doi.org/10.18632/oncotarget.12289] [PMID: 27765923]
[29]
Wu, T.C.; Xu, K.; Martinek, J.; Young, R.R.; Banchereau, R.; George, J.; Turner, J.; Kim, K.I.; Zurawski, S.; Wang, X.; Blankenship, D.; Brookes, H.M.; Marches, F.; Obermoser, G.; Lavecchio, E.; Levin, M.K.; Bae, S.; Chung, C.H.; Smith, J.L.; Cepika, A.M.; Oxley, K.L.; Snipes, G.J.; Banchereau, J.; Pascual, V.; O’Shaughnessy, J.; Palucka, A.K. IL1 receptor antagonist controls transcriptional signature of inflammation in patients with metastatic breast cancer. Cancer Res., 2018, 78(18), 5243-5258.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-0413] [PMID: 30012670]
[30]
Tulotta, C.; Lefley, D.V.; Freeman, K.; Gregory, W.M.; Hanby, A.M.; Heath, P.R.; Nutter, F.; Wilkinson, J.M.; Spicer-Hadlington, A.R.; Liu, X.; Bradbury, S.M.J.; Hambley, L.; Cookson, V.; Allocca, G.; Kruithof de Julio, M.; Coleman, R.E.; Brown, J.E.; Holen, I.; Ottewell, P.D. Endogenous production of IL1B by breast cancer cells drives metastasis and colonization of the bone microenvironment. Clin. Cancer Res., 2019, 25(9), 2769-2782.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-2202] [PMID: 30670488]
[31]
Rodriguez-Barrueco, R.; Yu, J.; Saucedo-Cuevas, L.P.; Olivan, M.; Llobet-Navas, D.; Putcha, P.; Castro, V.; Murga-Penas, E.M.; Collazo-Lorduy, A.; Castillo-Martin, M.; Alvarez, M.; Cordon-Cardo, C.; Kalinsky, K.; Maurer, M.; Califano, A.; Silva, J.M. Inhibition of the autocrine IL-6–JAK2–STAT3–calprotectin axis as targeted therapy for HR − /HER2 + breast cancers. Genes Dev., 2015, 29(15), 1631-1648.
[http://dx.doi.org/10.1101/gad.262642.115] [PMID: 26227964]
[32]
Alraouji, N.N.; Al-Mohanna, F.H.; Ghebeh, H.; Arafah, M.; Almeer, R.; Al-Tweigeri, T.; Aboussekhra, A. Tocilizumab potentiates cisplatin cytotoxicity and targets cancer stem cells in triplenegative breast cancer. Mol. Carcinog., 2020, 59(9), 1041-1051.
[http://dx.doi.org/10.1002/mc.23234] [PMID: 32537818]
[33]
Jin, K.; Pandey, N.B.; Popel, A.S. Simultaneous blockade of IL-6 and CCL5 signaling for synergistic inhibition of triple-negative breast cancer growth and metastasis. Breast Cancer Res., 2018, 20(1), 54.
[http://dx.doi.org/10.1186/s13058-018-0981-3] [PMID: 29898755]
[34]
Yan, J.; Qin, W.; Xiao, B.; Wan, Q.; Tay, F.R.; Niu, L.; Jiao, K. Pathological calcification in osteoarthritis: An outcome or a disease initiator? Biol. Rev. Camb. Philos. Soc., 2020, 95(4), 960-985.
[http://dx.doi.org/10.1111/brv.12595] [PMID: 32207559]
[35]
Scimeca, M.; Bonfiglio, R.; Menichini, E.; Albonici, L.; Urbano, N.; De Caro, M.T.; Mauriello, A.; Schillaci, O.; Gambacurta, A.; Bonanno, E. Microcalcifications drive breast cancer occurrence and development by macrophage-mediated epithelial to mesenchymal transition. Int. J. Mol. Sci., 2019, 20(22), 5633.
[http://dx.doi.org/10.3390/ijms20225633] [PMID: 31718020]
[36]
Hsiao, Y.W.; Lu, T.P. Text-mining in cancer research may help identify effective treatments. Transl. Lung Cancer Res., 2019, 8(S4), S460-S463.
[http://dx.doi.org/10.21037/tlcr.2019.12.20] [PMID: 32038938]
[37]
Zheng, S.; Dharssi, S.; Wu, M.; Li, J.; Lu, Z. Text mining for drug discovery. Methods Mol. Biol., 2019, 1939, 231-252.
