The Importance of Salicylic Acid, Humic Acid and Fulvic Acid on Crop Production

Page: [1465 - 1480] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Biostimulants are one of the most important substancesfor improving productivity, growth and yield of plants as well as heavy metal detoxification, and stimulating natural toxins, controlling pests and diseases and boosting both water and nutrient efficiency. Google Scholar, Science Direct, CAB Direct, Springer Link, Scopus, Web of Science, Taylor and Francis, and Wiley Online Library have been checked. The search was done to all manuscript sections according to the terms "Salicylic acid," "Humic acid," "Fulvic acid," "Biostimulants" and "Plant growth promotion." On the basis of the initial check, Titles and Abstracts were screened on the basis of online literature, and then articles were read carefully. Salicylic acid may have important roles in abiotic stresses such as salinity, drought, cold, heavy metal and heat stresses, and it has been considered an important environmentally-sound agent with tremendous economical benefits and rapid responses. The positive effects of the application of salicylic acid have been reported in crops such as ajwain, alfalfa, anthurium, artemisia, artichoke, barley, bean, black mustard, broad bean, chickpea, chicory, canola, coriander, corn, cotton, cucumber, cumin, fennel, fenugreek, goji, longan, milk thistle, millet, onion, pea, pepper, pistachio, radish, rice, rosemary, rye, safflower, saffron, savory, sorghum, soybean, spinach, strawberry, sugar beet, tomato, wheat, etc. Humic acid can improve and stimulate plant growth and yield, suppress diseases and promote more resistance to stresses. Fulvic acid can increase root system and promote seed germination, growth rate and final yield. The present manuscript highlights the most important impacts of salicylic acid, humic acid, and fulvic acid ,emphasizing their roles in modern sustainable crop production.

Graphical Abstract

[1]
Shahrajabian, M.H.; Chaski, C.; Polyzos, N.; Petropoulos, S.A. Biostimulants application: A low input cropping management tool for sustainable farming of vegetables. Biomolecules, 2021, 11(5), 698.
[http://dx.doi.org/10.3390/biom11050698] [PMID: 34067181]
[2]
Sun, W.; Shahrajabian, M.H.; Cheng, Q. Nitrogen fixation and diazotrophs-A review. Rom. Biotechnol. Lett., 2021, 26(4), 2834-2845.
[http://dx.doi.org/10.25083/rbl/26.4/2834-2845]
[3]
Shahrajabian, M.H.; Chaski, C.; Polyzos, N.; Tzortzakis, N.; Petropoulos, S.A. Sustainable agriculture systems in vegetable production using chitin and chitosan as plant biostimulants. Biomolecules, 2021, 11(6), 819.
[http://dx.doi.org/10.3390/biom11060819] [PMID: 34072781]
[4]
Khoshkharam, M.; Shahrajabian, M.H.; Esfandiary, M. The effects of methanol and amino acid glycine betaine on qualitative characteristics and yield of sugar beet (Beta vulgaris L.) cultivars. Not. Sci. Biol., 2021, 13(2), 10949.
[http://dx.doi.org/10.15835/nsb13210949]
[5]
Maswada, H.F.; Abd El-Razek, U.A.; El-Sheshtawy, A.N.A.; Elzaawely, A.A. Morpho-physiological and yield responses to exogenous moringa leaf extract and salicylic acid in maize (Zea mays L.) under water stress. Arch. Agron. Soil Sci., 2018, 64(7), 994-1010.
[http://dx.doi.org/10.1080/03650340.2017.1406079]
[6]
Bijanzadeh, E.; Naderi, R.; Egan, T.P. Exogenous application of humic acid and salicylic acid to alleviate seedling drought stress in two corn (Zea mays L.) hybrids. J. Plant Nutr., 2019, 42(13), 1483-1495.
[http://dx.doi.org/10.1080/01904167.2019.1617312]
[7]
Naz, R.; Sarfraz, A.; Anwar, Z.; Yasmin, H.; Nosheen, A.; Keyani, R.; Roberts, T.H. Combined ability of salicylic acid and spermidine to mitigate the individual and interactive effects of drought and chromium stress in maize (Zea mays L.). Plant Physiol. Biochem., 2021, 159, 285-300.
[http://dx.doi.org/10.1016/j.plaphy.2020.12.022] [PMID: 33418188]
[8]
Barros, T.C.; de Mello Prado, R.; Roque, C.G.; Arf, M.V.; Vilela, R.G. Silicon and salicylic acid in the physiology and yield of cotton. J. Plant Nutr., 2019, 42(5), 458-465.
[http://dx.doi.org/10.1080/01904167.2019.1567765]
[9]
Singh, P.K.; Chaturvedi, V.K. Effects of salicylic acid on seedling growth and nitrogen use efficiency in cucumber (Cucumis sativus L.). Plant Biosyst., 2012, 146(2), 302-308.
[http://dx.doi.org/10.1080/11263504.2011.602991]
[10]
Ahmed, H.S.; Moawad, A.S.; AbouZid, S.F.; Owis, A.I. Salicylic acid increases flavonolignans accumulation in the fruits of hydroponically cultured Silybum marianum. Saudi Pharm. J., 2020, 28(5), 593-598.
[http://dx.doi.org/10.1016/j.jsps.2020.03.011] [PMID: 32435140]
[11]
Lotfi, R.; Ghassemi-Golezani, K.; Pessarakli, M. Salicylic acid regulates photosynthetic electron transfer and stomatal conductance of mung bean (Vigna radiata L.) under salinity stress. Biocatal. Agric. Biotechnol., 2020, 26, 101635.
[http://dx.doi.org/10.1016/j.bcab.2020.101635]
[12]
Mora, V.; Bacaicoa, E.; Zamarreño, A.M.; Aguirre, E.; Garnica, M.; Fuentes, M.; García-Mina, J.M. Action of humic acid on promotion of cucumber shoot growth involves nitrate-related changes associated with the root-to-shoot distribution of cytokinins, polyamines and mineral nutrients. J. Plant Physiol., 2010, 167(8), 633-642.
[http://dx.doi.org/10.1016/j.jplph.2009.11.018] [PMID: 20185204]
[13]
Xu, D.B.; Wang, Q.J.; Wu, Y.C.; Yu, G.H.; Shen, Q.R.; Huang, Q.W. Humic-like substances from different compost extracts could significantly promote cucumber growth. Pedosphere, 2012, 22(6), 815-824.
[http://dx.doi.org/10.1016/S1002-0160(12)60067-8]
[14]
Sambyal, K.; Singh, R.V. Production of salicylic acid; a potent pharmaceutically active agent and its future prospects. Crit. Rev. Biotechnol., 2021, 41(3), 394-405.
[http://dx.doi.org/10.1080/07388551.2020.1869687] [PMID: 33618601]
[15]
Quiroga, G.; Erice, G.; Aroca, R.; Zamarreño, Á.M.; García-Mina, J.M.; Ruiz-Lozano, J.M. Arbuscular mycorrhizal symbiosis and salicylic acid regulate aquaporins and root hydraulic properties in maize plants subjected to drought. Agric. Water Manage., 2018, 202, 271-284.
[http://dx.doi.org/10.1016/j.agwat.2017.12.012]
[16]
Arif, Y.; Sami, F.; Siddiqui, H.; Bajguz, A.; Hayat, S. Salicylic acid in relation to other phytohormones in plant: A study towards physiology and signal transduction under challenging environment. Environ. Exp. Bot., 2020, 175, 104040.
[http://dx.doi.org/10.1016/j.envexpbot.2020.104040]
[17]
Ding, P.; Ding, Y. Stories of salicylic acid: A plant defence hormone. Trends Plant Sci., 2020, 25(6), 549-565.
[http://dx.doi.org/10.1016/j.tplants.2020.01.004] [PMID: 32407695]
[18]
Lefevere, H.; Bauters, L.; Gheysen, G. Salicylic acid biosynthesis in plants. Front. Plant Sci., 2020, 11, 338.
[http://dx.doi.org/10.3389/fpls.2020.00338] [PMID: 32362901]
[19]
Ali, B. Salicylic acid: An efficient elicitor of secondary metabolite production in plants. Biocatal. Agric. Biotechnol., 2021, 31, 101884.
[http://dx.doi.org/10.1016/j.bcab.2020.101884]
[20]
Sinha, P.; Shukla, A.K.; Sharma, Y.K. Amelioration of heavy-metal toxicity in cauliflower by application of salicylic acid. Commun. Soil Sci. Plant Anal., 2015, 46(10), 1309-1319.
[http://dx.doi.org/10.1080/00103624.2015.1033543]
[21]
Ghasemi Pirbalouti, A.; Rahimmalek, M.; Elikaei-Nejhad, L.; Hamedi, B. Essential oil compositions of summer savory under foliar application of jasmonic acid and salicylic acid. J. Essent. Oil Res., 2014, 26(5), 342-347.
[http://dx.doi.org/10.1080/10412905.2014.922508]
[22]
Sarrou, E.; Chatzopoulou, P.; Dimassi-Theriou, K.; Therios, I.; Koularmani, A. Effect of melatonin, salicylic acid and gibberellic acid on leaf essential oil and other secondary metabolites of bitter orange young seedlings. J. Essent. Oil Res., 2015, 27(6), 487-496.
[http://dx.doi.org/10.1080/10412905.2015.1064485]
[23]
Babaei, S.; Niknam, V.; Behmanesh, M. Comparative effects of nitric oxide and salicylic acid on salinity tolerance in saffron (Crocus sativus). Plant Biosyst., 2021, 155(1), 73-82.
[http://dx.doi.org/10.1080/11263504.2020.1727975]
[24]
Katoch, R.; Mann, A.P.S.; Sohal, B.S.; Munshi, G.D. Induction of pisatin synthesis in pea with salicylic acid or inoculation with powdery mildew. J. Veg. Sci., 2005, 11(1), 85-96.
