In silico Analysis of Natural Inhibitors against HPV E6 Protein

Page: [303 - 311] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: Drug re-purposing is one of the cost-effective methods to establish novel therapeutics against many diseases. Established natural products are collected from databases and used to potentially screen them against HPV E6 protein, a critical viral protein.

Objective: This study aims to design potential small molecule inhibitors against HPV E6 protein using structure-based approaches. Ten natural anti-cancerous compounds (Apigenin, Baicalein, Baicalin, Ponicidin, Oridonin, Lovastatin, Triterpenoid, Narirutin, Rosmarinic Acid, and Xanthone) were selected by review of the literature.

Methods: These compounds were screened using Lipinski Rule of Five. Out of ten compounds, seven were found to satisfy Rule of five. Docking of these seven compounds was carried out using AutoDock software and corresponding Molecular Dynamics Simulations were performed by GROMACS.

Results: Among the seven compounds docked with the E6 target protein, six compounds showed lesser binding energy than the reference compound, Luteolin. The three-dimensional structures of E6 protein and the corresponding ligand complexes were visualised and analysed using PyMOL whereas the two-dimensional images of protein-ligand interactions were obtained by LigPlot+ software to study the specific interactions. ADME analysis using SwissADME software revealed that all the compounds except Rosmarinic acid have good gastrointestinal absorption and solubility characteristics while Xanthone and Lovastatin showed blood brain barrier penetration properties. Considering the binding energy and ADME analysis, Apigenin and Ponicidin are found to be most suitable for de novo designing of potential inhibitors against the HPV16 E6 protein.

Conclusion: Further, synthesis and characterization of these potential HPV16 E6 inhibitors will be carried out and their functional evaluation using cell culture-based assays will be undertaken.

