Combinatorial Chemistry & High Throughput Screening

Author(s): Wei Suo, Xixing Wang*, Cong Liu, Shilin He, Likun Liu and Shulan Hao

DOI: 10.2174/1386207326666230417095120

An Investigation into the Potential Therapeutic Effects of the Qigu Zhushui Decoction on Mouse Models of Malignant Ascites

Page: [2730 - 2737] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Aim: To determine whether or not a decoction made from Qigu Zhushui has a suppressive impact on malignant ascites in mice.

Background: Malignant ascites are one of the common complications of advanced malignant tumors. Patients with malignant ascites typically have a poor prognosis, with only 12 to 20 weeks of survival. Currently, the standard treatments for malignant ascites are systemic chemotherapy, which is ineffective in eradicating the disease and is associated with issues such as safety, short duration of sustained high-level drug concentration in localised regions, and drug resistance.

Objective: To clarify the effect of Qigu Zhushui decoction on inhibiting malignant ascites in mice and provide the experimental basis for further research.

Methods: The ascites model of liver cancer in mice was established by intraperitoneal injection of the H22-H8D8 cell line of liver cancer. ELISA detected the content of CEA, VEGF and TNF-α in ascites.

Results: Qigu Zhushui decoction combined with cisplatin group and Qigu Zhushui decoction highdose group could significantly reduce the weight, abdominal circumference and ascites volume of mice, and their survival days and survival rate were also greatly improved; The levels of CEA and VEGF in the combination group decreased significantly, while the level of TNF-α increased; The level of TNF-a in the high dose group of Qigu Zhushui decoction was significantly increased, while the level of CEA and VEGF in the moderate dose group was decreased.

Conclusion: Qigu Zhushui decoction can reduce the malignant ascites in mice, and the combination of Qigu Zhushui decoction and cisplatin has a significant anti-malignant ascites effect, which can significantly prolong the survival time and improve the survival rate.

