Insights on Microsomal Prostaglandin E2 Synthase 1 (mPGES-1) Inhibitors using Molecular Dynamics and MM/PBSA Calculations

Page: [1033 - 1047] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Background: Despite being a normal body response against invading agents, inflammation, when exaggerated, needs to be controlled to minimize damage to the body. There are several drugs in clinical use against inflammation and other inflammatory conditions. Still, side effects often limit the use of these drugs, such as gastrointestinal effects generated by COX-1 inhibitors and cardiovascular effects by COX-2 inhibitors. Thus, exploring new targets such as mPGES-1 may lead to discovering agents that are more selective against inflammation and generate fewer side effects.

Objectives: Here, docking, molecular dynamics, and MM-PBSA studies were performed on a dataset of known mPGES-1 inhibitors to identify helpful information and discover new mPGES-1 inhibitors.

Methods: Molecular docking in GOLD software was used to obtain the complexes used in Molecular dynamics simulations (GROMACS software), performed to generate the RMSD, RMSF, Rg, SASA, and H-bond plots to predict the complexes' stability. The most stable conformation was analyzed regarding the most important interactions of the compounds. Finally, MM-PBSA calculations using the tool g_mmpbsa in GROMACS software were performed to determine de-binding affinity, interaction parameters, and per-residue contribution.

Results: The main findings of this work were that the molecular dynamics simulation was able to find the open conformation of mPGES-1, which showed a greater preference on compounds in this region, consisting of residues known as "gateways". All compounds showed stability and stable complex formation with mPGES-1, as demonstrated by the results of RMSD, RMSF, Rg, SASA, and H-bond plots generated in a molecular dynamics simulation at 100 ns. The molecular dynamics identified three preferential sites of interaction for the compounds. Thus, the docking and dynamics protocols showed greater affinity of these compounds for cavity-02, interacting with Leu85, Pro81, Gln134, Cys137, Ala138, and Ala141. On the other hand, compound 09 preferred the cavity-03 of the protein, interacting mainly with His72 through Hbond. In addition, MM-PBSA calculations showed binding energies of up to -220,113 KJ/mol for compound 04. Furthermore, MM-PBSA could identify which electrostatic interactions are the most prevalent in the complex formation of the compounds with the highest affinity (04 and 07). Still, the van der Waals interactions are the most important for the others. Finally, the energy contribution per-residue revealed Lys120, Arg122, Arg126, and Tyr130 as the most important for the formation of the complexes.

Conclusion: Design mPGES-1 inhibitors based on the residues Leu85, Pro81, Gln134, Cys137, Ala138, and Ala141, in addition to Lys120, Arg122, Arg126, and Tyr130 can provide new promising drugs useful against diseases involving inflammatory conditions.

Graphical Abstract

[1]
Punchard, N.A.; Whelan, C.J.; Adcock, I. The journal of inflammation. J. Inflamm. (Lond.), 2004, 1(1), 1.
[http://dx.doi.org/10.1186/1476-9255-1-1] [PMID: 15813979]
[2]
Nathan, C.; Ding, A. Nonresolving inflammation. Cell, 2010, 140(6), 871-882.
[http://dx.doi.org/10.1016/j.cell.2010.02.029] [PMID: 20303877]
[3]
Vezzani, A.; Friedman, A.; Dingledine, R.J. The role of inflammation in epileptogenesis. Neuropharmacology, 2013, 69, 16-24.
[http://dx.doi.org/10.1016/j.neuropharm.2012.04.004] [PMID: 22521336]
[4]
Rainsford, K.D. Anti-inflammatory drugs in the 21st Century. In: Inflammation in the Pathogenesis of Chronic Diseases; Springer: Dordrecht, 2007; Vol. 42, pp. 3-27.
[http://dx.doi.org/10.1007/1-4020-5688-5_1]
[5]
Vane, J.R.; Botting, R.M. Mechanism of action of nonsteroidal anti-inflammatory drugs. Am. J. Med., 1998, 104(3), 2S-8S.
[http://dx.doi.org/10.1016/S0002-9343(97)00203-9] [PMID: 9572314]
[6]
Vane, J.R.; Botting, R.M. Anti-inflammatory drugs and their mechanism of action. Inflamm. Res., 1998, 47(Suppl. 2), 78-87.
[http://dx.doi.org/10.1007/s000110050284] [PMID: 9831328]
[7]
Vane, J.R. The Mechanism of Action of Anti-Inflammatory Drugs; Advances in Eicosanoid Research. Ernstsche. Springer Berlin Heidelberg, 2000, pp. 1-23.