[http://dx.doi.org/10.1300/J484v11n01_08]
[25]
Momeni, M.; Pirbalouti, A.G.; Mousavi, A.; Badi, H.N. Effect of foliar applications of salicylic acid and chitosan on the essential oil of Thymbra spicata L. under different soil moisture conditions. J. Essent. Oil-Bear. Plants, 2020, 23(5), 1142-1153.
[http://dx.doi.org/10.1080/0972060X.2020.1801519]
[26]
Latif, F.; Ullah, F.; Mehmood, S.; Khattak, A.; Khan, A.U.; Khan, S.; Husain, I. Effects of salicylic acid on growth and accumulation of phenolics in Zea mays L. under drought stress. Acta Agric. Scand. B Soil Plant Sci., 2016, 66(4), 325-332.
[http://dx.doi.org/10.1080/09064710.2015.1117133]
[27]
Kong, J.; Xie, Y.; Yu, H.; Guo, Y.; Cheng, Y.; Qian, H.; Yao, W. Synergistic antifungal mechanism of thymol and salicylic acid on Fusarium solani. Lebensm. Wiss. Technol., 2021, 140, 110787.
[http://dx.doi.org/10.1016/j.lwt.2020.110787]
[28]
Awad, N.; Vega-Estévez, S.; Griffiths, G. Salicylic acid and aspirin stimulate growth of Chlamydomonas and inhibit lipoxygenase and chloroplast desaturase pathways. Plant Physiol. Biochem., 2020, 149, 256-265.
[http://dx.doi.org/10.1016/j.plaphy.2020.02.019] [PMID: 32087537]
[29]
Zaid, A.; Mohammad, F.; Wani, S.H.; Siddique, K.M.H. Salicylic acid enhances nickel stress tolerance by up-regulating antioxidant defense and glyoxalase systems in mustard plants. Ecotoxicol. Environ. Saf., 2019, 180, 575-587.
[http://dx.doi.org/10.1016/j.ecoenv.2019.05.042] [PMID: 31129436]
[30]
Chakma, R.; Biswas, A.; Saekong, P.; Ullah, H.; Datta, A. Foliar application and seed priming of salicylic acid affect growth, fruit yield, and quality of grape tomato under drought stress. Sci. Hortic. , 2021, 280, 109904.
[http://dx.doi.org/10.1016/j.scienta.2021.109904]
[31]
Cueto-Ginzo, A.I.; Serrano, L.; Bostock, R.M.; Ferrio, J.P.; Rodríguez, R.; Arcal, L.; Achon, M.Á.; Falcioni, T.; Luzuriaga, W.P.; Medina, V. Salicylic acid mitigates physiological and proteomic changes induced by the SPCP1 strain of Potato virus X in tomato plants. Physiol. Mol. Plant Pathol., 2016, 93, 1-11.
[http://dx.doi.org/10.1016/j.pmpp.2015.11.003]
[32]
La, V.H.; Lee, B.R.; Islam, M.T.; Park, S-H.; Lee, H.; Bae, D-W.; Kim, T-H. Antagonistic shifting from abscisic acid- to salicylic acid-mediated sucrose accumulation contributes to drought tolerance in Brassica napus. Environ. Exp. Bot., 2019, 162, 38-47.
[http://dx.doi.org/10.1016/j.envexpbot.2019.02.001]
[33]
Zhang, C.; Howlader, P.; Liu, T.; Sun, X.; Jia, X.; Zhao, X.; Shen, P.; Qin, Y.; Wang, W.; Yin, H. Alginate Oligosaccharide (AOS) induced resistance to Pst DC3000 via salicylic acid-mediated signaling pathway in Arabidopsis thaliana. Carbohydr. Polym., 2019, 225, 115221.
[http://dx.doi.org/10.1016/j.carbpol.2019.115221] [PMID: 31521273]
[34]
Mahesh, H.M.; Murali, M.; Anup Chandra Pal, M.; Melvin, P.; Sharada, M.S. Salicylic acid seed priming instigates defense mechanism by inducing PR-Proteins in Solanum melongena L. upon infection with Verticillium dahliae Kleb. Plant Physiol. Biochem., 2017, 117, 12-23.
[http://dx.doi.org/10.1016/j.plaphy.2017.05.012] [PMID: 28578205]
[35]
Ye, J.; Mao, D.; Cheng, S.; Zhang, X.; Tan, J.; Zheng, J.; Xu, F. Comparative transcriptome analysis reveals the potential stimulatory mechanism of terpene trilactone biosynthesis by exogenous salicylic acid in Ginkgo biloba. Ind. Crops Prod., 2020, 145, 112104.
[http://dx.doi.org/10.1016/j.indcrop.2020.112104]
[36]
Hasanuzzaman, M.; Matin, M.A.; Fardus, J.; Hasanuzzaman, M.; Hossain, M.S.; Parvin, K. Foliar application of salicylic acid improves growth and yield attributes by upregulating the antioxidant defense system in Brassica campestris plants grown in lead-amended soils. Acta Agrobot., 2019, 72(2), 1765.
[http://dx.doi.org/10.5586/aa.1765]
[37]
Cheng, X.; Fang, T.; Zhao, E.; Zheng, B.; Huang, B.; An, Y.; Zhou, P. Protective roles of salicylic acid in maintaining integrity and functions of photosynthetic photosystems for alfalfa (Medicago sativa L.) tolerance to aluminum toxicity. Plant Physiol. Biochem., 2020, 155, 570-578.
[http://dx.doi.org/10.1016/j.plaphy.2020.08.028] [PMID: 32846392]
[38]
Boukari, N.; Jelali, N.; Renaud, J.B.; Youssef, R.B.; Abdelly, C.; Hannoufa, A. Salicylic acid seed priming improves tolerance to salinity, iron deficiency and their combined effect in two ecotypes of Alfalfa. Environ. Exp. Bot., 2019, 167, 103820.
[http://dx.doi.org/10.1016/j.envexpbot.2019.103820]
[39]
Pirasteh-Anosheh, H.; Emam, Y. Modulation of oxidative damage due to salt stress using salicylic acid in Hordeum vulgare. Arch. Agron. Soil Sci., 2018, 64(9), 1268-1277.
[http://dx.doi.org/10.1080/03650340.2018.1423556]
[40]
Wael, M.S.; Mostafa, M.R.; Taia, A.A.E-M.; Saad, M.H.; Magdi, T.A. Alleviation of cadmium toxicity in common bean (Phaseolus vulgaris L.) plants by the exogenous application of salicylic acid. J. Hortic. Sci. Biotechnol., 2015, 90(1), 83-91.
[http://dx.doi.org/10.1080/14620316.2015.11513157]
[41]
Rady, M.M.; Mohamed, G.F. Modulation of salt stress effects on the growth, physio-chemical attributes and yields of Phaseolus vulgaris L. plants by the combined application of salicylic acid and Moringa oleifera leaf extract. Sci. Hortic. , 2015, 193, 105-113.
[http://dx.doi.org/10.1016/j.scienta.2015.07.003]
[42]
Mardani-Mehrabad, H.; Rakhshandehroo, F.; Shahbazi, S.; Shahraeen, N. Enhanced tolerance of seed-borne infection of bean common mosaic virus in salicylic acid treated bean plant. Arch. Phytopathol. Pflanzenschutz, 2020, 54(4), 1-25.
[http://dx.doi.org/10.3390/antiox11112283]
[43]
Aminifard, M.H.; Jorkesh, A.; Fallahi, H.R.; Moslemi, F.S. Influences of benzyl adenine and salicylic acid and on growth, yield, and biochemical characteristics of coriander (Coriandrum sativum L.). S. Afr. J. Bot., 2020, 132, 299-303.
[http://dx.doi.org/10.1016/j.sajb.2020.05.019]
[44]
Zanganeh, R.; Jamei, R.; Rahmani, F. Pre- sowing seed treatment with salicylic acid and sodium hydrosulfide confers Pb toxicity tolerance in maize (Zea mays L.). Ecotoxicol. Environ. Saf., 2020, 206, 111392.
[http://dx.doi.org/10.1016/j.ecoenv.2020.111392] [PMID: 33007541]
[45]
Santos, A.F.; Morais, O.M.; de Mello Prado, R.; Leal, A.J.F.; Silva, R.P. Relation of toxicity in corn seeds treated with zinc and salicylic acid. Commun. Soil Sci. Plant Anal., 2017, 48(10), 1123-1131.
[http://dx.doi.org/10.1080/00103624.2017.1323097]
[46]
Gad, S.B. Efficacy of soaking cotton seeds within salicylic acid and potassium silicate on reducing reniform nematode infection. Arch. Phytopathol. Pflanzenschutz, 2019, 52(15-16), 1149-1160.
[http://dx.doi.org/10.1080/03235408.2019.1693237]
[47]
Nie, W.; Gong, B.; Chen, Y.; Wang, J.; Wei, M.; Shi, Q. Photosynthetic capacity, ion homeostasis and reactive oxygen metabolism were involved in exogenous salicylic acid increasing cucumber seedlings tolerance to alkaline stress. Sci. Hortic. , 2018, 235, 413-423.
[http://dx.doi.org/10.1016/j.scienta.2018.03.011]
[48]
Liu, T.; Yuan, C.; Gao, Y.; Luo, J.; Yang, S.; Liu, S.; Zhang, R.; Zou, N. Exogenous salicylic acid mitigates the accumulation of some pesticides in cucumber seedlings under different cultivation methods. Ecotoxicol. Environ. Saf., 2020, 198, 110680.
[http://dx.doi.org/10.1016/j.ecoenv.2020.110680] [PMID: 32361497]
[49]
Chavoushi, M.; Najafi, F.; Salimi, A.; Angaji, S.A. Improvement in drought stress tolerance of safflower during vegetative growth by exogenous application of salicylic acid and sodium nitroprusside. Ind. Crops Prod., 2019, 134, 168-176.