Graphical Abstract

[1]
Allison, D.B.; Maleki, Z. HPV-related head and neck squamous cell carcinoma: An update and review. J. Am. Soc. Cytopathol., 2016, 5(4), 203-215.
[http://dx.doi.org/10.1016/j.jasc.2015.12.001] [PMID: 31042510]
[2]
Kombe Kombe, A.J.; Li, B.; Zahid, A.; Mengist, H.M.; Bounda, G.A.; Zhou, Y.; Jin, T. Epidemiology and burden of human papillomavirus and related diseases, molecular pathogenesis, and vaccine evaluation. Front. Public Health, 2021, 8, 552028.
[http://dx.doi.org/10.3389/fpubh.2020.552028] [PMID: 33553082]
[3]
Cheng, L.; Wang, Y.; Du, J. Human papillomavirus vaccines: An updated review. Vaccines, 2020, 8(3), 391.
[http://dx.doi.org/10.3390/vaccines8030391] [PMID: 32708759]
[4]
Akhatova, A.; Azizan, A.; Atageldiyeva, K.; Ashimkhanova, A.; Marat, A.; Iztleuov, Y.; Suleimenova, A.; Shamkeeva, S.; Aimagambetova, G. Prophylactic human papillomavirus vaccination: From the origin to the current state. Vaccines, 2022, 10(11), 1912.
[http://dx.doi.org/10.3390/vaccines10111912] [PMID: 36423008]
[5]
Hampson, L.; Martin-Hirsch, P.; Hampson, I.N. An overview of early investigational drugs for the treatment of human papilloma virus infection and associated dysplasia. Expert Opin. Investig. Drugs, 2015, 24(12), 1529-1537.
[http://dx.doi.org/10.1517/13543784.2015.1099628] [PMID: 26457651]
[6]
Mittal, S.; Banks, L. Molecular mechanisms underlying human papillomavirus E6 and E7 oncoprotein-induced cell transformation. Mutat. Res. Rev. Mutat. Res., 2017, 772, 23-35.
[http://dx.doi.org/10.1016/j.mrrev.2016.08.001] [PMID: 28528687]
[7]
Pal, A.; Kundu, R. Human papillomavirus E6 and E7: The cervical cancer hallmarks and targets for therapy. Front. Microbiol., 2020, 10, 3116.
[http://dx.doi.org/10.3389/fmicb.2019.03116] [PMID: 32038557]
[8]
Howie, H.L.; Katzenellenbogen, R.A.; Galloway, D.A. Papillomavirus E6 proteins. Virology, 2009, 384(2), 324-334.
[http://dx.doi.org/10.1016/j.virol.2008.11.017] [PMID: 19081593]
[9]
Martinez-Zapien, D.; Ruiz, F.X.; Poirson, J.; Mitschler, A.; Ramirez, J.; Forster, A.; Cousido-Siah, A.; Masson, M.; Pol, S.V.; Podjarny, A.; Travé, G.; Zanier, K. Structure of the E6/E6AP/p53 complex required for HPV-mediated degradation of p53. Nature, 2016, 529(7587), 541-545.
[http://dx.doi.org/10.1038/nature16481] [PMID: 26789255]
[10]
Scheffner, M.; Münger, K.; Byrne, J.C.; Howley, P.M. The state of the p53 and retinoblastoma genes in human cervical carcinoma cell lines. Proc. Natl. Acad. Sci. USA, 1991, 88(13), 5523-5527.
[http://dx.doi.org/10.1073/pnas.88.13.5523] [PMID: 1648218]
[11]
Zanier, K.; Charbonnier, S.; Sidi, A.O.M.O.; McEwen, A.G.; Ferrario, M.G.; Poussin-Courmontagne, P.; Cura, V.; Brimer, N.; Babah, K.O.; Ansari, T.; Muller, I.; Stote, R.H.; Cavarelli, J.; Vande Pol, S.; Travé, G. Structural basis for hijacking of cellular LxxLL motifs by papillomavirus E6 oncoproteins. Science, 2013, 339(6120), 694-698.
[http://dx.doi.org/10.1126/science.1229934] [PMID: 23393263]
[12]
Malecka, K.A.; Fera, D.; Schultz, D.C.; Hodawadekar, S.; Reichman, M.; Donover, P.S.; Murphy, M.E.; Marmorstein, R. Identification and characterization of small molecule human papillomavirus E6 inhibitors. ACS Chem. Biol., 2014, 9(7), 1603-1612.
[http://dx.doi.org/10.1021/cb500229d] [PMID: 24854633]
[13]
Zanier, K.; Stutz, C.; Kintscher, S.; Reinz, E.; Sehr, P.; Bulkescher, J.; Hoppe-Seyler, K.; Travé, G.; Hoppe-Seyler, F. The E6AP binding pocket of the HPV16 E6 oncoprotein provides a docking site for a small inhibitory peptide unrelated to E6AP, indicating druggability of E6. PLoS One, 2014, 9(11), e112514.
[http://dx.doi.org/10.1371/journal.pone.0112514] [PMID: 25383876]
[14]
Donà, M.G.; Di Bonito, P.; Chiantore, M.V.; Amici, C.; Accardi, L. Targeting human papillomavirus-associated cancer by oncoprotein-specific recombinant antibodies. Int. J. Mol. Sci., 2021, 22(17), 9143.
[http://dx.doi.org/10.3390/ijms22179143] [PMID: 34502053]
[15]
Baleja, J.D.; Cherry, J.J.; Liu, Z.; Gao, H.; Nicklaus, M.C.; Voigt, J.H.; Chen, J.J.; Androphy, E.J. Identification of inhibitors to papillomavirus type 16 E6 protein based on three-dimensional structures of interacting proteins. Antiviral Res., 2006, 72(1), 49-59.
[http://dx.doi.org/10.1016/j.antiviral.2006.03.014] [PMID: 16690141]
[16]
Cherry, J.J.; Rietz, A.; Malinkevich, A.; Liu, Y.; Xie, M.; Bartolowits, M.; Davisson, V.J.; Baleja, J.D.; Androphy, E.J. Structure based identification and characterization of flavonoids that disrupt human papillomavirus-16 E6 function. PLoS One, 2013, 8(12), e84506.
[http://dx.doi.org/10.1371/journal.pone.0084506] [PMID: 24376816]
[17]
DiMasi, J.A.; Grabowski, H.G.; Hansen, R.W. Innovation in the pharmaceutical industry: New estimates of R&D costs. J. Health Econ., 2016, 47, 20-33.