[http://dx.doi.org/10.1007/978-3-662-04047-8_1]
[8]
Ong, C.K.S.; Lirk, P.; Tan, C.H.; Seymour, R.A. An evidence-based update on nonsteroidal anti-inflammatory drugs. Clin. Med. Res., 2007, 5(1), 19-34.
[http://dx.doi.org/10.3121/cmr.2007.698] [PMID: 17456832]
[9]
Ward, S.G. New drug targets in inflammation: Efforts to expand the anti-inflammatory armoury. Br. J. Pharmacol., 2008, 153(Suppl. 1), S5-S6.
[http://dx.doi.org/10.1038/sj.bjp.0707628] [PMID: 18246097]
[10]
Bergqvist, F.; Morgenstern, R.; Jakobsson, P.J. A review on mPGES-1 inhibitors: From preclinical studies to clinical applications. Prostaglandins Other Lipid Mediat., 2020, 147, 106383.
[http://dx.doi.org/10.1016/j.prostaglandins.2019.106383] [PMID: 31698145]
[11]
dos Santos Nascimento, I.J.; da Silva-Júnior, E.F. TNF-α Inhibitors from natural compounds: An overview, CADD approaches, and their exploration for anti-inflammatory agents. Comb. Chem. High Throughput Screen., 2021, 25(14), 2317-2304.
[http://dx.doi.org/10.2174/1386207324666210715165943] [PMID: 34269666]
[12]
Brune, K.; Patrignani, P. New insights into the use of currently available non-steroidal anti-inflammatory drugs. J. Pain Res., 2015, 8, 105-118.
[http://dx.doi.org/10.2147/JPR.S75160] [PMID: 25759598]
[13]
Fahmi, H. mPGES-1 as a novel target for arthritis. Curr. Opin. Rheumatol., 2004, 16(5), 623-627.
[http://dx.doi.org/10.1097/01.bor.0000129664.81052.8e] [PMID: 15314505]
[14]
Nakanishi, M.; Montrose, D.C.; Clark, P.; Nambiar, P.R.; Belinsky, G.S.; Claffey, K.P.; Xu, D.; Rosenberg, D.W. Genetic deletion of mPGES-1 suppresses intestinal tumorigenesis. Cancer Res., 2008, 68(9), 3251-3259.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-6100] [PMID: 18451151]
[15]
Riendeau, D.; Aspiotis, R.; Ethier, D.; Gareau, Y.; Grimm, E.L.; Guay, J.; Guiral, S.; Juteau, H.; Mancini, J.A.; Méthot, N.; Rubin, J.; Friesen, R.W. Inhibitors of the inducible microsomal prostaglandin E2 synthase (mPGES-1) derived from MK-886. Bioorg. Med. Chem. Lett., 2005, 15(14), 3352-3355.
[http://dx.doi.org/10.1016/j.bmcl.2005.05.027] [PMID: 15953724]
[16]
Trebino, C.E.; Eskra, J.D.; Wachtmann, T.S.; Perez, J.R.; Carty, T.J.; Audoly, L.P. Redirection of eicosanoid metabolism in mPGES-1-deficient macrophages. J. Biol. Chem., 2005, 280(17), 16579-16585.
[http://dx.doi.org/10.1074/jbc.M412075200] [PMID: 15722356]
[17]
Koeberle, A.; Werz, O. Perspective of microsomal prostaglandin E2 synthase-1 as drug target in inflammation-related disorders. Biochem. Pharmacol., 2015, 98(1), 1-15.
[http://dx.doi.org/10.1016/j.bcp.2015.06.022] [PMID: 26123522]
[18]
Koeberle, A.; Laufer, S.A.; Werz, O. Design and development of microsomal prostaglandin E2 Synthase-1 inhibitors: Challenges and future directions. J. Med. Chem., 2016, 59(13), 5970-5986.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01750] [PMID: 26791385]
[19]
Kalyaanamoorthy, S.; Chen, Y.P.P. Structure-based drug design to augment hit discovery. Drug Discov. Today, 2011, 16(17-18), 831-839.
[http://dx.doi.org/10.1016/j.drudis.2011.07.006] [PMID: 21810482]
[20]
Fernando da Silva Santos-Junior, P.; Jose dos Santos Nascimento, I.; Mendonca de Aquino, T.; Xavier de Araujo-Junior, J.; Ferreira da Silva-Junior, E. Drug discovery strategies against emerging coronaviruses: A Global Threat, 2020, In: Frontiers in Anti-Infective Drug Discovery. Bentham Science Publishers: UAE, pp; 35-90.