[http://dx.doi.org/10.1016/j.indcrop.2019.03.071]
[50]
Chavoushi, M.; Najafi, F.; Salimi, A.; Angaji, S.A. Effect of salicylic acid and sodium nitroprusside on growth parameters, photosynthetic pigments and secondary metabolites of safflower under drought stress. Sci. Hortic. , 2020, 259, 108823.
[http://dx.doi.org/10.1016/j.scienta.2019.108823]
[51]
Ilyas, N.; Gull, R.; Mazhar, R.; Saeed, M.; Kanwal, S.; Shabir, S.; Bibi, F. Influence of salicylic acid and jasmonic acid on wheat under drought stress. Commun. Soil Sci. Plant Anal., 2017, 48(22), 1-9.
[http://dx.doi.org/10.1080/00103624.2017.1418370]
[52]
Khalvandi, M.; Siosemardeh, A.; Roohi, E.; Keramati, S. Salicylic acid alleviated the effect of drought stress on photosynthetic characteristics and leaf protein pattern in winter wheat. Heliyon, 2021, 7(1), e05908.
[http://dx.doi.org/10.1016/j.heliyon.2021.e05908] [PMID: 33490676]
[53]
Fathi, Sh.; Najafian, Sh. Morpho-physiological and biochemical properties of Carum copticum (L.): Effects of salicylic acid. Iran J Plant Physiol, 2020, 10(2), 3103-3112.
[http://dx.doi.org/10.1007/s11738-021-03292-4]
[54]
Wassie, M.; Zhang, W.; Zhang, Q.; Ji, K.; Cao, L.; Chen, L. Exogenous salicylic acid ameliorates heat stress-induced damages and improves growth and photosynthetic efficiency in alfalfa (Medicago sativa L.). Ecotoxicol. Environ. Saf., 2020, 191, 110206.
[http://dx.doi.org/10.1016/j.ecoenv.2020.110206] [PMID: 31954923]
[55]
Promyou, S.; Ketsa, S.; van Doorn, W.G. Salicylic acid alleviates chilling injury in anthurium (Anthurium andraeanum L.) flowers. Postharvest Biol. Technol., 2012, 64(1), 104-110.
[http://dx.doi.org/10.1016/j.postharvbio.2011.10.002]
[56]
Naeem, M.; Sadiq, Y.; Jahan, A.; Nabi, A.; Aftab, T.; Khan, M.M.A. Salicylic acid restrains arsenic induced oxidative burst in two varieties of Artemisia annua L. by modulating antioxidant defence system and artemisinin production. Ecotoxicol. Environ. Saf., 2020, 202, 110851.
[http://dx.doi.org/10.1016/j.ecoenv.2020.110851] [PMID: 32673966]
[57]
Daghaghian, H.; Mortazaie Nejad, F.; Bahreininejad, B. Physiological response of the medicinal plant artichoke (Cynara scolymus L.) to exogenous salicylic acid under field saline conditions. J. Hortic. Sci. Biotechnol., 2017, 92(4), 1-8.
[http://dx.doi.org/10.1080/14620316.2016.1205960]
[58]
Kalai, T.; Bouthour, D.; Manai, J.; Bettaieb Ben Kaab, L.; Gouia, H. Salicylic acid alleviates the toxicity of cadmium on seedling growth, amylases and phosphatases activity in germinating barley seeds. Arch. Agron. Soil Sci., 2016, 62(6), 892-904.
[http://dx.doi.org/10.1080/03650340.2015.1100295]
[59]
Semida, W.M.; Rady, M.M. Pre-soaking in 24-epibrassinolide or salicylic acid improves seed germination, seedling growth, and anti-oxidant capacity in Phaseolus vulgaris L. grown under NaCl stress. J. Hortic. Sci. Biotechnol., 2014, 89(3), 338-344.
[http://dx.doi.org/10.1080/14620316.2014.11513088]
[60]
Schmit, R.; Ferrareze, J.P.; Sganzerla, W.G.; Rosa, G.B.; Xavier, L.O.; Veeck, A.P.L.; Ferreira, P.I.; Primieri, S. Salicylic acid application in the initial development of beans (Phaseolus vulgaris L.) under water stress conditions: Agronomical and antioxidant parameters. Biocatal. Agric. Biotechnol., 2021, 31, 101896.
[http://dx.doi.org/10.1016/j.bcab.2020.101896]
[61]
Ghassemi-Golezani, K.; Hassanzadeh, N.; Shakiba, M.R.; Esmaeilpour, B. Exogenous salicylic acid and 24-epi-brassinolide improve antioxidant capacity and secondary metabolites of Brassica nigra. Biocatal. Agric. Biotechnol., 2020, 26, 101636.
[http://dx.doi.org/10.1016/j.bcab.2020.101636]
[62]
Anaya, F.; Fghire, R.; Wahbi, S.; Loutfi, K. Influence of salicylic acid on seed germination of Vicia faba L. under salt stress. J. Saudi Soc. Agric. Sci., 2018, 17(1), 1-8.
[http://dx.doi.org/10.1016/j.jssas.2015.10.002]
[63]
Antonić, D.; Milošević, S.; Cingel, A.; Lojić, M.; Trifunović-Momčilov, M.; Petrić, M.; Subotić, A.; Simonović, A. Effects of exogenous salicylic acid on Impatiens walleriana L. grown in vitro under polyethylene glycol-imposed drought. S. Afr. J. Bot., 2016, 105, 226-233.
[http://dx.doi.org/10.1016/j.sajb.2016.04.002]
[64]
Raju, S.; Jayalakshmi, S.K.; Sreeramulu, K. Differential elicitation of proteases and protease inhibitors in two different genotypes of chickpea (Cicer arietinum) by salicylic acid and spermine. J. Plant Physiol., 2009, 166(10), 1015-1022.
[http://dx.doi.org/10.1016/j.jplph.2008.12.005] [PMID: 19201507]
[65]
Poursakhi, N.; Razmjoo, J.; Karimmojeni, H. Interactive effect of salinity stress and foliar application of salicylic acid on some physiochemical traits of chicory (Cichorium intybus L.) genotypes. Sci. Hortic. , 2019, 258, 108810.
[http://dx.doi.org/10.1016/j.scienta.2019.108810]
[66]
Kamran, M.; Xie, K.; Sun, J.; Wang, D.; Shi, C.; Lu, Y.; Gu, W.; Xu, P. Modulation of growth performance and coordinated induction of ascorbate-glutathione and methylglyoxal detoxification systems by salicylic acid mitigates salt toxicity in choysum (Brassica parachinensis L.). Ecotoxicol. Environ. Saf., 2020, 188, 109877.
[http://dx.doi.org/10.1016/j.ecoenv.2019.109877] [PMID: 31704320]
[67]
Sangwan, P.; Kumar, V.; Gulati, D.; Joshi, U.N. Interactive effects of salicylic acid on enzymes of nitrogen metabolism in clusterbean (Cyamopsis tetragonoloba L.) under chromium(VI) toxicity. Biocatal. Agric. Biotechnol., 2015, 4(3), 309-314.
[http://dx.doi.org/10.1016/j.bcab.2015.06.001]
[68]
Farhangi-Abriz, S.; Alaee, T.; Tavasolee, A. Salicylic acid but not jasmonic acid improved canola root response to salinity stress. Rhizosphere, 2019, 9, 69-71.
[http://dx.doi.org/10.1016/j.rhisph.2018.11.009]
[69]
Yang, B.; Cheng, X.; Zhang, Y.; Li, W.; Wang, J.; Tian, Z.; Du, E.; Guo, H. Staged assessment for the involving mechanism of humic acid on enhancing water decontamination using H2O2-Fe(III) process. J. Hazard. Mater., 2021, 407, 124853.
[http://dx.doi.org/10.1016/j.jhazmat.2020.124853] [PMID: 33348201]
[70]
Attia, E.Z.; Abd El-Baky, R.M.; Desoukey, S.Y.; El Hakeem Mohamed, M.A.; Bishr, M.M.; Kamel, M.S. Chemical composition and antimicrobial activities of essential oils of Ruta graveolens plants treated with salicylic acid under drought stress conditions. Future Journal of Pharmaceutical Sciences, 2018, 4(2), 254-264.
[http://dx.doi.org/10.1016/j.fjps.2018.09.001]
[71]
Darvizheh, H.; Zahedi, M.; Abbaszadeh, B.; Razmjoo, J. Changes in some antioxidant enzymes and physiological indices of purple coneflower (Echinacea purpurea L.) in response to water deficit and foliar application of salicylic acid and spermine under field condition. Sci. Hortic. , 2019, 247, 390-399.
[http://dx.doi.org/10.1016/j.scienta.2018.12.037]
[72]
Hesami, S.; Nabizadeh, E.; Rahimi, A.; Rokhzadi, A. Effects of salicylic acid levels and irrigation intervals on growth and yield of coriander (Coriandrum sativum) in field conditions. Environ. Exp. Bot., 2012, 10, 113-116.
[http://dx.doi.org/10.1007/s10343-021-00567-1]
[73]
Islam, F.; Yasmeen, T.; Arif, M.S.; Riaz, M.; Shahzad, S.M.; Imran, Q.; Ali, I. Combined ability of chromium (Cr) tolerant plant growth promoting bacteria (PGPB) and salicylic acid (SA) in attenuation of chromium stress in maize plants. Plant Physiol. Biochem., 2016, 108, 456-467.
[http://dx.doi.org/10.1016/j.plaphy.2016.08.014] [PMID: 27575042]
[74]
Kaya, C.; Ashraf, M.; Alyemeni, M.N.; Ahmad, P. The role of endogenous nitric oxide in salicylic acid-induced up-regulation of ascorbate-glutathione cycle involved in salinity tolerance of pepper (Capsicum annuum L.) plants. Plant Physiol. Biochem., 2020, 147, 10-20.