Graphical Abstract

[1]
Sangisetty, S.L.; Miner, T.J. Malignant ascites: A review of prognostic factors, pathophysiology and therapeutic measures. World J. Gastrointest. Surg., 2012, 4(4), 87-95.
[http://dx.doi.org/10.4240/wjgs.v4.i4.87] [PMID: 22590662]
[2]
Rickard, B.P.; Conrad, C.; Sorrin, A.J.; Ruhi, M.K.; Reader, J.C.; Huang, S.A.; Franco, W.; Scarcelli, G.; Polacheck, W.J.; Roque, D.M.; del Carmen, M.G.; Huang, H.C.; Demirci, U.; Rizvi, I. Malignant ascites in ovarian cancer: Cellular, acellular, and biophysical determinants of molecular characteristics and therapy response. Cancers, 2021, 13(17), 4318.
[http://dx.doi.org/10.3390/cancers13174318] [PMID: 34503128]
[3]
Zhang, X.; Jia, Y. Advances in the clinical treatment of malignant ascites. J. Emerg Tradit Chin Med., 2008, 17(4), 536-1537.
[4]
Hou, W.; Sanyal, A.J. Ascites: diagnosis and management. Med. Clin. North Am., 2009, 93(4), 801-817.
[http://dx.doi.org/10.1016/j.mcna.2009.03.007] [PMID: 19577115]
[5]
Sakamoto, J.; Matsui, T.; Kodera, Y. Paclitaxel chemotherapy for the treatment of gastric cancer. Gastric Cancer, 2009, 12(2), 69-78.
[http://dx.doi.org/10.1007/s10120-009-0505-z] [PMID: 19562460]
[6]
Imazawa, M.; Kojima, T.; Boku, N.; Onozawa, Y.; Hironaka, S.; Fukutomi, A.; Yasui, H.; Yamazaki, K.; Taku, K. Efficacy of sequential methotrexate and 5-fluorouracil (MTX/5FU) in improving oral intake in patients with advanced gastric cancer with severe peritoneal dissemination. Gastric Cancer, 2009, 12(3), 153-157.
[http://dx.doi.org/10.1007/s10120-009-0517-8] [PMID: 19890695]
[7]
Chongqi, W.; Chiping, W.; Yuying, S. The clinical value of 5-FU combined with cisplatin for hyperthermic intraperitoneal chemoinfusion in treating cancerous ascites. Chin. J. Med. Drug Appl., 2008, 2, 9-10.
[8]
Matsusaki, K.; Aridome, K.; Emoto, S.; Kajiyama, H.; Takagaki, N.; Takahashi, T.; Tsubamoto, H.; Nagao, S.; Watanabe, A.; Shimada, H.; Kitayama, J. Clinical practice guideline for the treatment of malignant ascites: Section summary in Clinical Practice Guideline for peritoneal dissemination (2021). Int. J. Clin. Oncol., 2022, 27(1), 1-6.
[http://dx.doi.org/10.1007/s10147-021-02077-6] [PMID: 34800177]
[9]
Li, Z.; Zhang, L.; Li, L. Treatment of malignant ascites with hyperthermic perfusion chemotherapy and high-frequency hyperthermia. Med. J. West China., 2010, 22, 517-521.
[10]
Yu, X.; Li, X.; Zhou, J. The clinical study of intraperitoneal chemotherapy combined with whole body hyperthermia by using microwave on abdomen for treating malignant peritoneal effusion. J. Clin. Intern. Med., 2007, 24, 253-255.
[11]
Pang, C.L.K.; Zhang, X.; Wang, Z.; Ou, J.; Lu, Y.; Chen, P.; Zhao, C.; Wang, X.; Zhang, H.; Roussakow, S.V. Local modulated electro-hyperthermia in combination with traditional Chinese medicine vs. intraperitoneal chemoinfusion for the treatment of peritoneal carcinomatosis with malignant ascites: A phase II randomized trial. Mol. Clin. Oncol., 2017, 6(5), 723-732.
[http://dx.doi.org/10.3892/mco.2017.1221] [PMID: 28529748]
[12]
Singh, R.K.; Kumar, S.; Prasad, D.N.; Bhardwaj, T.R. Therapeutic journery of nitrogen mustard as alkylating anticancer agents: Historic to future perspectives. Eur. J. Med. Chem., 2018, 151, 401-433.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.001] [PMID: 29649739]
[13]
Albano, D.; Benenati, M.; Bruno, A.; Bruno, F.; Calandri, M.; Caruso, D.; Cozzi, D.; De Robertis, R.; Gentili, F.; Grazzini, I.; Micci, G.; Palmisano, A.; Pessina, C.; Scalise, P.; Vernuccio, F.; Barile, A.; Miele, V.; Grassi, R.; Messina, C.; Albano, D.; Benenati, M.; Bruno, A.; Bruno, F.; Calandri, M.; Caruso, D.; Cozzi, D.; De Robertis, R.; Gentili, F.; Grazzini, I.; Micci, G.; Palmisano, A.; Pessina, C.; Scalise, P.; Vernuccio, F.; Messina, C. Imaging side effects and complications of chemotherapy and radiation therapy: A pictorial review from head to toe. Insights Imaging, 2021, 12(1), 76.