[http://dx.doi.org/10.2174/9789811412387120080004]
[21]
dos Santos Nascimento, I.J.; da Silva-Júnior, E.F.; de Aquino, T.M. Molecular modeling targeting transmembrane serine protease 2 (TMPRSS2) as an alternative drug target against coronaviruses. Curr. Drug Targets, 2022, 23(3), 240-254.
[http://dx.doi.org/10.2174/1389450122666210809090909] [PMID: 34370633]
[22]
dos Santos Nascimento, I.J.; de Aquino, T.M.; da Silva-Júnior, E.F. Drug repurposing: A strategy for discovering inhibitors against emerging viral infections. Curr. Med. Chem., 2021, 28(15), 2887-2942.
[http://dx.doi.org/10.2174/1875533XMTA5rMDYp5] [PMID: 32787752]
[23]
José dos Santos Nascimento, I.; Mendonça de Aquino, T.; Fernando da Silva Santos-Júnior, P.; Xavier de Araújo-Júnior, J.; Ferreira da Silva-Júnior, E. Molecular Modeling Applied to Design of Cysteine Protease Inhibitors - A Powerful Tool for the Identification of Hit Compounds Against Neglected Tropical Diseases. In: Frontiers in Computational Chemistry; Bentham Science Publishers: UAE, 2020; pp. 63-110.
[http://dx.doi.org/10.2174/9789811457791120050004]
[24]
Silva, L.R.; Guimarães, A.S.; do Nascimento, J.; do Santos Nascimento, I.J.; da Silva, E.B.; McKerrow, J.H.; Cardoso, S.H.; da Silva-Júnior, E.F. Computer-aided design of 1,4-naphthoquinone-based inhibitors targeting cruzain and rhodesain cysteine proteases. Bioorg. Med. Chem., 2021, 41, 116213.
[http://dx.doi.org/10.1016/j.bmc.2021.116213] [PMID: 33992862]
[25]
de Sousa Luis, J.A.; Barros, R.P.C.; de Sousa, N.F.; Muratov, E.; Scotti, L.; Scotti, M.T. Virtual screening of natural products database. Mini Rev. Med. Chem., 2020, 21(18), 2657-2730.
[http://dx.doi.org/10.2174/1389557520666200730161549] [PMID: 32744975]
[26]
Mbalaviele, G.; Pauley, A.M.; Shaffer, A.F.; Zweifel, B.S.; Mathialagan, S.; Mnich, S.J.; Nemirovskiy, O.V.; Carter, J.; Gierse, J.K.; Wang, J.L.; Vazquez, M.L.; Moore, W.M.; Masferrer, J.L. Distinction of microsomal prostaglandin E synthase-1 (mPGES-1) inhibition from cyclooxygenase-2 inhibition in cells using a novel, selective mPGES-1 inhibitor. Biochem. Pharmacol., 2010, 79(10), 1445-1454.
[http://dx.doi.org/10.1016/j.bcp.2010.01.003] [PMID: 20067770]
[27]
Lee, H.H.; Moon, Y.; Shin, J.S.; Lee, J.H.; Kim, T.W.; Jang, C.; Park, C.; Lee, J.; Kim, Y.; Kim, Y.; Werz, O.; Park, B.Y.; Lee, J.Y.; Lee, K.T. A novel mPGES-1 inhibitor alleviates inflammatory responses by downregulating PGE2 in experimental models. Prostaglandins Other Lipid Mediat., 2019, 144, 106347.
[http://dx.doi.org/10.1016/j.prostaglandins.2019.106347] [PMID: 31229523]
[28]
Rörsch, F.; Buscató, E.; Deckmann, K.; Schneider, G.; Schubert-Zsilavecz, M.; Geisslinger, G.; Proschak, E.; Grösch, S. Structure-activity relationship of nonacidic quinazolinone inhibitors of human microsomal prostaglandin synthase 1 (mPGES 1). J. Med. Chem., 2012, 55(8), 3792-3803.
[http://dx.doi.org/10.1021/jm201687d] [PMID: 22449023]
[29]
Elkady, M.; Nieß, R.; Schaible, A.M.; Bauer, J.; Luderer, S.; Ambrosi, G.; Werz, O.; Laufer, S.A. Modified acidic nonsteroidal anti-inflammatory drugs as dual inhibitors of mPGES-1 and 5-LOX. J. Med. Chem., 2012, 55(20), 8958-8962.