[http://dx.doi.org/10.1016/j.jhealeco.2016.01.012] [PMID: 26928437]
[18]
Murgueitio, M.S.; Bermudez, M.; Mortier, J.; Wolber, G. In silico virtual screening approaches for anti-viral drug discovery. Drug Discov. Today. Technol., 2012, 9(3), e219-e225.
[http://dx.doi.org/10.1016/j.ddtec.2012.07.009] [PMID: 24990575]
[19]
Wang, H.; Oo Khor, T.; Shu, L.; Su, Z.Y.; Fuentes, F.; Lee, J.H.; Tony Kong, A-N. Plants vs. cancer: A review on natural phytochemicals in preventing and treating cancers and their druggability. Anticancer. Agents Med. Chem., 2012, 12(10), 1281-1305.
[http://dx.doi.org/10.2174/187152012803833026] [PMID: 22583408]
[20]
Sagar, S.M. Natural health products that inhibit angiogenesis: A potential source for investigational new agents to treat cancer-Part 1. Current oncology, 2006, 13(1), 14-26.
[21]
Lin, C.K.; Liu, S.T.; Chang, C.C.; Huang, S.M. Regulatory mechanisms of fluvastatin and lovastatin for the p21 induction in human cervical cancer HeLa cells. PLoS One, 2019, 14(4), e0214408.
[http://dx.doi.org/10.1371/journal.pone.0214408] [PMID: 30939155]
[22]
Rawson, N.E.; Ho, C-T.; Li, S. Efficacious anti-cancer property of flavonoids from citrus peels. Food Sci. Hum. Wellness, 2014, 3(3-4), 104-109.
[http://dx.doi.org/10.1016/j.fshw.2014.11.001]
[23]
Vieira, L.M.M.; Kijjoa, A. Naturally-occurring xanthones: Recent developments. Curr. Med. Chem., 2005, 12(21), 2413-2446.
[http://dx.doi.org/10.2174/092986705774370682] [PMID: 16250871]
[24]
Beutner, K.R.; Ferenczy, A. Therapeutic approaches to genital warts. Am. J. Med., 1997, 102(5A), 28-37.
[http://dx.doi.org/10.1016/S0002-9343(97)00181-2] [PMID: 9217660]
[25]
Alagumuthu, M.; Muralidharan, V.P.; Andrew, M.; Ahmed, M.H.; Iyer, S.K.; Arumugam, S. Computational approaches to develop isoquinoline based antibiotics through DNA gyrase inhibition mechanisms unveiled through antibacterial evaluation and molecular docking. Mol. Inform., 2018, 37(12), 1800048.
[http://dx.doi.org/10.1002/minf.201800048] [PMID: 30051592]
[26]
Alagumuthu, M.; Arumugam, S. Molecular docking, discovery, synthesis, and pharmacological properties of new 6-substituted-2-(3-phenoxyphenyl)-4-phenyl quinoline derivatives; an approach to developing potent DNA gyrase inhibitors/antibacterial agents. Bioorg. Med. Chem., 2017, 25(4), 1448-1455.
[http://dx.doi.org/10.1016/j.bmc.2017.01.007] [PMID: 28094220]
[27]
Sanner, Michel F. A programming language for software integration and development. J. Mol. Graphics Mod., 1999, 57-61.
[28]
Lilkova, E. The PyMOL Molecular Graphics System, Version 2.0 Schrodinger, LLC. 2015.
[29]
Wallace, A.C.; Laskowski, R.A.; Thornton, J.M. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Eng. Des. Sel., 1995, 8(2), 127-134.
[http://dx.doi.org/10.1093/protein/8.2.127] [PMID: 7630882]
[30]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 235-242.
[31]
Jayaram, B.; Singh, T.; Mukherjee, G.; Mathur, A.; Shekhar, S.; Shekhar, V. Sanjeevini: A freely accessible web-server for target directed lead molecule discovery. BMC Bioinformatics, 2012, 13(Suppl. 17), S7.
[http://dx.doi.org/10.1186/1471-2105-13-S17-S7] [PMID: 23282245]
[32]
Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today. Technol., 2004, 1(4), 337-341.
[http://dx.doi.org/10.1016/j.ddtec.2004.11.007] [PMID: 24981612]
[33]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform., 2011, 3(1), 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[34]
Alagumuthu, M.; Rajpoot, S.; Baig, M.S. Structure-based design of novel peptidomimetics targeting the SARS-CoV-2 spike protein. Cell. Mol. Bioeng., 2021, 14(2), 177-185.
[http://dx.doi.org/10.1007/s12195-020-00658-5] [PMID: 33072222]
[35]
Oostenbrink, C.; Villa, A.; Mark, A.E.; Van Gunsteren, W.F. A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. J. Comput. Chem., 2004, 25(13), 1656-1676.
[http://dx.doi.org/10.1002/jcc.20090] [PMID: 15264259]
[36]
Stefl, P. What is log Pow? The O/W partition coefficient in SDSs. , 2017. Available From: https://www.gesi.de/en/blog/2017/02/06/what-is-log-pow-the-o-w-partition-coefficient-in-sdss/
[37]
Fagerholm, U.; Hellberg, S.; Spjuth, O. Advances in predictions of oral bioavailability of candidate drugs in man with new machine learning methodology. Molecules, 2021, 26(9), 2572.
[http://dx.doi.org/10.3390/molecules26092572] [PMID: 33925103]
[38]
Middha, S.K.; Goyal, A.K.; Faizan, S.A.; Sanghamitra, N.; Basistha, B.C.; Usha, T. In silico based combinatorial pharmacophore modelling and docking studies of GSK-3β and GK inhibitors of Hippophae. J. Biosci., 2013, 38(4), 805-814.
[http://dx.doi.org/10.1007/s12038-013-9367-y] [PMID: 24287660]
[39]
Negi, J.S.; Bisht, V.K.; Singh, P.; Rawat, M.S.M.; Joshi, G.P. Naturally occurring xanthones: chemistry and biology. J. Appl. Chem., 2013, 621459, 2013.
[http://dx.doi.org/10.1155/2013/621459]