[http://dx.doi.org/10.1007/978-1-4939-9089-4_13] [PMID: 30848465]
[38]
Isayev, O. Text mining facilitates materials discovery. Nature, 2019, 571(7763), 42-43.
[http://dx.doi.org/10.1038/d41586-019-01978-x] [PMID: 31270488]
[39]
Tao, D.; Yang, P.; Feng, H. Utilization of text mining as a big data analysis tool for food science and nutrition. Compr. Rev. Food Sci. Food Saf., 2020, 19(2), 875-894.
[http://dx.doi.org/10.1111/1541-4337.12540] [PMID: 33325182]
[40]
Wang, L.L.; Lo, K. Text mining approaches for dealing with the rapidly expanding literature on COVID-19. Brief. Bioinform., 2021, 22(2), 781-799.
[http://dx.doi.org/10.1093/bib/bbaa296] [PMID: 33279995]
[41]
Lee, J.; Yoon, W.; Kim, S.; Kim, D.; Kim, S.; So, C.H.; Kang, J. BioBERT: A pre-trained biomedical language representation model for biomedical text mining. Bioinformatics, 2020, 36(4), 1234-1240.
[http://dx.doi.org/10.1093/bioinformatics/btz682] [PMID: 31501885]
[42]
Wang, J.H.; Zhao, L.F.; Wang, H.F.; Wen, Y.T.; Jiang, K.K.; Mao, X.M.; Zhou, Z.Y.; Yao, K.T.; Geng, Q.S.; Guo, D.; Huang, Z.X. GenCLiP 3: Mining human genes’ functions and regulatory networks from PubMed based on co-occurrences and natural language processing. Bioinformatics, 2019, 36(6), btz807.
[http://dx.doi.org/10.1093/bioinformatics/btz807] [PMID: 31681951]
[43]
Wang, J.H.; Zhao, L.F.; Lin, P.; Su, X.R.; Chen, S.J.; Huang, L.Q.; Wang, H.F.; Zhang, H.; Hu, Z.F.; Yao, K.T.; Huang, Z.X. GenCLiP 2.0: A web server for functional clustering of genes and construction of molecular networks based on free terms. Bioinformatics, 2014, 30(17), 2534-2536.
[http://dx.doi.org/10.1093/bioinformatics/btu241] [PMID: 24764463]
[44]
Zhang, N.; Xu, W.; Wang, S.; Qiao, Y.; Zhang, X. Computational drug discovery in chemotherapy-induced alopecia via text mining and biomedical databases. Clin. Ther., 2019, 41(5), 972-980.e8.
[http://dx.doi.org/10.1016/j.clinthera.2019.04.003] [PMID: 31030996]
[45]
Kirk, J.; Shah, N.; Noll, B.; Stevens, C.B.; Lawler, M.; Mougeot, F.B.; Mougeot, J.L.C. Text mining-based in silico drug discovery in oral mucositis caused by high-dose cancer therapy. Support. Care Cancer, 2018, 26(8), 2695-2705.
[http://dx.doi.org/10.1007/s00520-018-4096-2] [PMID: 29476419]
[46]
Hu, D.; Jiang, J.; Lin, Z.; Zhang, C.; Moonasar, N.; Qian, S. Identification of key genes and pathways in scleral extracellular matrix remodeling in glaucoma: Potential therapeutic agents discovered using bioinformatics analysis. Int. J. Med. Sci., 2021, 18(7), 1554-1565.
[http://dx.doi.org/10.7150/ijms.52846] [PMID: 33746571]
[47]
Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2021: Customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res., 2021, 49(D1), D605-D612.
[http://dx.doi.org/10.1093/nar/gkaa1074] [PMID: 33237311]
[48]
Yi, L.; Wu, G.; Guo, L.; Zou, X.; Huang, P. Comprehensive analysis of the PD-L1 and immune infiltrates of m6A RNA methylation regulators in head and neck squamous cell carcinoma. Mol. Ther. Nucleic Acids, 2020, 21, 299-314.
[http://dx.doi.org/10.1016/j.omtn.2020.06.001] [PMID: 32622331]
[49]
Koh, Y.W.; Han, J.H.; Haam, S.; Jung, J.; Lee, H.W. Increased CMTM6 can predict the clinical response to PD-1 inhibitors in non-small cell lung cancer patients. OncoImmunol., 2019, 8(10), e1629261.