[http://dx.doi.org/10.1021/jm3010543] [PMID: 22992107]
[30]
Shiro, T.; Kakiguchi, K.; Takahashi, H.; Nagata, H.; Tobe, M. 7-Phenyl-imidazoquinolin-4(5H)-one derivatives as selective and orally available mPGES-1 inhibitors. Bioorg. Med. Chem., 2013, 21(11), 2868-2878.
[http://dx.doi.org/10.1016/j.bmc.2013.03.069] [PMID: 23623673]
[31]
Hanke, T.; Dehm, F.; Liening, S.; Popella, S.D.; Maczewsky, J.; Pillong, M.; Kunze, J.; Weinigel, C.; Barz, D.; Kaiser, A.; Wurglics, M.; Lämmerhofer, M.; Schneider, G.; Sautebin, L.; Schubert-Zsilavecz, M.; Werz, O. Aminothiazole-featured pirinixic acid derivatives as dual 5-lipoxygenase and microsomal prostaglandin E2 synthase-1 inhibitors with improved potency and efficiency in vivo. J. Med. Chem., 2013, 56(22), 9031-9044.
[http://dx.doi.org/10.1021/jm401557w] [PMID: 24171493]
[32]
Leclerc, P.; Idborg, H.; Spahiu, L.; Larsson, C.; Nekhotiaeva, N.; Wannberg, J.; Stenberg, P.; Korotkova, M.; Jakobsson, P.J. Characterization of a human and murine mPGES-1 inhibitor and comparison to mPGES-1 genetic deletion in mouse models of inflammation. Prostaglandins Other Lipid Mediat., 2013, 107, 26-34.
[http://dx.doi.org/10.1016/j.prostaglandins.2013.09.001] [PMID: 24045148]
[33]
Shiro, T.; Kakiguchi, K.; Takahashi, H.; Nagata, H.; Tobe, M. Synthesis and biological evaluation of substituted imidazoquinoline derivatives as mPGES-1 inhibitors. Bioorg. Med. Chem., 2013, 21(7), 2068-2078.
[http://dx.doi.org/10.1016/j.bmc.2013.01.018] [PMID: 23394863]
[34]
De Simone, R.; Bruno, I.; Riccio, R.; Stadler, K.; Bauer, J.; Schaible, A.M.; Laufer, S.; Werz, O. Identification of new γ-hydroxybutenolides that preferentially inhibit the activity of mPGES-1. Bioorg. Med. Chem., 2012, 20(16), 5012-5016.
[http://dx.doi.org/10.1016/j.bmc.2012.06.032] [PMID: 22795900]
[35]
Liedtke, A.J.; Keck, P.R.W.E.F.; Lehmann, F.; Koeberle, A.; Werz, O.; Laufer, S.A. Arylpyrrolizines as inhibitors of microsomal prostaglandin E2 synthase-1 (mPGES-1) or as dual inhibitors of mPGES-1 and 5-lipoxygenase (5-LOX). J. Med. Chem., 2009, 52(15), 4968-4972.
[http://dx.doi.org/10.1021/jm900481c] [PMID: 19719242]
[36]
Bernstein, F.C.; Koetzle, T.F.; Williams, G.J.B.; Meyer, E.F.; Brice, M.D.; Rodgers, J.R. The Protein Data Bank. A computer-based archival file for macromolecular structures. Eur. J. Biochem., 1977, 80, 319-324.
[37]
Verdonk, M.L.; Cole, J.C.; Hartshorn, M.J.; Murray, C.W.; Taylor, R.D. Improved protein-ligand docking using GOLD. Proteins, 2003, 52(4), 609-623.
[http://dx.doi.org/10.1002/prot.10465] [PMID: 12910460]
[38]
Lill, M.A.; Danielson, M.L. Computer-aided drug design platform using PyMOL. J. Comput. Aided Mol. Des., 2011, 25(1), 13-19.
[http://dx.doi.org/10.1007/s10822-010-9395-8] [PMID: 21053052]
[39]
Kuklish, S.L.; Antonysamy, S.; Bhattachar, S.N.; Chandrasekhar, S.; Fisher, M.J.; Fretland, A.J.; Gooding, K.; Harvey, A.; Hughes, N.E.; Luz, J.G.; Manninen, P.R.; McGee, J.E.; Navarro, A.; Norman, B.H.; Partridge, K.M.; Quimby, S.J.; Schiffler, M.A.; Sloan, A.V.; Warshawsky, A.M.; York, J.S.; Yu, X.P. Characterization of 3,3-dimethyl substituted N-aryl piperidines as potent microsomal prostaglandin E synthase-1 inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(19), 4824-4828.