[http://dx.doi.org/10.1016/j.plaphy.2019.11.040] [PMID: 31837556]
[75]
El-Beltagi, H.S.; Ahmed, S.H.; Namich, A.A.M.; Abdel-Sattar, R.R. Effect of salicylic acid and potassium citrate on cotton plant under salt stress. Fresenius Environ. Bull., 2017, 26(1a), 1091-1100.
[http://dx.doi.org/10.21608/jpp.2013.74149]
[76]
Yildirim, E.; Turan, M.; Guvenc, I. Effect of foliar salicylic acid application on growth, chlorophyll, and mineral content of cucumber grown under salt stress. J. Plant Nutr., 2008, 31(3), 593-612.
[http://dx.doi.org/10.1080/01904160801895118]
[77]
Baninasab, B. Induction of drought tolerance by salicylic acid in seedlings of cucumber (Cucumis sativus L.). J. Hortic. Sci. Biotechnol., 2010, 85(3), 191-196.
[http://dx.doi.org/10.1080/14620316.2010.11512653]
[78]
Bordbar, G.A.; Madandoust, M. Influence of salicylic acid on essential oil content and changes its compositions in Cuminum cyminum L. J. Essent. Oil-Bear. Plants, 2020, 23(3), 622-627.
[http://dx.doi.org/10.1080/0972060X.2020.1787867]
[79]
Gomaa, E.F.; Nassar, R.M.A.; Madkour, M.A. Effect of foliar spray with salicylic acid on vegetative growth, stem and leaf anatomy, photosynthetic pigments and productivity of Egyptian lupine plant (Lupinus termis Forssk.). Int. J. Adv. Res. , 2015, 3(1), 803-813.
[http://dx.doi.org/10.21608/ejhm.2005.18112]
[80]
Souana, K.; Taïbi, K.; Ait Abderrahim, L.; Amirat, M.; Achir, M.; Boussaid, M.; Mulet, J.M. Salt-tolerance in Vicia faba L. is mitigated by the capacity of salicylic acid to improve photosynthesis and antioxidant response. Sci. Hortic. , 2020, 273, 109641.
[http://dx.doi.org/10.1016/j.scienta.2020.109641]
[81]
Heydarnejadiyan, H.; Maleki, A.; Babaei, F. The effect of zinc and salicylic acid application on grain yield, essential oil and phytochemical properties of fennel plants under drought stress. J. Essent. Oil-Bear. Plants, 2020, 23(6), 1371-1385.
[http://dx.doi.org/10.1080/0972060X.2020.1860832]
[82]
Mabrouk, B.; Kâab, S.B.; Rezgui, M.; Majdoub, N.; Teixeira da Silva, J.A.; Kâab, L.B.B. Salicylic acid alleviates arsenic and zinc toxicity in the process of reserve mobilization in germinating fenugreek (Trigonella foenum-graecum L.) seeds. S. Afr. J. Bot., 2019, 124, 235-243.
[http://dx.doi.org/10.1016/j.sajb.2019.05.020]
[83]
Mallahi, T.; Saharkhiz, M.J.; Javanmardi, J. Salicylic acid changes morpho-physiological attributes of feverfew (Tanacetum parthenium L.) under salinity stress. Acta Ecol. Sin., 2018, 38(5), 351-355.
[http://dx.doi.org/10.1016/j.chnaes.2018.02.003]
[84]
Kotapati, K.V.; Palaka, B.K.; Ampasala, D.R. Alleviation of nickel toxicity in finger millet (Eleusine coracana L.) germinating seedlings by exogenous application of salicylic acid and nitric oxide. Crop J., 2017, 5(3), 240-250.
[http://dx.doi.org/10.1016/j.cj.2016.09.002]
[85]
Zhang, H.; Ma, Z.; Wang, J.; Wang, P.; Lu, D.; Deng, S.; Lei, H.; Gao, Y.; Tao, Y. Treatment with exogenous salicylic acid maintains quality, increases bioactive compounds, and enhances the antioxidant capacity of fresh goji (Lycium barbarum L.) fruit during storage. Lebensm. Wiss. Technol., 2021, 140, 110837.
[http://dx.doi.org/10.1016/j.lwt.2020.110837]
[86]
Farahbakhsh, H.; Pasandi Pour, A.; Reiahi, N. Physiological response of henna (Lawsonia inermise L.) to salicylic acid and salinity. Plant Prod. Sci., 2017, 20(2), 237-247.
[http://dx.doi.org/10.1080/1343943X.2017.1299581]
[87]
Rai, K.K.; Rai, N.; Rai, S.P. Salicylic acid and nitric oxide alleviate high temperature induced oxidative damage in Lablab purpureus L plants by regulating bio-physical processes and DNA methylation. Plant Physiol. Biochem., 2018, 128, 72-88.
[http://dx.doi.org/10.1016/j.plaphy.2018.04.023] [PMID: 29763836]
[88]
Nazar, R.; Umar, S.; Khan, N.A.; Sareer, O. Salicylic acid supplementation improves photosynthesis and growth in mustard through changes in proline accumulation and ethylene formation under drought stress. S. Afr. J. Bot., 2015, 98, 84-94.
[http://dx.doi.org/10.1016/j.sajb.2015.02.005]
[89]
Kaur Kohli, S.; Handa, N.; Bali, S.; Arora, S.; Sharma, A.; Kaur, R.; Bhardwaj, R. Modulation of antioxidative defense expression and osmolyte content by co-application of 24-epibrassinolide and salicylic acid in Pb exposed Indian mustard plants. Ecotoxicol. Environ. Saf., 2018, 147, 382-393.
[http://dx.doi.org/10.1016/j.ecoenv.2017.08.051] [PMID: 28881317]
[90]
Osama, S.; El Sherei, M.; Al-Mahdy, D.A.; Bishr, M.; Salama, O. Effect of Salicylic acid foliar spraying on growth parameters, γ-pyrones, phenolic content and radical scavenging activity of drought stressed Ammi visnaga L. plant. Ind. Crops Prod., 2019, 134, 1-10.
[http://dx.doi.org/10.1016/j.indcrop.2019.03.035]
[91]
Fatemi, H.; Mohammadi, S.; Aminifard, M.H. Effect of postharvest salicylic acid treatment on fungal decay and some postharvest quality factors of kiwi fruit. Arch. Phytopathol. Pflanzenschutz, 2013, 46(11), 1338-1345.
[http://dx.doi.org/10.1080/03235408.2013.767013]
[92]
Safari, F.; Akramian, M.; Salehi-Arjmand, H.; Khadivi, A. Physiological and molecular mechanisms underlying salicylic acid-mitigated mercury toxicity in lemon balm (Melissa officinalis L.). Ecotoxicol. Environ. Saf., 2019, 183, 109542.
[http://dx.doi.org/10.1016/j.ecoenv.2019.109542] [PMID: 31401333]
[93]
Promyou, S.; Supapvanich, S. Combinative effect of salicylic acid immersion and UV-C illumination on chilling injury-related factors of longan (Dimocarpus longan Lour.) fruit. Int. J. Fruit Sci., 2020, 20(2), 133-148.
[http://dx.doi.org/10.1080/15538362.2019.1591325]
[94]
Govindaraju, S.; Indra Arulselvi, P. Effect of cytokinin combined elicitors (l-phenylalanine, salicylic acid and chitosan) on in vitro propagation, secondary metabolites and molecular characterization of medicinal herb – Coleus aromaticus Benth (L). J. Saudi Soc. Agric. Sci., 2018, 17(4), 435-444.
[http://dx.doi.org/10.1016/j.jssas.2016.11.001]
[95]
Estaji, A.; Niknam, F. Foliar salicylic acid spraying effect’ on growth, seed oil content, and physiology of drought-stressed Silybum marianum L. plant. Agric. Water Manage., 2020, 234, 106116.
[http://dx.doi.org/10.1016/j.agwat.2020.106116]
[96]
Enteshari, S.; Sharifian, S. Influence of salicylic acid on growth and some biochemical parameters in a C4 plant (Panicum miliaceum L.) under saline conditions. Afr. J. Biotechnol., 2012, 11(3), 621-627.
[http://dx.doi.org/10.5897/AJB11.1523]
[97]
Ngom, B.; Mamati, E.; Goudiaby, M.F.; Kimatu, J.; Sarr, I.; Diouf, D.; Kane, N.A. Methylation analysis revealed salicylic acid affects pearl millet defense through external cytosine DNA demethylation. J. Plant Interact., 2018, 13(1), 288-293.
[http://dx.doi.org/10.1080/17429145.2018.1473515]
[98]
Lotfi, R.; Ghassemi-Golezani, K.; Najafi, N. Grain filling and yield of mung bean affected by salicylic acid and silicon under salt stress. J. Plant Nutr., 2018, 41(14), 1778-1785.
[http://dx.doi.org/10.1080/01904167.2018.1457686]
[99]
Brito, C.; Dinis, L.T.; Ferreira, H.; Coutinho, J.; Moutinho-Pereira, J.; Correia, C.M. Salicylic acid increases drought adaptability of young olive trees by changes on redox status and ionome. Plant Physiol. Biochem., 2019, 141(141), 315-324.
[http://dx.doi.org/10.1016/j.plaphy.2019.06.011] [PMID: 31207492]
[100]
Abo-Elyousr, K.A.M.; Hussein, M.A.M.; Allam, A.D.A.; Hassan, M.H. Salicylic acid induced systemic resistance on onion plants against Stemphylium vesicarium. Arch. Phytopathol. Pflanzenschutz, 2009, 42(11), 1042-1050.
[http://dx.doi.org/10.1080/03235400701621719]
[101]
Semida, W.M.; Abd El-Mageed, T.A.; Mohamed, S.E.; El-Sawah, N.A. Combined effect of deficit irrigation and foliar-applied salicylic acid on physiological responses, yield, and water-use efficiency of onion plants in saline calcareous soil. Arch. Agron. Soil Sci., 2017, 63(9), 1227-1239.