[http://dx.doi.org/10.1080/2162402X.2019.1629261] [PMID: 31646074]
[50]
Hoadley, K.A.; Yau, C.; Wolf, D.M.; Cherniack, A.D.; Tamborero, D.; Ng, S.; Leiserson, M.D.M.; Niu, B.; McLellan, M.D.; Uzunangelov, V.; Zhang, J.; Kandoth, C.; Akbani, R.; Shen, H.; Omberg, L.; Chu, A.; Margolin, A.A.; van’t Veer, L.J.; Lopez-Bigas, N.; Laird, P.W.; Raphael, B.J.; Ding, L.; Robertson, A.G.; Byers, L.A.; Mills, G.B.; Weinstein, J.N.; Van Waes, C.; Chen, Z.; Collisson, E.A.; Benz, C.C.; Perou, C.M.; Stuart, J.M. Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell, 2014, 158(4), 929-944.
[http://dx.doi.org/10.1016/j.cell.2014.06.049] [PMID: 25109877]
[51]
Iglesia, M.D.; Parker, J.S.; Hoadley, K.A.; Serody, J.S.; Perou, C.M.; Vincent, B.G. Genomic analysis of immune cell infiltrates across 11 tumor types. J. Natl. Cancer Inst., 2016, 108(11), djw144.
[http://dx.doi.org/10.1093/jnci/djw144] [PMID: 27335052]
[52]
Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun., 2019, 10(1), 1523.
[http://dx.doi.org/10.1038/s41467-019-09234-6] [PMID: 30944313]
[53]
Tang, Z.; Li, C.; Kang, B.; Gao, G.; Li, C.; Zhang, Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res., 2017, 45(W1), W98-W102.
[http://dx.doi.org/10.1093/nar/gkx247] [PMID: 28407145]
[54]
Tang, Z.; Kang, B.; Li, C.; Chen, T.; Zhang, Z. GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Res., 2019, 47(W1), W556-W560.
[http://dx.doi.org/10.1093/nar/gkz430] [PMID: 31114875]
[55]
Li, C.; Tang, Z.; Zhang, W.; Ye, Z.; Liu, F. GEPIA2021: Integrating multiple deconvolution-based analysis into GEPIA. Nucleic Acids Res., 2021, 49(W1), W242-W246.
[http://dx.doi.org/10.1093/nar/gkab418] [PMID: 34050758]
[56]
Cotto, K.C.; Wagner, A.H.; Feng, Y.Y.; Kiwala, S.; Coffman, A.C.; Spies, G.; Wollam, A.; Spies, N.C.; Griffith, O.L.; Griffith, M. DGIdb 3.0: A redesign and expansion of the drug–gene interaction database. Nucleic Acids Res., 2018, 46(D1), D1068-D1073.
[http://dx.doi.org/10.1093/nar/gkx1143] [PMID: 29156001]
[57]
Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; Assempour, N.; Iynkkaran, I.; Liu, Y.; Maciejewski, A.; Gale, N.; Wilson, A.; Chin, L.; Cummings, R.; Le, D.; Pon, A.; Knox, C.; Wilson, M. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res., 2018, 46(D1), D1074-D1082.
[http://dx.doi.org/10.1093/nar/gkx1037] [PMID: 29126136]
[58]
Nelson, A.E.; Allen, K.D.; Golightly, Y.M.; Goode, A.P.; Jordan, J.M. A systematic review of recommendations and guidelines for the management of osteoarthritis: The Chronic Osteoarthritis Management Initiative of the U.S. Bone and Joint Initiative. Semin. Arthritis Rheum., 2014, 43(6), 701-712.
[http://dx.doi.org/10.1016/j.semarthrit.2013.11.012] [PMID: 24387819]
[59]
Block, J.A. OA guidelines: Improving care or merely codifying practice? Nat. Rev. Rheumatol., 2014, 10(6), 324-326.
[http://dx.doi.org/10.1038/nrrheum.2014.61] [PMID: 24752185]
[60]
Hunter, D.J.; Bierma-Zeinstra, S. Osteoarthritis. Lancet, 2019, 393(10182), 1745-1759.
[http://dx.doi.org/10.1016/S0140-6736(19)30417-9] [PMID: 31034380]
[61]
Ferguson, R.J.; Palmer, A.J.R.; Taylor, A.; Porter, M.L.; Malchau, H.; Glyn-Jones, S. Hip replacement. Lancet, 2018, 392(10158), 1662-1671.
