Coronavirus Inhibitory Activity of Tamarind Indica

Page: [1214 - 1225] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: SARS-COVID-19 is an infectious disease, the causative agent Caroni virus. WHO announced the pandemic on 3rd November 2020 to the whole world.

Objective: Severe Acute Respiratory Syndrome COVID-19 is an infectious disease globally declared a pandemic by WHO. There is a need to find the proper medication for recovery. The study uses the molecular docking method to predict the anti-covid activity of plant phytoconstituents of Tamarind indica.

Methods: Molecular docking techniques were accomplished to search the binding pattern of plant phytoconstituents of T. indica against the crystal structure SARS-CoV-2 enzyme (PDB ID: 6LU7) with the help of PyRx virtual screening software to study the amino acid interaction and inhibitory potential of phytoconstituents of T. indica. In addition, we performed a pharmacokinetic and toxicological study of plant phytoconstituents of T. indica using SwissADME and the pkCSM online server.

Results: The phytoconstituents of Plant T. indica docking results proposed that apigenin (-7.8 kcal/mol), epicatechin (-7.1 kcal/mol) and taxifolin (-7.5 kcal/mol) show the best binding energy as compared to favipiravir (-5.2 kcal/mol). The phytoconstituents exposed promising interaction with amino acid residue, leading to an inhibitory effect against the SARS-CoV-2 enzyme (PDB ID: 6LU7). Further, ADMET studies showed that pharmacokinetics and toxicological parameters are within acceptable limits.

Conclusion: In silico study revealed that the phytochemicals of T.indica show promising inhibitory results against the SARS-CoV-2 enzyme (PDB ID: 6LU7). Moreover, the traditional benefits of T.indica were clinical treatment and drug discovery.