[http://dx.doi.org/10.1080/03650340.2016.1264579]
[102]
Mohamadi, H.; Pakkish, Z. Role of salicylic acid on yield improvement of “Elberta” peach (Prunus persica L. Batsch) tree. Int. J. Adv. Biol. Biomed. Res., 2014, 2(4), 970-973.
[http://dx.doi.org/10.1007/s11738-020-3018-3]
[103]
Kong, J.; Dong, Y.; Zhang, X.; Wang, Q.; Xu, L.; Liu, S.; Hou, J.; Fan, Z. Effects of exogenous salicylic acid on physiological characteristics of peanut seedlings under iron-deficiency stress. J. Plant Nutr., 2015, 38(1), 127-144.
[http://dx.doi.org/10.1080/01904167.2014.920391]
[104]
Dong, Y.; Chen, W.; Liu, F.; Wan, Y. Effects of exogenous salicylic acid and nitric oxide on peanut seedlings growth under iron deficiency. Commun. Soil Sci. Plant Anal., 2016, 47(22), 2490-2505.
[http://dx.doi.org/10.1080/00103624.2016.1254790]
[105]
Kaya, C.; Ashraf, M.; Alyemeni, M.N.; Corpas, F.J.; Ahmad, P. Salicylic acid-induced nitric oxide enhances arsenic toxicity tolerance in maize plants by upregulating the ascorbate-glutathione cycle and glyoxalase system. J. Hazard. Mater., 2020, 399, 123020.
[http://dx.doi.org/10.1016/j.jhazmat.2020.123020] [PMID: 32526442]
[106]
Saharkhiz, M.J.; Goudarzi, T. Foliar application of salicylic acid changes essential oil content and chemical compositions of peppermint (Mentha piperita L.). J. Essent. Oil-Bear. Plants, 2014, 17(3), 435-440.
[http://dx.doi.org/10.1080/0972060X.2014.892839]
[107]
Figueroa-Pérez, M.G.; Pérez-Ramírez, I.F.; Enciso-Moreno, J.A.; Gallegos-Corona, M.A.; Salgado, L.M.; Reynoso-Camacho, R. Diabetic nephropathy is ameliorated with peppermint (Mentha piperita) infusions prepared from salicylic acid-elicited plants. J. Funct. Foods, 2018, 43, 55-61.
[http://dx.doi.org/10.1016/j.jff.2018.01.029]
[108]
Ghamari, M.; Hosseininaveh, V.; Talebi, K.; Nozari, J.; Allahyari, H. Biochemical characterization of the induced immune system of Pistachio (Pistacia vera) by salicylic acid. Int. J. Fruit Sci., 2020, 20(2), 117-132.
[http://dx.doi.org/10.1080/15538362.2019.1586025]
[109]
Hadi, M.R.; Kholdebarin, B. Changes in some antioxidant enzymes activities and carotenoid content in potato plants infected by Rhizoctonia solani treated with salicylic acid. Arch. Phytopathol. Pflanzenschutz, 2018, 51(11-12), 649-661.
[http://dx.doi.org/10.1080/03235408.2018.1511315]
[110]
Abbaszadeh, B.; Layeghhaghighi, M.; Azimi, R.; Hadi, N. Improving water use efficiency through drought stress and using salicylic acid for proper production of Rosmarinus officinalis L. Ind. Crops Prod., 2020, 144, 111893.
[http://dx.doi.org/10.1016/j.indcrop.2019.111893]
[111]
Yanik, F.; Aytürk, Ö.; Çetinbaş-Genç, A.; Vardar, F. Salicylic acid-induced germination, biochemical and developmental alterations in rye (Secale cereale L.). Acta Bot. Croat., 2018, 77(1), 45-50.
[http://dx.doi.org/10.2478/botcro-2018-0003]
[112]
Shaki, F.; Maboud, H.E.; Niknam, V. Growth enhancement and salt tolerance of Safflower (Carthamus tinctorius L.), by salicylic acid. Curr. Plant Biol., 2018, 13, 16-22.
[http://dx.doi.org/10.1016/j.cpb.2018.04.001]
[113]
Tajik, S.; Zarinkamar, F.; Soltani, B.M.; Nazari, M. Induction of phenolic and flavonoid compounds in leaves of saffron (Crocus sativus L.) by salicylic acid. Sci. Hortic. , 2019, 257, 108751.
[http://dx.doi.org/10.1016/j.scienta.2019.108751]
[114]
Sadeghian, F.; Hadian, J.; Hadavi, M.; Mohamadi, A.; Ghorbanpour, M.; Ghafarzadegan, R. Effects of exogenous salicylic acid application on growth, metabolic activities and essential oil composition of Satureja khuzistanica Jamzad. Faslnamah-i Giyahan-i Daruyi, 2013, 12(47), 70-82.
[http://dx.doi.org/10.1080/0972060X.2014.1001138]
[115]
Poorghadir, M.; Torkashvand, A.M.; Mirjalili, S.A.; Moradi, P. Interactions of amino acids (proline and phenylalanine) and biostimulants (salicylic acid and chitosan) on the growth and essential oil components of savory (Satureja hortensis L.). Biocatal. Agric. Biotechnol., 2020, 30, 101815.
[http://dx.doi.org/10.1016/j.bcab.2020.101815]
[116]
Farhangi-Abriz, S.; Ghassemi-Golezani, K. How can salicylic acid and jasmonic acid mitigate salt toxicity in soybean plants? Ecotoxicol. Environ. Saf., 2018, 147, 1010-1016.
[http://dx.doi.org/10.1016/j.ecoenv.2017.09.070] [PMID: 29976003]
[117]
Sihag, S.; Brar, B.; Joshi, U.N. Salicylic acid induces amelioration of chromium toxicity and affects antioxidant enzyme activity in Sorghum bicolor L. Int. J. Phytoremediation, 2019, 21(4), 293-304.
[http://dx.doi.org/10.1080/15226514.2018.1524827] [PMID: 30873848]
[118]
Rajabi Dehnavi, A.; Zahedi, M.; Razmjoo, J.; Eshghizadeh, H. Effect of exogenous application of salicylic acid on salt-stressed sorghum growth and nutrient contents. J. Plant Nutr., 2019, 42(11-12), 1333-1349.
[http://dx.doi.org/10.1080/01904167.2019.1617307]
[119]
Nazari, R.; Parsa, S.; Tavakkol Afshari, R.; Mahmoodi, S.; Seyyedi, S.M. Salicylic acid priming before and after accelerated aging process increases seedling vigor in aged soybean seed. J. Crop Improv., 2020, 34(2), 218-237.
[http://dx.doi.org/10.1080/15427528.2019.1710734]
[120]
Shin, H.; Min, K.; Arora, R. Exogenous salicylic acid improves freezing tolerance of spinach (Spinacia oleracea L.) leaves. Cryobiology, 2018, 81, 192-200.
[http://dx.doi.org/10.1016/j.cryobiol.2017.10.006] [PMID: 29061524]
[121]
Abd El-Mageed, T.A.; Semida, W.M.; Mohamed, G.F.; Rady, M.M. Combined effect of foliar-applied salicylic acid and deficit irrigation on physiological–anatomical responses, and yield of squash plants under saline soil. S. Afr. J. Bot., 2016, 106, 8-16.
[http://dx.doi.org/10.1016/j.sajb.2016.05.005]
[122]
Huang, Y.T.; Cai, S.Y.; Ruan, X.L.; Chen, S.Y.; Mei, G.F.; Ruan, G.H.; Cao, D.D. Salicylic acid enhances sunflower seed germination under Zn2+ stress via involvement in Zn2+ metabolic balance and phytohormone interactions. Sci. Hortic. , 2021, 275, 109702.
[http://dx.doi.org/10.1016/j.scienta.2020.109702]
[123]
Damalas, C.A. Improving drought tolerance in sweet basil (Ocimum basilicum) with salicylic acid. Sci. Hortic. , 2019, 246, 360-365.
[http://dx.doi.org/10.1016/j.scienta.2018.11.005]
[124]
Kulak, M.; Jorrín-Novo, J.V.; Romero-Rodriguez, M.C.; Yildirim, E.D.; Gul, F.; Karaman, S. Seed priming with salicylic acid on plant growth and essential oil composition in basil (Ocimum basilicum L.) plants grown under water stress conditions. Ind. Crops Prod., 2021, 161, 113235.
[http://dx.doi.org/10.1016/j.indcrop.2020.113235]
[125]
Rostami, M.; Rostami, S. Effect of salicylic acid and mycorrhizal symbiosis on improvement of fluoranthene phytoremediation using tall fescue (Festuca arundinacea Schreb). Chemosphere, 2019, 232, 70-75.
[http://dx.doi.org/10.1016/j.chemosphere.2019.05.171] [PMID: 31152905]
[126]
Khalil, N.; Fekry, M.; Bishr, M.; El-Zalabani, S.; Salama, O. Foliar spraying of salicylic acid induced accumulation of phenolics, increased radical scavenging activity and modified the composition of the essential oil of water stressed Thymus vulgaris L. Plant Physiol. Biochem., 2018, 123, 65-74.
[http://dx.doi.org/10.1016/j.plaphy.2017.12.007] [PMID: 29223848]
[127]
Mohammadi, H.; Amirikia, F.; Ghorbanpour, M.; Fatehi, F.; Hashempour, H. Salicylic acid induced changes in physiological traits and essential oil constituents in different ecotypes of Thymus kotschyanus and Thymus vulgaris under well-watered and water stress conditions. Ind. Crops Prod., 2009, 29, 561-574.
[http://dx.doi.org/10.20546/ijcrar.2016.408.014]
[128]
Zhang, K.; Wang, Y.; Sun, W.; Han, K.; Yang, M.; Si, Z.; Li, G.; Qiao, Y. Effects of exogenous salicylic acid on the resistance response of wild soybean plants (Glycine soja) infected with Soybean mosaic virus. Can. J. Plant Pathol., 2020, 42(1), 84-93.