[http://dx.doi.org/10.1016/S0140-6736(18)31777-X] [PMID: 30496081]
[62]
Carr, A.J.; Robertsson, O.; Graves, S.; Price, A.J.; Arden, N.K.; Judge, A.; Beard, D.J. Knee replacement. Lancet, 2012, 379(9823), 1331-1340.
[http://dx.doi.org/10.1016/S0140-6736(11)60752-6] [PMID: 22398175]
[63]
Smith-Turchyn, J.; Mukherjee, S.; Richardson, J.; Ball, E.; Bordeleau, L.; Neil-Sztramko, S.; Levine, O.; Thabane, L.; Sathiyapalan, A.; Sabiston, C. Evaluation of a novel strategy to implement exercise evidence into clinical practice in breast cancer care: protocol for the NEXT-BRCA randomised controlled trial. BMJ Open Sport Exerc. Med., 2020, 6(1), e000922.
[http://dx.doi.org/10.1136/bmjsem-2020-000922] [PMID: 33178447]
[64]
Furmaniak, A.C.; Menig, M.; Markes, M.H. Exercise for women receiving adjuvant therapy for breast cancer. Cochrane Libr., 2016, 2016(9), CD005001.
[http://dx.doi.org/10.1002/14651858.CD005001.pub3] [PMID: 27650122]
[65]
Ferket, B.S.; Feldman, Z.; Zhou, J.; Oei, E.H.; Bierma-Zeinstra, S.M.A.; Mazumdar, M. Impact of total knee replacement practice: cost effectiveness analysis of data from the Osteoarthritis Initiative. BMJ, 2017, 356, j1131.
[http://dx.doi.org/10.1136/bmj.j1131] [PMID: 28351833]
[66]
Tankó, L.B.; Søndergaard, B.C.; Oestergaard, S.; Karsdal, M.A.; Christiansen, C. An update review of cellular mechanisms conferring the indirect and direct effects of estrogen on articular cartilage. Climacteric, 2008, 11(1), 4-16.
[http://dx.doi.org/10.1080/13697130701857639] [PMID: 18202960]
[67]
Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Aromatase inhibitors versus tamoxifen in early breast cancer: Patient-level meta-analysis of the randomised trials. Lancet, 2015, 386(10001), 1341-1352.
[http://dx.doi.org/10.1016/S0140-6736(15)61074-1] [PMID: 26211827]
[68]
Goldvaser, H.; Barnes, T.A.; Šeruga, B.; Cescon, D.W.; Ocaña, A.; Ribnikar, D.; Amir, E. Toxicity of extended adjuvant therapy with aromatase inhibitors in early breast cancer: A systematic review and meta-analysis. J. Natl. Cancer Inst., 2018, 110(1), 31-39.
[http://dx.doi.org/10.1093/jnci/djx141] [PMID: 28922781]
[69]
Coleman, R.; Body, J.J.; Aapro, M.; Hadji, P.; Herrstedt, J. Bone health in cancer patients. ESMO Clinical Practice Guidelines. Ann. Oncol., 2014, 25(S3), iii124-iii137.
[http://dx.doi.org/10.1093/annonc/mdu103] [PMID: 24782453]
[70]
Shapiro, C.L.; Recht, A. Late effects of adjuvant therapy for breast cancer. J. Natl. Cancer Inst. Monogr., 1994, (16), 101-112. [PMID: 7999452
[71]
Henry, N.L.; Giles, J.T.; Ang, D.; Mohan, M.; Dadabhoy, D.; Robarge, J.; Hayden, J.; Lemler, S.; Shahverdi, K.; Powers, P.; Li, L.; Flockhart, D.; Stearns, V.; Hayes, D.F.; Storniolo, A.M.; Clauw, D.J. Prospective characterization of musculoskeletal symptoms in early stage breast cancer patients treated with aromatase inhibitors. Breast Cancer Res. Treat., 2008, 111(2), 365-372.
[http://dx.doi.org/10.1007/s10549-007-9774-6] [PMID: 17922185]
[72]
Mao, J.J.; Stricker, C.; Bruner, D.; Xie, S.; Bowman, M.A.; Farrar, J.T.; Greene, B.T.; DeMichele, A. Patterns and risk factors associated with aromatase inhibitor-related arthralgia among breast cancer survivors. Cancer, 2009, 115(16), 3631-3639.
[http://dx.doi.org/10.1002/cncr.24419] [PMID: 19517460]
[73]
Milstone, Z.J.; Lawson, G.; Trivedi, C.M. Histone deacetylase 1 and 2 are essential for murine neural crest proliferation, pharyngeal arch development, and craniofacial morphogenesis. Dev. Dyn., 2017, 246(12), 1015-1026.