Graphical Abstract

[1]
WHO. Statement on the second meeting of the International Health Regulations. Emergency Committee regarding the outbreak of novel coronavirus (2019-nCoV). World Health Organization. 2019. Available from : https://www.who.int/news/item/30-01-2020-statement-on-the-second-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-(2019-ncov)
[2]
Coopersmith, C.M.; Antonelli, M.; Bauer, S.R.; Deutschman, C.S.; Evans, L.E.; Ferrer, R.; Hellman, J.; Jog, S.; Kesecioglu, J.; Kissoon, N.; Martin-Loeches, I.; Nunnally, M.E.; Prescott, H.C.; Rhodes, A.; Talmor, D.; Tissieres, P.; De Backer, D. The surviving sepsis campaign: Research priorities for coronavirus disease 2019 in critical illness. Crit. Care Med., 2021, 49(4), 598-622.
[http://dx.doi.org/10.1097/CCM.0000000000004895] [PMID: 33591008]
[3]
Chauhan, S. Comprehensive review of Coronavirus disease 2019 (COVID-19). Biomed. J., 2020, 43(4), 334-340.
[http://dx.doi.org/10.1016/j.bj.2020.05.023] [PMID: 32788071]
[4]
Cascella, M.; Rajnik, M.; Aleem, A.; Dulebohn, S.C.; Di Napoli, R. Features, Evaluation, and Treatment of Coronavirus (COVID-19). In: StatPearls; StatPearls Publishing, 2021.
[5]
Yang, Y.; Islam, M.S.; Wang, J.; Li, Y.; Chen, X. Traditional Chinese Medicine in the Treatment of Patients Infected with 2019-New Coronavirus (SARS-CoV-2): A Review and Perspective. Int. J. Biol. Sci., 2020, 16(10), 1708-1717.
[http://dx.doi.org/10.7150/ijbs.45538] [PMID: 32226288]
[6]
Liu, X.; Zhang, M.; He, L.; Li, Y. Chinese herbs combined with Western medicine for severe acute respiratory syndrome (SARS). Cochrane Libr., 2012, 10(10), CD004882.
[http://dx.doi.org/10.1002/14651858.CD004882.pub3] [PMID: 23076910]
[7]
Ang, L.; Song, E.; Lee, H.W.; Lee, M.S. Herbal Medicine for the Treatment of Coronavirus Disease 2019 (COVID-19): A systematic review and meta-analysis of randomized controlled trials. J. Clin. Med., 2020, 9(5), 1583.
[http://dx.doi.org/10.3390/jcm9051583] [PMID: 32456123]
[8]
Ang, L.; Lee, H.W.; Choi, J.Y.; Zhang, J.; Lee, M.S. Herbal medicine and pattern identification for treating COVID-19: A rapid review of guidelines. Integr. Med. Res., 2020, 9(2), 100407.
[http://dx.doi.org/10.1016/j.imr.2020.100407] [PMID: 32289016]
[9]
Kuru, P. Tamarindus indica and its health related effects. Asian Pac. J. Trop. Biomed., 2014, 4(9), 676-681.
[http://dx.doi.org/10.12980/APJTB.4.2014APJTB-2014-0173]
[10]
Jain, A.P.; Bhadoriya, S.S.; Ganeshpurkar, A.; Narwaria, J.; Rai, G. Tamarindus indica: Extent of explored potential. Pharmacogn. Rev., 2011, 5(9), 73-81.
[http://dx.doi.org/10.4103/0973-7847.79102] [PMID: 22096321]
[11]
De Caluwé, E.; Halamouá, K.; Van Damme, P. Tamarindus indica L. – A review of traditional uses, phytochemistry and pharmacology. Afrika Focus, 2010, 23(1), 53-83.
[http://dx.doi.org/10.1163/2031356X-02301006]
[12]
Glew, R.S.; Vanderjagt, D.J.; Chuang, L.T.; Huang, Y.S.; Millson, M.; Glew, R.H. Nutrient content of four edible wild plants from west Africa. Plant Foods Hum. Nutr., 2005, 60(4), 187-193.
[http://dx.doi.org/10.1007/s11130-005-8616-0] [PMID: 16395630]
[13]
Bhadoriya, S.S.; Mishra, V.; Raut, S.; Ganeshpurkar, A.; Jain, S.K. Anti-inflammatory and antinociceptive activities of a hydroethanolic extract of Tamarindus indica leaves. Sci. Pharm., 2012, 80(3), 685-700.
[http://dx.doi.org/10.3797/scipharm.1110-09] [PMID: 23008815]
[14]
Zohrameena, S.; Mujahid, M.; Bagga, P.; Khalid, M.; Hasan, N.; Ahmad, N.; Saba, P. Medicinal uses & pharmacological activity of Tamarindus indica. World J. Pharm. Res., 2017, 5, 121-133.
[15]
Okoh, O.O.; Obiiyeke, G.E.; Nwodo, U.U.; Okoh, A.I. Ethanol extract and chromatographic fractions of Tamarindus indica stem bark inhibits Newcastle disease virus replication. Pharm. Biol., 2017, 55(1), 1806-1808.
[http://dx.doi.org/10.1080/13880209.2017.1331364] [PMID: 28539068]
[16]