[http://dx.doi.org/10.1080/07060661.2019.1641750]
[129]
Zewail, R.M.Y.; El-Desoukey, H.S.; Islam, K.R. Chromium stress alleviation by salicylic acid in Malabar spinach (Basella alba). J. Plant Nutr., 2020, 43(9), 1268-1285.
[http://dx.doi.org/10.1080/01904167.2020.1727504]
[130]
Jamali, B.; Eshghi, S. Salicylic acid-induced salinity redressal in hydroponically grown strawberry. Commun. Soil Sci. Plant Anal., 2015, 46(12), 1482-1493.
[http://dx.doi.org/10.1080/00103624.2015.1043447]
[131]
Merwad, A.R.M.A. Efficiency of potassium fertilization and salicylic acid on yield and nutrient accumulation of sugar beet grown on saline soil. Commun. Soil Sci. Plant Anal., 2016, 47(9), 1184-1192.
[http://dx.doi.org/10.1080/00103624.2016.1166242]
[132]
Dehghanian, S.Z.; Abdollahi, M.; Charehgani, H.; Niazi, A. Combined of salicylic acid and Pseudomonas fluorescens CHA0 on the expression of PR1 gene and control of Meloidogyne javanica in tomato. Biol. Control, 2020, 141, 104134.
[http://dx.doi.org/10.1016/j.biocontrol.2019.104134]
[133]
Yüzbaşıoğlu, E.; Dalyan, E. Salicylic acid alleviates thiram toxicity by modulating antioxidant enzyme capacity and pesticide detoxification systems in the tomato (Solanum lycopersicum Mill.). Plant Physiol. Biochem., 2019, 135, 322-330.
[http://dx.doi.org/10.1016/j.plaphy.2018.12.023] [PMID: 30599309]
[134]
Farghaly, F.A.; Salam, H.K.; Hamada, A.M.; Radi, A.A. The role of benzoic acid, gallic acid and salicylic acid in protecting tomato callus cells from excessive boron stress. Sci. Hortic. , 2021, 278, 109867.
[http://dx.doi.org/10.1016/j.scienta.2020.109867]
[135]
Dolatabadian, A.; Modarres Sanavy, S.A.M.; Sharifi, M. Effect of salicylic acid and salt on wheat seed germination. Acta Agric. Scand. B Soil Plant Sci., 2009, 59(5), 456-464.
[http://dx.doi.org/10.1080/09064710802342350]
[136]
Wang, C.; Zhang, Q. Exogenous salicylic acid alleviates the toxicity of chlorpyrifos in wheat plants (Triticum aestivum). Ecotoxicol. Environ. Saf., 2017, 137, 218-224.
[http://dx.doi.org/10.1016/j.ecoenv.2016.12.011] [PMID: 27951421]
[137]
Gorni, P.H.; Pacheco, A.C.; Moro, A.L.; Silva, J.F.A.; Moreli, R.R.; de Miranda, G.R.; Pelegrini, J.M.; Spera, K.D.; Bronzel, J.L.; da Silva, R.M.G. Salicylic acid foliar application increases biomass, nutrient assimilation, primary metabolites and essential oil content in Achillea millefolium L. Sci. Hortic. , 2020, 270, 109436.
[http://dx.doi.org/10.1016/j.scienta.2020.109436]
[138]
Dou, S.; Shan, J.; Song, X.; Cao, R.; Wu, M.; Li, C.; Guan, S. Are humic substances soil microbial residues or unique synthesized compounds? A perspective on their distinctiveness. Pedosphere, 2020, 30(2), 159-167.
[http://dx.doi.org/10.1016/S1002-0160(20)60001-7]
[139]
Canellas, L.P.; Olivares, F.L. Physiological responses to humic substances as plant growth promoter. Chem. Biol. Technol. Agric., 2014, 1(1), 3.
[http://dx.doi.org/10.1186/2196-5641-1-3]
[140]
Xiang, Y.; Kang, F.; Xiang, Y.; Jiao, Y. Effects of humic acid-modified magnetic Fe3O4/MgAl-layered double hydroxide on the plant growth, soil enzyme activity, and metal availability. Ecotoxicol. Environ. Saf., 2019, 182, 109424.
[http://dx.doi.org/10.1016/j.ecoenv.2019.109424] [PMID: 31299478]
[141]
Byun, M.Y.; Kim, D.; Youn, U.J.; Lee, S.; Lee, H. Improvement of moss photosynthesis by humic acids from Antarctic tundra soil. Plant Physiol. Biochem., 2021, 159, 37-42.
[http://dx.doi.org/10.1016/j.plaphy.2020.12.007] [PMID: 33321376]
[142]
Nardi, S.; Pizzeghello, D.; Muscolo, A.; Vianello, A. Physiological effects of humic substances on higher plants. Soil Biol. Biochem., 2002, 34(11), 1527-1536.
[http://dx.doi.org/10.1016/S0038-0717(02)00174-8]
[143]
Tao, Y.; Shi, H.; Jiao, Y.; Han, S.; Akindolie, M.S.; Yang, Y.; Chen, Z.; Zhang, Y. Effects of humic acid on the biodegradation of di-n-butyl phthalate in mollisol. J. Clean. Prod., 2020, 249, 119404.
[http://dx.doi.org/10.1016/j.jclepro.2019.119404]
[144]
Yang, X.; Zhou, Z.; Fu, M.; Han, M.; Liu, Z.; Zhu, C.; Wang, L.; Zheng, J.; Liao, Y.; Zhang, W.; Ye, J.; Xu, F. Transcriptome-wide identification of WRKY family genes and their expression profiling toward salicylic acid in Camellia japonica. Plant Signal. Behav., 2021, 16(1), 1844508.
[http://dx.doi.org/10.1080/15592324.2020.1844508] [PMID: 33222651]
[145]
Arancon, N.Q.; Edwards, C.A.; Lee, S.; Byrne, R. Effects of humic acids from vermicomposts on plant growth. Eur. J. Soil Biol., 2006, 42(1), S65-S69.
[http://dx.doi.org/10.1016/j.ejsobi.2006.06.004]
[146]
Zhang, L.; Sun, X.; Tian, Y.; Gong, X. Biochar and humic acid amendments improve the quality of composted green waste as a growth medium for the ornamental plant Calathea insignis. Sci. Hortic. , 2014, 176, 70-78.
[http://dx.doi.org/10.1016/j.scienta.2014.06.021]
[147]
Zahid, A. Fozia; Ramzan, M.; Bashir, M.A.; Khatana, M.A.; Akram, M.T.; Nadeem, S.; Qureshi, M.S.; Iqbal, W.; Umar, M.; Walli, S.; Tariq, R.M.S.; Atta, S.; Al Farraj, D.A.; Yassin, M.T. Effect of humic acid enriched cotton waste on growth, nutritional and chemical composition of oyster mushrooms (Pluerotus ostreatus and Lentinus sajor-caju). J. King Saud Univ. Sci., 2020, 32(8), 3249-3257.
[http://dx.doi.org/10.1016/j.jksus.2020.08.016]
[148]
Ozfidan-Konakci, C.; Yildiztugay, E.; Bahtiyar, M.; Kucukoduk, M. The humic acid-induced changes in the water status, chlorophyll fluorescence and antioxidant defense systems of wheat leaves with cadmium stress. Ecotoxicol. Environ. Saf., 2018, 155, 66-75.
[http://dx.doi.org/10.1016/j.ecoenv.2018.02.071] [PMID: 29510311]
[149]
Abdellatif, I.M.Y.; Abdel-Ati, Y.Y.; Abdel-Mageed, Y.T.; Hassan, M.A.M.M. Effect of humic acid on growth and productivity of tomato plants under heat stress. J. Hortic. Res., 2017, 25(2), 59-66.
[http://dx.doi.org/10.1515/johr-2017-0022]
[150]
Tavares, O.C.H.; Santos, L.A.; Filho, D.F.; Garcia, A.C.; Castro, T.A.V.T.; Ferreira, L.M.; Zonta, E.; Pereira, M.G.; Fernandes, M.S. Response surface modeling of humic acid stimulation of the rice (Oryza sativa L.) root system. Arch. Agron. Soil Sci., 2020, 67(8), 1-33.
[http://dx.doi.org/10.1080/03650340.2020.1775199]
[151]
van Tol de Castro, T.A.; Berbara, R.L.L.; Tavares, O.C.H.; Mello, D.F.G.; Pereira, E.G.; Souza, C.C.B.; Espinosa, L.M.; García, A.C. Humic acids induce a eustress state via photosynthesis and nitrogen metabolism leading to a root growth improvement in rice plants. Plant Physiol. Biochem., 2021, 162, 171-184.
[http://dx.doi.org/10.1016/j.plaphy.2021.02.043] [PMID: 33684776]
[152]
Haghighi, M.; Kafi, M.; Fang, P. Photosynthetic activity and N metabolism of lettuce as affected by humic acid. Int. J. Veg. Sci., 2012, 18(2), 182-189.
[http://dx.doi.org/10.1080/19315260.2011.605826]
[153]
Haghighi, M.; Kafi, M.; Khoshgoftarmanesh, A. Effect of humic acid application on cadmium accumulation by lettuce leaves. J. Plant Nutr., 2013, 36(10), 1521-1532.
[http://dx.doi.org/10.1080/01904167.2013.799182]
[154]
Osman, A.S. rady, M.M. Ameliorative effects of sulphur and humic acid on the growth, anti-oxidant levels, and yields of pea (Pisum sativum L.) plants grown in reclaimed saline soil. J. Hortic. Sci. Biotechnol., 2012, 87(6), 626-632.
[http://dx.doi.org/10.1080/14620316.2012.11512922]
[155]
Maji, D.; Misra, P.; Singh, S.; Kalra, A. Humic acid rich vermicompost promotes plant growth by improving microbial community structure of soil as well as root nodulation and mycorrhizal colonization in the roots of Pisum sativum. Appl. Soil Ecol., 2017, 110, 97-108.