[http://dx.doi.org/10.1002/dvdy.24563] [PMID: 28791750]
[74]
Krämer, O.H. HDAC2: A critical factor in health and disease. Trends Pharmacol. Sci., 2009, 30(12), 647-655.
[http://dx.doi.org/10.1016/j.tips.2009.09.007] [PMID: 19892411]
[75]
Riccio, A. New endogenous regulators of class I histone deacetylases. Sci. Signal., 2010, 3(103), pe1.
[http://dx.doi.org/10.1126/scisignal.3103pe1] [PMID: 20051592]
[76]
Lee, Y.H.; Seo, D.; Choi, K.J.; Andersen, J.B.; Won, M.A.; Kitade, M.; Gómez-Quiroz, L.E.; Judge, A.D.; Marquardt, J.U.; Raggi, C.; Conner, E.A.; MacLachlan, I.; Factor, V.M.; Thorgeirsson, S.S. Antitumor effects in hepatocarcinoma of isoform-selective inhibition of HDAC2. Cancer Res., 2014, 74(17), 4752-4761.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-3531] [PMID: 24958469]
[77]
Kiweler, N.; Brill, B.; Wirth, M.; Breuksch, I.; Laguna, T.; Dietrich, C.; Strand, S.; Schneider, G.; Groner, B.; Butter, F.; Heinzel, T.; Brenner, W.; Krämer, O.H. The histone deacetylases HDAC1 and HDAC2 are required for the growth and survival of renal carcinoma cells. Arch. Toxicol., 2018, 92(7), 2227-2243.
[http://dx.doi.org/10.1007/s00204-018-2229-5] [PMID: 29845424]
[78]
Huang, W.T.; Tsai, Y.H.; Chen, S.H.; Kuo, C.W.; Kuo, Y.L.; Lee, K.T.; Chen, W.C.; Wu, P.C.; Chuang, C.Y.; Cheng, S.M.; Lin, C.H.; Leung, E.Y.; Chang, Y.C.; Cheung, C.H.A. HDAC2 and HDAC5 up-regulations modulate survivin and miR-125a-5p expressions and promote hormone therapy resistance in estrogen receptor positive breast cancer cells. Front. Pharmacol., 2017, 8, 902.
[http://dx.doi.org/10.3389/fphar.2017.00902] [PMID: 29326587]
[79]
Darvishi, N.; Rahimi, K.; Mansouri, K.; Fathi, F.; Menbari, M.N.; Mohammadi, G.; Abdi, M. MiR-646 prevents proliferation and progression of human breast cancer cell lines by suppressing HDAC2 expression. Mol. Cell. Probes, 2020, 53, 101649.
[http://dx.doi.org/10.1016/j.mcp.2020.101649] [PMID: 32777446]
[80]
Bayat, S.; Mansoori, D.S.; Mansoori, D.N.; Shekari, K.M.; Alivand, M.R. Downregulation of HDAC2 and HDAC3via oleuropein as a potent prevention and therapeutic agent in MCF-7 breast cancer cells. J. Cell. Biochem., 2019, 120(6), 9172-9180.
[http://dx.doi.org/10.1002/jcb.28193] [PMID: 30618185]
[81]
Zhang, N.; Zhang, H.; Liu, Y.; Su, P.; Zhang, J.; Wang, X.; Sun, M.; Chen, B.; Zhao, W.; Wang, L.; Wang, H.; Moran, M.S.; Haffty, B.G.; Yang, Q. SREBP1, targeted by miR-18a-5p, modulates epithelial-mesenchymal transition in breast cancer via forming a co-repressor complex with Snail and HDAC1/2. Cell Death Differ., 2019, 26(5), 843-859.
[http://dx.doi.org/10.1038/s41418-018-0158-8] [PMID: 29988076]
[82]
Zhang, Z.; Qiu, N.; Yin, J.; Zhang, J.; Liu, H.; Guo, W.; Liu, M.; Liu, T.; Chen, D.; Luo, K.; Li, H.; He, Z.; Liu, J.; Zheng, G. SRGN crosstalks with YAP to maintain chemoresistance and stemness in breast cancer cells by modulating HDAC2 expression. Theranostics, 2020, 10(10), 4290-4307.