Williamson, J. Useful plants of Nyasaland Zomba, Nyasaland; The Gov’t Printer, 1995.
[17]
Morais, A.H.A.; de Medeiros, A.F.; Medeiros, I.; de Lima, V.C.O.; Luz, A.B.S.; Maciel, B.L.L.; Passos, T.S. Tamarind (Tamarindus indica L.) Seed a Candidate Protein Source with Potential for Combating SARS-CoV-2 Infection in Obesity. Drug Target Insights, 2021, 15, 5-12.
[http://dx.doi.org/10.33393/dti.2021.2192] [PMID: 33840996]
[18]
Danao, K.; Rokde, V.; Bali, N.; Mahajan, U. The severity of COVID - 19 in Diabetes Patients. Curr. Diabetes Rev., 2022, 36201275.
[PMID: 36201275]
[19]
Kiran, G.; Karthik, L.; Shree Devi, M.S.; Sathiyarajeswaran, P.; Kanakavalli, K.; Kumar, K.M.; Ramesh Kumar, D. In silico computational screening of Kabasura Kudineer - Official Siddha Formulation and JACOM against SARS-CoV-2 spike protein. J. Ayurveda Integr. Med., 2022, 13(1), 100324.
[http://dx.doi.org/10.1016/j.jaim.2020.05.009] [PMID: 32527713]
[20]
Rose, Y.; Duarte, J.M.; Lowe, R.; Segura, J.; Bi, C.; Bhikadiya, C.; Chen, L.; Rose, A.S.; Bittrich, S.; Burley, S.K.; Westbrook, J.D. RCSB Protein Data Bank: Architectural advances towards integrated searching and efficient access to macromolecular structure data from the PDB archive. J. Mol. Biol., 2021, 433(11), 166704.
[http://dx.doi.org/10.1016/j.jmb.2020.11.003] [PMID: 33186584]
[21]
Biovia, D.S. Discovery studio modeling environment; Release, 2017.
[22]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform., 2011, 3(1), 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[23]
Jász, Á.; Rák, Á.; Ladjánszki, I.; Cserey, G. Optimized GPU implementation of Merck Molecular Force Field and Universal Force Field. J. Mol. Struct., 2019, 1188, 227-233.
[http://dx.doi.org/10.1016/j.molstruc.2019.04.007]
[24]
Fu, Y.; Zhao, J.; Chen, Z. Insights into the molecular mechanisms of protein-ligand interactions by molecular docking and molecular dynamics simulation: A case of oligopeptide binding protein. Comput. Math. Methods Med., 2018, 2018, 1-12.
[http://dx.doi.org/10.1155/2018/3502514] [PMID: 30627209]
[25]
Leach, A.R.; Shoichet, B.K.; Peishoff, C.E. Prediction of protein-ligand interactions. Docking and scoring: successes and gaps. J. Med. Chem., 2006, 49(20), 5851-5855.
[http://dx.doi.org/10.1021/jm060999m] [PMID: 17004700]
[26]
Fuhrmann, J.; Rurainski, A.; Lenhof, H.P.; Neumann, D. A new Lamarckian genetic algorithm for flexible ligand-receptor docking. J. Comput. Chem, 2010, 31(9), NA.
[http://dx.doi.org/10.1002/jcc.21478] [PMID: 20082382]
[27]
Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: predicting small-molecule pharmacokinetic properties using graph-based signatures. J. Med. Chem., 2015, 58(9), 4066-4072.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00104] [PMID: 25860834]
[28]
Drwal, M.N.; Banerjee, P.; Dunkel, M.; Wettig, M.R.; Preissner, R. ProTox: A web server for the in silico prediction of rodent oral toxicity. Nucleic Acids Res., 2014, 42(W1), W53-W58.
[http://dx.doi.org/10.1093/nar/gku401] [PMID: 24838562]
[29]
Agrawal, U.; Raju, R.; Udwadia, Z.F. Favipiravir: A new and emerging antiviral option in COVID-19. Med. J. Armed Forces India, 2020, 76(4), 370-376.
[http://dx.doi.org/10.1016/j.mjafi.2020.08.004] [PMID: 32895599]
[30]
Shiraki, K.; Daikoku, T. Favipiravir, an anti-influenza drug against life-threatening RNA virus infections. Pharmacol. Ther., 2020, 209, 107512.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107512] [PMID: 32097670]
[31]
Tsaioun, K.; Blaauboer, B.J.; Hartung, T. Evidence-based absorption, distribution, metabolism, excretion (ADME) and its interplay with alternative toxicity methods. Altern. Anim. Exp., 2016, 33(4), 343-358.
[http://dx.doi.org/10.14573/altex.1610101] [PMID: 27806179]
[32]
Parasuraman, S. Toxicological screening. J. Pharmacol. Pharmacother., 2011, 2(2), 74-79.
[http://dx.doi.org/10.4103/0976-500X.81895] [PMID: 21772764]