[http://dx.doi.org/10.1186/s13244-021-01017-2] [PMID: 34114094]
[14]
Saif, M.W.; Siddiqui, I.A.P.; Sohail, M.A. Management of ascites due to gastrointestinal malignancy. Ann. Saudi Med., 2009, 29(5), 369-377.
[http://dx.doi.org/10.4103/0256-4947.55167] [PMID: 19700895]
[15]
Dhiman, A.; Sharma, R.; Singh, R.K. Target-based anticancer indole derivatives and insight into structure-activity relationship: A mechanistic review update (2018–2021). Acta Pharm. Sin. B, 2022, 12(7), 3006-3027.
[http://dx.doi.org/10.1016/j.apsb.2022.03.021] [PMID: 35865090]
[16]
Singh, R.K.; Prasad, D.N.; Bhardwaj, T.R.; Bhardwaj, T.R. Design, synthesis, chemical and biological evaluation of brain targeted alkylating agent using reversible redox prodrug approach. Arab. J. Chem., 2017, 10(3), 420-429.
[http://dx.doi.org/10.1016/j.arabjc.2013.12.008]
[17]
Ling, Y. Traditional chinese medicine in the treatment of symptoms in patients with advanced cancer. Ann. Palliat. Med., 2013, 2(3), 141-152.
[PMID: 25842096]
[18]
Zhao, L.; Zhao, A.G.; Zhao, G.; Xu, Y.; Zhu, X.H.; Cao, N.D.; Zheng, J.; Yang, J.K.; Xu, J.H. Survival benefit of traditional chinese herbal medicine (a herbal formula for invigorating spleen) in gastric cancer patients with peritoneal metastasis. Evid. Based Complement. Alternat. Med., 2014, 2014, 1-6.
[http://dx.doi.org/10.1155/2014/625493] [PMID: 24723961]
[19]
Zhao, A.G.; Cai, Y.; Yang, J.K.; Zheng, J.; Shen, K.P. Effect of Chinese Jianpi herbs on prognosis of gastric cancer. World Chin. J. Digestology, 2005, 13(9), 1055-1058.
[20]
Zhao, H.L.; Zhao, A.G.; You, S.F.; Gu, Y.; Tang, L.D.; Yang, J.K. Growth-inhibiting and anti-metastasis effects of Weichang’an Decoction on orthotopic transplant nude mouse model of human gastric cancer. J. Chin. Integr. Med., 2005, 3(5), 378-381.
[http://dx.doi.org/10.3736/jcim20050512] [PMID: 16159573]
[21]
Zhou, L.; Zhang, S. Clinical observation of adjusted Wu Ling Decoction treating 70 patients with malignant ascites. J. Practical Chinese Intern. Med., 2010, 24, 7-711.
[22]
Kumar, S.; Sharma, B.; Bhardwaj, T.R.; Singh, R.K. Design, synthesis and studies on novel polymeric prodrugs of erlotinib for colon drug delivery. Anticancer. Agents Med. Chem., 2021, 21(3), 383-392.
[http://dx.doi.org/10.2174/1871520620666200811124013] [PMID: 32781967]
[23]
Singh, R.K.; Bhatia, R., Eds.; Protein kinases-promising targets for anticancer drug research; Intech Open, 2021.
[http://dx.doi.org/10.5772/intechopen.82939]
[24]
Mehta, S.; Sharma, A.K.; Singh, R.K. Advances in ethnobotany, synthetic phytochemistry and pharmacology of endangered herb Picrorhiza kurroa (Kutki): A comprehensive review (2010-2020). Mini Rev. Med. Chem., 2021, 21(19), 2976-2995.
[http://dx.doi.org/10.2174/1389557521666210401090028] [PMID: 33797375]
[25]
Mehta, S.; Sharma, A.K.; Singh, R.K. Therapeutic journey of Andrographis paniculata (Burm.f.) nees from natural to synthetic and nanoformulations. Mini Rev. Med. Chem., 2021, 21(12), 1556-1577.
[http://dx.doi.org/10.2174/1389557521666210315162354] [PMID: 33719961]
[26]
Singh, R.K. Key heterocyclic cores for smart anticancer drug–design Part II; Bentham Science Publishers, 2022.
[http://dx.doi.org/10.2174/97898150400741220101]
[27]
Xu, H.; Zhou, S. The significance of combined detection of CEA, CAl25, CAl53, ADA and Glu in the differential diagnosis of tuberculous and cancerous pleural ascites. Jiangxi Med. J., 2014, 49(5), 460-461.