[http://dx.doi.org/10.7150/thno.41008] [PMID: 32292495]
[83]
Roy, S.S.; Gonugunta, V.K.; Bandyopadhyay, A.; Rao, M.K.; Goodall, G.J.; Sun, L-Z.; Tekmal, R.R.; Vadlamudi, R.K. Significance of PELP1/HDAC2/miR-200 regulatory network in EMT and metastasis of breast cancer. Oncogene, 2014, 33(28), 3707-3716.
[http://dx.doi.org/10.1038/onc.2013.332] [PMID: 23975430]
[84]
Fu, J.; Qin, L.; He, T.; Qin, J.; Hong, J.; Wong, J.; Liao, L.; Xu, J. The TWIST/Mi2/NuRD protein complex and its essential role in cancer metastasis. Cell Res., 2011, 21(2), 275-289.
[http://dx.doi.org/10.1038/cr.2010.118] [PMID: 20714342]
[85]
Wang, Z.; Zhou, N.; Wang, W.; Yu, Y.; Xia, L.; Li, N. HDAC2 interacts with microRNA-503-5p to regulate SGK1 in osteoarthritis. Arthritis Res. Ther., 2021, 23(1), 78.
[http://dx.doi.org/10.1186/s13075-020-02373-y] [PMID: 33750441]
[86]
Mao, G.; Zhang, Z.; Huang, Z.; Chen, W.; Huang, G.; Meng, F.; Zhang, Z.; Kang, Y. MicroRNA-92a-3p regulates the expression of cartilage-specific genes by directly targeting histone deacetylase 2 in chondrogenesis and degradation. Osteoarthr. Cartil., 2017, 25(4), 521-532.
[http://dx.doi.org/10.1016/j.joca.2016.11.006] [PMID: 27884646]
[87]
Culley, K.L.; Hui, W.; Barter, M.J.; Davidson, R.K.; Swingler, T.E.; Destrument, A.P.M.; Scott, J.L.; Donell, S.T.; Fenwick, S.; Rowan, A.D.; Young, D.A.; Clark, I.M. Class I histone deacetylase inhibition modulates metalloproteinase expression and blocks cytokine-induced cartilage degradation. Arthritis Rheum., 2013, 65(7), 1822-1830.
[http://dx.doi.org/10.1002/art.37965] [PMID: 23575963]
[88]
van Tilborg, A.A.G.; de Vries, A.; Zwarthoff, E.C. The chromosome 9q genesTGFBR1,TSC1, andZNF189 are rarely mutated in bladder cancer. J. Pathol., 2001, 194(1), 76-80.
[http://dx.doi.org/10.1002/path.860] [PMID: 11329144]
[89]
Daley, D.; Morgan, W.; Lewis, S.; Willis, J.; Elston, R.C.; Markowitz, S.D.; Wiesner, G.L. Is TGFBR1*6A a susceptibility allele for nonsyndromic familial colorectal neoplasia? Cancer Epidemiol. Biomarkers Prev., 2007, 16(5), 892-894.
[http://dx.doi.org/10.1158/1055-9965.EPI-06-0965] [PMID: 17507611]
[90]
Bose, S.; Morgan, L.J.; Booth, D.R.; Goudie, D.R.; Ferguson-Smith, M.A.; Richards, F.M. The elusive multiple self-healing squamous epithelioma (MSSE) gene: Further mapping, analysis of candidates, and loss of heterozygosity. Oncogene, 2006, 25(5), 806-812.
[http://dx.doi.org/10.1038/sj.onc.1209092] [PMID: 16170343]
[91]
Siegel, P.M.; Massagué, J. Cytostatic and apoptotic actions of TGF-β in homeostasis and cancer. Nat. Rev. Cancer, 2003, 3(11), 807-820.
[http://dx.doi.org/10.1038/nrc1208] [PMID: 14557817]
[92]
Pasche, B.; Knobloch, T.J.; Bian, Y.; Liu, J.; Phukan, S.; Rosman, D.; Kaklamani, V.; Baddi, L.; Siddiqui, F.S.; Frankel, W.; Prior, T.W.; Schuller, D.E.; Agrawal, A.; Lang, J.; Dolan, M.E.; Vokes, E.E.; Lane, W.S.; Huang, C.C.; Caldes, T.; Di Cristofano, A.; Hampel, H.; Nilsson, I.; von Heijne, G.; Fodde, R.; Murty, V.V.; de la Chapelle, A.; Weghorst, C.M. Somatic acquisition and signaling of TGFBR1*6A in cancer. JAMA, 2005, 294(13), 1634-1646.