[http://dx.doi.org/10.1016/j.apsoil.2016.10.008]
[156]
Pilanal, N.; Kaplan, M. Investigation of effects on nutrient uptake of humic acid applications of different forms to strawberry plant. J. Plant Nutr., 2003, 26(4), 835-843.
[http://dx.doi.org/10.1081/PLN-120018568]
[157]
Bacilio, M.; Moreno, M.; Bashan, Y. Mitigation of negative effects of progressive soil salinity gradients by application of humic acids and inoculation with Pseudomonas stutzeri in a salt-tolerant and a salt-susceptible pepper. Appl. Soil Ecol., 2016, 107, 394-404.
[http://dx.doi.org/10.1016/j.apsoil.2016.04.012]
[158]
Seenivasan, N.; Senthilnathan, S. Effect of humic acid on Meloidogyne incognita (Kofoid & White) Chitwood infecting banana (Musa spp.). Int. J. Pest Manage., 2018, 64(2), 110-118.
[http://dx.doi.org/10.1080/09670874.2017.1344743]
[159]
Ibrahim, E.A.; Ramadan, W.A. Effect of zinc foliar spray alone and combined with humic acid or/and chitosan on growth, nutrient elements content and yield of dry bean (Phaseolus vulgaris L.) plants sown at different dates. Sci. Hortic. , 2015, 184, 101-105.
[http://dx.doi.org/10.1016/j.scienta.2014.11.010]
[160]
Büyükkeskin, T.; Akinci, Ş.; Eroğlu, A.E. Effects of humic acid on root development and nutrient uptake of Vicia faba L. (Broad bean) seedlings grown under aluminum toxicity. Commun. Soil Sci. Plant Anal., 2015, 46(3), 277-292.
[http://dx.doi.org/10.1080/00103624.2014.969402]
[161]
Karimi, E.; Shirmardi, M.; Dehestani Ardakani, M.; Gholamnezhad, J.; Zarebanadkouki, M. The effect of humic acid and biochar on growth and nutrients uptake of calendula (Calendula officinalis L.). Commun. Soil Sci. Plant Anal., 2020, 51(12), 1658-1669.
[http://dx.doi.org/10.1080/00103624.2020.1791157]
[162]
Caporale, A.G.; Adamo, P.; Azam, S.M.G.G.; Rao, M.A.; Pigna, M. May humic acids or mineral fertilisation mitigate arsenic mobility and availability to carrot plants (Daucus carota L.) in a volcanic soil polluted by As from irrigation water? Chemosphere, 2018, 193, 464-471.
[http://dx.doi.org/10.1016/j.chemosphere.2017.11.035] [PMID: 29156331]
[163]
Gholami, H.; Saharkhiz, M.J.; Raouf Fard, F.; Ghani, A.; Nadaf, F. Humic acid and vermicompost increased bioactive components, antioxidant activity and herb yield of Chicory (Cichorium intybus L.). Biocatal. Agric. Biotechnol., 2018, 14, 286-292.
[http://dx.doi.org/10.1016/j.bcab.2018.03.021]
[164]
Hameed, A.; Fatma, S.; Wattoo, J.I.; Yaseen, M.; Ahmad, S. Accumulative effects of humic acid and multinutrient foliar fertilizers on the vegetative and reproductive attributes of citrus (Citrus reticulata cv. kinnow mandarin). J. Plant Nutr., 2018, 41(19), 2495-2506.
[http://dx.doi.org/10.1080/01904167.2018.1510506]
[165]
Antunes, P.M.C.; Scornaienchi, M.L.; Roshon, H.D. Copper toxicity to Lemna minor modelled using humic acid as a surrogate for the plant root. Chemosphere, 2012, 88(4), 389-394.
[http://dx.doi.org/10.1016/j.chemosphere.2012.02.052] [PMID: 22429843]
[166]
de Morais, E.G.; Silva, C.A.; Maluf, H.J.G.M. Soaking of seedlings roots in humic acid as an effective practice to improve Eucalyptus nutrition and growth. Commun. Soil Sci. Plant Anal., 2021, 52(12), 1399-1415.
[http://dx.doi.org/10.1080/00103624.2021.1885686]
[167]
Nikbakht, A.; Kafi, M.; Babalar, M.; Xia, Y.P.; Luo, A.; Etemadi, N. Effect of humic acid on plant growth, nutrient uptake, and postharvest life of Gerbera. J. Plant Nutr., 2008, 31(12), 2155-2167.
[http://dx.doi.org/10.1080/01904160802462819]
[168]
Haghighi, M.; Nikbakht, A.; Pessarakli, M. Effects of humic acid on remediation of the nutritional deficiency of gerbera in hydroponic culture. J. Plant Nutr., 2016, 39(5), 702-713.
[http://dx.doi.org/10.1080/01904167.2015.1087560]
[169]
Yigider, E.; Taspinar, M.S.; Sigmaz, B.; Aydin, M.; Agar, G. Humic acids protective activity against manganese induced LTR (long terminal repeat) retrotransposon polymorphism and genomic instability effects in Zea mays. Plant Gene, 2016, 6, 13-17.
[http://dx.doi.org/10.1016/j.plgene.2016.03.002]
[170]
Shen, J.; Guo, M.; Wang, Y.; Yuan, X.; Wen, Y.; Song, X.; Dong, S.; Guo, P. Humic acid improves the physiological and photosynthetic characteristics of millet seedlings under drought stress. Plant Signal. Behav., 2020, 15(8), 1774212.
[http://dx.doi.org/10.1080/15592324.2020.1774212] [PMID: 32552556]
[171]
Tadayyon, A.; Beheshti, S.; Pessarakli, M. Effects of sprayed humic acid, iron, and zinc on quantitative and qualitative characteristics of niger plant (Guizotia abyssinica L.). J. Plant Nutr., 2017, 40(11), 1644-1650.
[http://dx.doi.org/10.1080/01904167.2016.1270321]
[172]
Gemin, L.G.; Mógor, Á.F.; De Oliveira Amatussi, J.; Mógor, G. Microalgae associated to humic acid as a novel biostimulant improving onion growth and yield. Sci. Hortic. , 2019, 256, 108560.
[http://dx.doi.org/10.1016/j.scienta.2019.108560]
[173]
Sönmez, F.; Gülser, F. Effects of humic acid and Ca(NO 3) 2 on nutrient contents in pepper (Capsicum annuum) seedling under salt stress. Acta Agric. Scand. B Soil Plant Sci., 2016, 66(7), 613-618.
[http://dx.doi.org/10.1080/09064710.2016.1205654]
[174]
Razavi Nasab, A.; Fotovat, A.; Astaraie, A.; Tajabadipour, A. Effect of organic waste and humic acid on some growth parameters and nutrient concentration of pistachio seedlings. Commun. Soil Sci. Plant Anal., 2019, 50(3), 254-264.
[http://dx.doi.org/10.1080/00103624.2018.1559328]
[175]
Selladurai, R.; Purakayastha, T.J. Effect of humic acid multinutrient fertilizers on yield and nutrient use efficiency of potato. J. Plant Nutr., 2016, 39(7), 949-956.
[http://dx.doi.org/10.1080/01904167.2015.1109106]
[176]
Ondrasek, G.; Rengel, Z.; Romic, D. Humic acids decrease uptake and distribution of trace metals, but not the growth of radish exposed to cadmium toxicity. Ecotoxicol. Environ. Saf., 2018, 151, 55-61.
[http://dx.doi.org/10.1016/j.ecoenv.2017.12.055] [PMID: 29306071]
[177]
García, A.C.; Santos, L.A.; Izquierdo, F.G.; Rumjanek, V.M.; Castro, R.N.; dos Santos, F.S.; de Souza, L.G.A.; Berbara, R.L.L. Potentialities of vermicompost humic acids to alleviate water stress in rice plants (Oryza sativa L.). J. Geochem. Explor., 2014, 136, 48-54.
[http://dx.doi.org/10.1016/j.gexplo.2013.10.005]
[178]
Aghhavani Shajari, M.; Rezvani Moghaddam, P.; Ghorbani, R.; Koocheki, A. Increasing saffron (Crocus sativus L.) corm size through the mycorrhizal inoculation, humic acid application and irrigation managements. J. Plant Nutr., 2018, 41(8), 1047-1064.
[http://dx.doi.org/10.1080/01904167.2018.1433835]
[179]
Saidimoradi, D.; Ghaderi, N.; Javadi, T. Salinity stress mitigation by humic acid application in strawberry (Fragaria x ananassa Duch.). Sci. Hortic. , 2019, 256, 108594.
[http://dx.doi.org/10.1016/j.scienta.2019.108594]
[180]
Leite, J.M.; Pitumpe Arachchige, P.S.; Ciampitti, I.A.; Hettiarachchi, G.M.; Maurmann, L.; Trivelin, P.C.O.; Prasad, P.V.V.; Sunoj, S.V.J. Co-addition of humic substances and humic acids with urea enhances foliar nitrogen use efficiency in sugarcane (Saccharum officinarum L.). Heliyon, 2020, 6(10), e05100.
[http://dx.doi.org/10.1016/j.heliyon.2020.e05100] [PMID: 33117897]
[181]
Fagbenro, J.A.; Agboola, A.A. Effect of different levels of humic acid on the growth and nutrient uptake of teak seedlings. J. Plant Nutr., 1993, 16(8), 1465-1483.
[http://dx.doi.org/10.1080/01904169309364627]
[182]
Suman, S.; Spehia, R.S.; Sharma, V. Humic acid improved efficiency of fertigation and productivity of tomato. J. Plant Nutr., 2017, 40(3), 439-446.
[http://dx.doi.org/10.1080/01904167.2016.1245325]
[183]
Dinçsoy, M.; Sönmez, F. The effect of potassium and humic acid applications on yield and nutrient contents of wheat (Triticum aestivum L. var. Delfii) with same soil properties. J. Plant Nutr., 2019, 42(20), 2757-2772.