[28]
Wang, X.; Lin, Y. Tumor necrosis factor and cancer, buddies or foes? Acta Pharmacol. Sin., 2008, 29(11), 1275-1288.
[http://dx.doi.org/10.1111/j.1745-7254.2008.00889.x] [PMID: 18954521]
[29]
Carmeliet, P. VEGF as a key mediator of angiogenesis in cancer. Oncology, 2005, 69(Suppl. 3), 4-10.
[http://dx.doi.org/10.1159/000088478] [PMID: 16301830]
[30]
Goel, H.L.; Mercurio, A.M. VEGF targets the tumour cell. Nat. Rev. Cancer, 2013, 13(12), 871-882.
[http://dx.doi.org/10.1038/nrc3627] [PMID: 24263190]
[31]
Thomas, P.; Forse, R.A.; Bajenova, O. Carcinoembryonic antigen (CEA) and its receptor hnRNP M are mediators of metastasis and the inflammatory response in the liver. Clin. Exp. Metastasis, 2011, 28(8), 923-932.
[http://dx.doi.org/10.1007/s10585-011-9419-3] [PMID: 21901530]
[32]
Wang, S.; Zhu, Y. Appreciation of the detection of pleural, ascites and serum carcinoembryonic antigen in the differential diagnosis of benign and malignant pleural effusion and ascites. Lab. Med., 2007, 22(4), 448-450.
[33]
Karayiannakis, A.J.; Syrigos, K.N.; Polychronidis, A.; Pitiakoudis, M.; Bounovas, A.; Simopoulos, K. Serum levels of tumor necrosis factor-alpha and nutritional status in pancreatic cancer patients. Anticancer Res., 2001, 21(2B), 1355-1358.
[PMID: 11396212]
[34]
Yoshida, N.; Ikemoto, S.; Narita, K. Interleukin-6, tumour necrosis factor alpha and interleukin-1beta in patients with renal cell carcinoma. Br. J. Cancer, 2002, 86(9), 1396-1400.
[35]
Ding, T.; Zhou, N.; Tuo, P. Determination of tumor necrosis factor alpha in the thorax and ascites and its clinical significance. Med. J. Chinese People’s Armed Police For., 2000, 11(5), 272.
[36]
Jia, Q.; Liang, X. The role of tumor necrosis factor in benign and malignant ascites. Beijing Med. J., 1999, 21(3), 169.
[37]
Grove, C.S.; Lee, Y.C.G. Vascular endothelial growth factor: The key mediator in pleural effusion formation. Curr. Opin. Pulm. Med., 2002, 8(4), 294-301.
[http://dx.doi.org/10.1097/00063198-200207000-00009] [PMID: 12055392]
[38]
Ye, Q.L. On spleen governing transformation of dampness. Chinese J. Basic Med. Trad. Chinese Med., 2004, 10(11), 11-13.
[39]
Wang, Y.; Feng, Y.; Li, M.; Yang, M.; Shi, G.; Xuan, Z.; Yin, D.; Xu, F. Traditional Chinese medicine in the treatment of chronic kidney diseases: Theories, applications, and mechanisms. Front. Pharmacol., 2022, 13, 917975.
[http://dx.doi.org/10.3389/fphar.2022.917975] [PMID: 35924053]
[40]
Wu, C.; Qiu, S.; Liu, P.; Ge, Y.; Gao, X. Rhizoma Amorphophalli inhibits TNBC cell proliferation, migration, invasion and metastasis through the PI3K/Akt/mTOR pathway. J. Ethnopharmacol., 2018, 211, 89-100.
[http://dx.doi.org/10.1016/j.jep.2017.09.033] [PMID: 28962890]
[41]
Li, H.; Chen, M.; Yang, Z.; Xu, C.; Yu, Q.; Song, J.; Wang, M.; Gao, X. Amorphophalli Rhizoma inhibits breast cancer growth, proliferation, migration, and invasion via the PI3K/AKT pathway. J. Ethnopharmacol., 2022, 286, 114926.
[http://dx.doi.org/10.1016/j.jep.2021.114926] [PMID: 34929308]
[42]
Zaccai, M.; Yarmolinsky, L.; Khalfin, B.; Budovsky, A.; Gorelick, J.; Dahan, A.; Ben-Shabat, S. Medicinal properties of Lilium candidum L. and its phytochemicals. Plants, 2020, 9(8), 959.
[http://dx.doi.org/10.3390/plants9080959] [PMID: 32751398]
[43]
Lai, Y.J.; Tai, C.J.; Wang, C.W.; Choong, C.Y.; Lee, B.H.; Shi, Y.C.; Tai, C.J. Anti-cancer activity of solanum nigrum (AESN) through suppression of mitochondrial function and epithelial-mesenchymal transition (EMT) in breast cancer cells. Molecules, 2016, 21(5), 553.
[http://dx.doi.org/10.3390/molecules21050553] [PMID: 27136519]