[http://dx.doi.org/10.1001/jama.294.13.1634] [PMID: 16204663]
[93]
Lei, B.; Wang, D.; Zhang, M.; Deng, Y.; Jiang, H.; Li, Y. miR-615-3p promotes the epithelial-mesenchymal transition and metastasis of breast cancer by targeting PICK1/TGFBRI axis. J. Exp. Clin. Cancer Res., 2020, 39(1), 71.
[http://dx.doi.org/10.1186/s13046-020-01571-5] [PMID: 32336285]
[94]
Schmierer, B.; Hill, C.S. TGFβ–SMAD signal transduction: Molecular specificity and functional flexibility. Nat. Rev. Mol. Cell Biol., 2007, 8(12), 970-982.
[http://dx.doi.org/10.1038/nrm2297] [PMID: 18000526]
[95]
Wrana, J.L.; Attisano, L.; Wieser, R.; Ventura, F.; Massagué, J. Mechanism of activation of the TGF-β receptor. Nature, 1994, 370(6488), 341-347.
[http://dx.doi.org/10.1038/370341a0] [PMID: 8047140]
[96]
Liu, Y.Y.; Zhang, S.; Yu, T.J.; Zhang, F.L.; Yang, F.; Huang, Y.N.; Ma, D.; Liu, G.Y.; Shao, Z.M.; Li, D.Q. Pregnancy-specific glycoprotein 9 acts as both a transcriptional target and a regulator of the canonical TGF‐β/Smad signaling to drive breast cancer progression. Clin. Transl. Med., 2020, 10(8), e245.
[http://dx.doi.org/10.1002/ctm2.245] [PMID: 33377651]
[97]
Park, C.Y.; Son, J.Y.; Jin, C.H.; Nam, J.S.; Kim, D.K.; Sheen, Y.Y. EW-7195, a novel inhibitor of ALK5 kinase inhibits EMT and breast cancer metastasis to lung. Eur. J. Cancer, 2011, 47(17), 2642-2653.
[http://dx.doi.org/10.1016/j.ejca.2011.07.007] [PMID: 21852112]
[98]
Wang, S.; Huang, M.; Wang, Z.; Wang, W.; Zhang, Z.; Qu, S.; Liu, C. MicroRNA 133b targets TGF‐β receptor I to inhibit TGF‐β-induced epithelial to mesenchymal transition and metastasis by suppressing the TGF‐β/SMAD pathway in breast cancer. Int. J. Oncol., 2019, 55(5), 1097-1109.
[http://dx.doi.org/10.3892/ijo.2019.4879] [PMID: 31545407]
[99]
Wu, Y.; Tran, T.; Dwabe, S.; Sarkissyan, M.; Kim, J.; Nava, M.; Clayton, S.; Pietras, R.; Farias-Eisner, R.; Vadgama, J.V. A83-01 inhibits TGF-β-induced upregulation of Wnt3 and epithelial to mesenchymal transition in HER2-overexpressing breast cancer cells. Breast Cancer Res. Treat., 2017, 163(3), 449-460.
[http://dx.doi.org/10.1007/s10549-017-4211-y] [PMID: 28337662]
[100]
Liu, W.; Feng, M.; Jayasuriya, C.T.; Peng, H.; Zhang, L.; Guan, Y.; Froehlich, J.A.; Terek, R.M.; Chen, Q. Human osteoarthritis cartilage-derived stromal cells activate joint degeneration through TGF-beta lateral signaling. FASEB J., 2020, 34(12), 16552-16566.
[http://dx.doi.org/10.1096/fj.202001448R] [PMID: 33118211]
[101]
Li, Z.; Kupcsik, L.; Yao, S.J.; Alini, M.; Stoddart, M.J. Mechanical load modulates chondrogenesis of human mesenchymal stem cells through the TGF-β pathway. J. Cell. Mol. Med., 2010, 14(6a), 1338-1346.
[http://dx.doi.org/10.1111/j.1582-4934.2009.00780.x] [PMID: 19432813]
[102]
Blaney Davidson, E.N.; Vitters, E.L.; van der Kraan, P.M.; van den Berg, W.B. Expression of transforming growth factor- (TGF) and the TGF signalling molecule SMAD-2P in spontaneous and instability-induced osteoarthritis: role in cartilage degradation, chondrogenesis and osteophyte formation. Ann. Rheum. Dis., 2006, 65(11), 1414-1421.