[http://dx.doi.org/10.1080/01904167.2019.1658777]
[184]
Canellas, L.P.; Olivares, F.L.; Aguiar, N.O.; Jones, D.L.; Nebbioso, A.; Mazzei, P.; Piccolo, A. Humic and fulvic acids as biostimulants in horticulture. Sci. Hortic. , 2015, 196, 15-27.
[http://dx.doi.org/10.1016/j.scienta.2015.09.013]
[185]
Lotfi, R.; Pessarakli, M.; Gharavi-Kouchebagh, P.; Khoshvaghti, H. Physiological responses of Brassica napus to fulvic acid under water stress: Chlorophyll a fluorescence and antioxidant enzyme activity. Crop J., 2015, 3(5), 434-439.
[http://dx.doi.org/10.1016/j.cj.2015.05.006]
[186]
Bulgari, R.; Cocetta, G.; Trivellini, A.; Vernieri, P.; Ferrante, A. Biostimulants and crop responses: A review. Biol. Agric. Hortic., 2015, 31(1), 1-17.
[http://dx.doi.org/10.1080/01448765.2014.964649]
[187]
Xu, D.; Deng, Y.; Xi, P.; Yu, G.; Wang, Q.; Zeng, Q.; Jiang, Z.; Gao, L. Fulvic acid-induced disease resistance to Botrytis cinerea in table grapes may be mediated by regulating phenylpropanoid metabolism. Food Chem., 2019, 286, 226-233.
[http://dx.doi.org/10.1016/j.foodchem.2019.02.015] [PMID: 30827600]
[188]
Li, Y.; Chen, H.; Wang, F.; Zhao, F.; Han, X.; Geng, H.; Gao, L.; Chen, H.; Yuan, R.; Yao, J. Environmental behavior and associated plant accumulation of silver nanoparticles in the presence of dissolved humic and fulvic acid. Environ. Pollut., 2018, 243(Pt A), 462-471.
[http://dx.doi.org/10.1016/j.envpol.2018.09.077]
[189]
Akcin, A. The effects of fulvic acid on physiological and anatomical characteristics of bread wheat (Triticum aestivum L.) cv. Flamura 85 exposed to chromium stress. Soil Sediment Contam., 2021, 30(5), 590-609.
[http://dx.doi.org/10.1080/15320383.2021.1873914]
[190]
Braziene, Z.; Paltanavicius, V.; Avizienytė, D. The influence of fulvic acid on spring cereals and sugar beets seed germination and plant productivity. Environ. Res., 2021, 195, 110824.
[http://dx.doi.org/10.1016/j.envres.2021.110824] [PMID: 33539831]
[191]
Sun, W.; Shahrajabian, M.H.; Lin, M. Research progress of fermented functional foods and protein factory-microbial fermentation technology. Fermentation , 2022, 8(12), 688.
[http://dx.doi.org/10.3390/fermentation8120688]
[192]
Shahrajabian, M.H.; Sun, W. Sustainable approaches to boost yield and chemical constituents of aromatic and medicinal plants by application of biostimulants. Recent Pat. Food Nutr. Agric., 2022, 12(2), 72-92.
[http://dx.doi.org/10.2174/2772574X12666221004151822] [PMID: 36200191]
[193]
Shahrajabian, M.H.; Sun, W. Importance of thymoquinone, sulforaphane, phloretin, and epigallocatechin and their health benefits. Lett. Drug Des. Discov., 2023, 21(2), 209-225.
[http://dx.doi.org/10.2174/1570180819666220902115521]
[194]
Shahrajabian, M.H.; Sun, W.; Cheng, Q. Using bacteria and fungi as plant biostimulants for sustainable agricultural production systems. Recent Pat. Biotechnol., 2023, 17(3), 206-244.
[http://dx.doi.org/10.2174/1872208316666220513093021] [PMID: 35570523]
[195]
Sun, W.; Shahrajabian, M.H.; Cheng, Q. The effects of amino acids, phenols and protein hydrolysates as biostimulants on sustainable crop production and alleviated stress. Recent Pat. Biotechnol., 2022, 16(4), 319-328.
[http://dx.doi.org/10.2174/1872208316666220412133749] [PMID: 35418295]
[196]
Capstaff, N.M.; Morrison, F.; Cheema, J.; Brett, P.; Hill, L.; Muñoz-García, J.C.; Khimyak, Y.Z.; Domoney, C.; Miller, A.J. Fulvic acid increases forage legume growth inducing preferential up-regulation of nodulation and signalling-related genes. J. Exp. Bot., 2020, 71(18), 5689-5704.
[http://dx.doi.org/10.1093/jxb/eraa283] [PMID: 32599619]
[197]
Esringu, A.; Sezen, I.; Aytatli, B.; Ercisil, S. Effect of humic and fulvic acid application on growth parameters in Impatiens walleriana L. Akademik Ziraat Dergisi, 2015, 4(1), 37-42.
[http://dx.doi.org/10.12692/ijb/7.1.132-140]
[198]
Justi, M.; Morais, E.G.; Silva, C.A. Fulvic acid in foliar spray is more effective than humic acid via soil in improving coffee seedlings growth. Arch. Agron. Soil Sci., 2019, 65(14), 1969-1983.
[http://dx.doi.org/10.1080/03650340.2019.1584396]
[199]
Geng, J.; Yang, X.; Huo, X.; Chen, J.; Lei, S.; Li, H.; Lang, Y.; Liu, Q. Effects of controlled-release urea combined with fulvic acid on soil inorganic nitrogen, leaf senescence and yield of cotton. Sci. Rep., 2020, 10(1), 17135.
[http://dx.doi.org/10.1038/s41598-020-74218-2] [PMID: 33051569]
[200]
Yazdani, B.; Nikbakht, A.; Etemadi, N. Physiological effects of different combinations of humic acid and fulvic acid on Gerbera. Commun. Soil Sci. Plant Anal., 2014, 45(10), 1357-1368.
[http://dx.doi.org/10.1080/00103624.2013.875200]
[201]
Li, W.; Yao, H.; Chen, K.; Ju, Y.; Min, Z.; Sun, X.; Cheng, Z.; Liao, Z.; Zhang, K.; Fang, Y. Effect of foliar application of fulvic acid antitranspirant on sugar accumulation, phenolic profiles and aroma qualities of Cabernet Sauvignon and Riesling grapes and wines. Food Chem., 2021, 351, 129308.
[http://dx.doi.org/10.1016/j.foodchem.2021.129308] [PMID: 33652297]
[202]
Wang, Y.; Yang, R.; Zheng, J.; Shen, Z.; Xu, X. Exogenous foliar application of fulvic acid alleviate cadmium toxicity in lettuce (Lactuca sativa L.). Ecotoxicol. Environ. Saf., 2019, 167, 10-19.
[http://dx.doi.org/10.1016/j.ecoenv.2018.08.064] [PMID: 30292971]
[203]
Li, Z.; Liu, Z.; Zhang, M.; Chen, Q.; Zheng, L.; Li, Y.C.; Sun, L. The combined application of controlled-release urea and fulvic acid improved the soil nutrient supply and maize yield. Arch. Agron. Soil Sci., 2020, 67(5)
[http://dx.doi.org/10.1080/03650340.2020.1742326]
[204]
Mahmoud, S.H.; El-Tanahy, A.M.M.; Marzouk, N.M.; Abou-Hussein, S.D. Effect of fulvic acid and effective microorganisms (EM) on the vegetative growth and productivity of onion plants. Curr. Sci. Int., 2019, 08(02), 368-377.
[http://dx.doi.org/10.1007/s10343-022-00768-2]
[205]
Fang, Z.; Wang, X.; Zhang, X.; Zhao, D.; Tao, J. Effects of fulvic acid on the photosynthetic and physiological characteristics of Paeonia ostii under drought stress. Plant Signal. Behav., 2020, 15(7), 1774714.
[http://dx.doi.org/10.1080/15592324.2020.1774714] [PMID: 32498663]
[206]
Pakdaman, N.; Javanshah, A.; Nadi, M. The effect of humic and fulvic acids as bio-fertilizers on the growth of Pistacia vera seedlings under alkaline conditions. Pistachio Health J, 2018, 1(4), 13-20.
[http://dx.doi.org/10.1007/s10725-013-9857-9]
[207]
Moradi, P.; Pasari, B.; Fayyaz, F. The effects of fulvic acid application on seed and oil yield of safflower cultivars. J. Cent. Eur. Agric., 2017, 18(3), 584-597.
[http://dx.doi.org/10.5513/JCEA01/18.3.1933]
[208]
Priya, B.N.V.; Mahavishnan, K.; Gurumurthy, D.S.; Bindumadhava, H.; Upadhyay, A.P.; Sharma, N.K. Fulvic acid (FA) for enhanced nutrient uptake and growth: Insights from biochemical and genomic studies. J. Crop Improv., 2014, 28(6), 740-757.
[http://dx.doi.org/10.1080/15427528.2014.923084]
[209]
AbdAllah, A.M.; Burkey, K.O. ; Mashaheet, A.M. Reduction of plant water consumption through anti-transpirants foliar application in tomato plants (Solanum lycopersicum L). Sci. Hortic. , 2018, 235, 373-381.
[http://dx.doi.org/10.1016/j.scienta.2018.03.005]
[210]
Ahmad, T.; Khan, R.; Nawaz Khattak, T. Effect of humic acid and fulvic acid based liquid and foliar fertilizers on the yield of wheat crop. J. Plant Nutr., 2018, 41(19), 2438-2445.
[http://dx.doi.org/10.1080/01904167.2018.1527932]
[211]
Bayat, H.; Shafie, F.; Aminifard, M.H.; Daghighi, S. Comparative effects of humic and fulvic acids as biostimulants on growth, antioxidant activity and nutrient content of yarrow (Achillea millefolium L.). Sci. Hortic. , 2021, 279, 109912.
[http://dx.doi.org/10.1016/j.scienta.2021.109912]