[http://dx.doi.org/10.1136/ard.2005.045971] [PMID: 16439443]
[103]
Dong, M.; Ning, Z.Q.; Xing, P.Y.; Xu, J.L.; Cao, H.X.; Dou, G.F.; Meng, Z.Y.; Shi, Y.K.; Lu, X.P.; Feng, F.Y. Phase I study of chidamide (CS055/HBI-8000), a new histone deacetylase inhibitor, in patients with advanced solid tumors and lymphomas. Cancer Chemother. Pharmacol., 2012, 69(6), 1413-1422.
[http://dx.doi.org/10.1007/s00280-012-1847-5] [PMID: 22362161]
[104]
Ning, Z.Q.; Li, Z.B.; Newman, M.J.; Shan, S.; Wang, X.H.; Pan, D.S.; Zhang, J.; Dong, M.; Du, X.; Lu, X.P. Chidamide (CS055/HBI-8000): A new histone deacetylase inhibitor of the benzamide class with antitumor activity and the ability to enhance immune cell-mediated tumor cell cytotoxicity. Cancer Chemother. Pharmacol., 2012, 69(4), 901-909.
[http://dx.doi.org/10.1007/s00280-011-1766-x] [PMID: 22080169]
[105]
Lu, X.; Ning, Z.; Li, Z.; Cao, H.; Wang, X. Development of chidamide for peripheral T-cell lymphoma, the first orphan drug approved in China. Intractable Rare Dis. Res., 2016, 5(3), 185-191.
[http://dx.doi.org/10.5582/irdr.2016.01024] [PMID: 27672541]
[106]
Gao, S.; Li, X.; Zang, J.; Xu, W.; Zhang, Y. Preclinical and clinical studies of chidamide (CS055/HBI-8000), An orally available subtype-selective HDAC inhibitor for cancer therapy. Anticancer. Agents Med. Chem., 2017, 17(6), 802-812. [PMID: 27592546
[107]
Lazarova, D.; Bordonaro, M. ZEB1 mediates drug resistance and EMT in p300-Deficient CRC. J. Cancer, 2017, 8(8), 1453-1459.
[http://dx.doi.org/10.7150/jca.18762] [PMID: 28638460]
[108]
Su, Y.; Hopfinger, N.R.; Nguyen, T.D.; Pogash, T.J.; Santucci-Pereira, J.; Russo, J. Epigenetic reprogramming of epithelial mesenchymal transition in triple negative breast cancer cells with DNA methyltransferase and histone deacetylase inhibitors. J. Exp. Clin. Cancer Res., 2018, 37(1), 314.
[http://dx.doi.org/10.1186/s13046-018-0988-8] [PMID: 30547810]
[109]
Tsiftsoglou, A.S.; Bonovolias, I.D.; Tsiftsoglou, S.A. Multilevel targeting of hematopoietic stem cell self-renewal, differentiation and apoptosis for leukemia therapy. Pharmacol. Ther., 2009, 122(3), 264-280.
[http://dx.doi.org/10.1016/j.pharmthera.2009.03.001] [PMID: 19306896]
[110]
Salvador, M.A.; Wicinski, J.; Cabaud, O.; Toiron, Y.; Finetti, P.; Josselin, E.; Lelièvre, H.; Kraus-Berthier, L.; Depil, S.; Bertucci, F.; Collette, Y.; Birnbaum, D.; Charafe-Jauffret, E.; Ginestier, C. The histone deacetylase inhibitor abexinostat induces cancer stem cells differentiation in breast cancer with low Xist expression. Clin. Cancer Res., 2013, 19(23), 6520-6531.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0877] [PMID: 24141629]
[111]
Hii, L.W.; Chung, F.F.L.; Soo, J.S.S.; Tan, B.S.; Mai, C.W.; Leong, C.O. Histone deacetylase (HDAC) inhibitors and doxorubicin combinations target both breast cancer stem cells and non-stem breast cancer cells simultaneously. Breast Cancer Res. Treat., 2020, 179(3), 615-629.
[http://dx.doi.org/10.1007/s10549-019-05504-5] [PMID: 31784862]
[112]
Zhang, Q.; Wang, T.; Geng, C.; Zhang, Y.; Zhang, J.; Ning, Z.; Jiang, Z. Exploratory clinical study of chidamide, an oral subtypeselective histone deacetylase inhibitor, in combination with exemestane in hormone receptor-positive advanced breast cancer. Chin. J. Cancer Res., 2018, 30(6), 605-612.
[http://dx.doi.org/10.21147/j.issn.1000-9604.2018.06.05] [PMID: 30700929]