[http://dx.doi.org/10.1016/j.bmcl.2016.08.023] [PMID: 27554445]
[40]
Berendsen, H.J.C.; van der Spoel, D.; van Drunen, R. GROMACS: A message-passing parallel molecular dynamics implementation. Comput. Phys. Commun., 1995, 91(1-3), 43-56.
[http://dx.doi.org/10.1016/0010-4655(95)00042-E]
[41]
Csizmadia, P. MarvinSketch and MarvinView: Molecule applets for the world wide web. Proc. 3rd Int. Electron. Conf. Synth. Org. Chem.,; Nov 01-30, 1999; Basel, Switzerland: MDPI, 1999, p. 1775.
[http://dx.doi.org/10.3390/ecsoc-3-01775]
[42]
Oda, A.; Okayasu, M.; Kamiyama, Y.; Yoshida, T.; Takahashi, O.; Matsuzaki, H. Evaluation of docking accuracy and investigations of roles of parameters and each term in scoring functions for protein-ligand docking using arguslab software. Bull. Chem. Soc. Jpn., 2007, 80(10), 1920-1925.
[http://dx.doi.org/10.1246/bcsj.80.1920]
[43]
Wang, Q.; He, J.; Wu, D.; Wang, J.; Yan, J.; Li, H. Interaction of α-cyperone with human serum albumin: Determination of the binding site by using discovery studio and via spectroscopic methods. J. Lumin., 2015, 164, 81-85.
[http://dx.doi.org/10.1016/j.jlumin.2015.03.025]
[44]
Goddard, T.D.; Huang, C.C.; Ferrin, T.E. Software extensions to UCSF chimera for interactive visualization of large molecular assemblies. Structure, 2005, 13(3), 473-482.
[http://dx.doi.org/10.1016/j.str.2005.01.006] [PMID: 15766548]
[45]
Zoete, V.; Cuendet, M.A.; Grosdidier, A.; Michielin, O. SwissParam: A fast force field generation tool for small organic molecules. J. Comput. Chem., 2011, 32(11), 2359-2368.
[http://dx.doi.org/10.1002/jcc.21816] [PMID: 21541964]
[46]
Roque Marques, K.M.; do Desterro, M.R.; de Arruda, S.M.; de Araújo Neto, L.N.; do Carmo Alves de Lima, M.; de Almeida, S.M.V.; da Silva, E.C.D.; de Aquino, T.M.; da Silva-Júnior, E.F.; de Araújo-Júnior, J.X. de M Silva, M.; de A Dantas, M.D.; Santos, J.C.C.; Figueiredo, I.M.; Bazin, M.A.; Marchand, P.; da Silva, T.G.; Mendonça Junior, F.J.B. 5-Nitro-Thiophene-Thiosemicarbazone derivatives present antitumor activity mediated by apoptosis and DNA intercalation. Curr. Top. Med. Chem., 2019, 19(13), 1075-1091.
[http://dx.doi.org/10.2174/1568026619666190621120304] [PMID: 31223089]
[47]
Silva-Junior, E.F.; Barcellos Franca, P.H.; Quintans-Junior, L.J.; Mendonca-Junior, F.J.B.; Scotti, L.; Scotti, M.T.; de Aquino, T.M.; de Araujo-Junior, J.X. Dynamic simulation, docking and DFT studies applied to a set of anti-acetylcholinesterase inhibitors in the enzyme β-secretase (BACE-1): An important therapeutic target in Alzheimer’s disease. Curr. Computer Aided Drug Des., 2017, 13(4), 266-274.
[http://dx.doi.org/10.2174/1573409913666170406150905] [PMID: 28382866]
[48]
Braga, T.C.; Silva, T.F.; Maciel, T.M.S.; da Silva, E.C.D.; da Silva-Júnior, E.F.; Modolo, L.V.; Figueiredo, I.M.; Santos, J.C.C.; de Aquino, T.M.; de Fátima, Â. Ionic liquid-assisted synthesis of dihydropyrimidin(thi) one Biginelli adducts and investigation of their mechanism of urease inhibition. New J. Chem., 2019, 43(38), 15187-15200.
[http://dx.doi.org/10.1039/C9NJ03556G]
[49]
Laskowski, R.A.; MacArthur, M.W.; Moss, D.S.; Thornton, J.M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Cryst., 1993, 26(2), 283-291.
[http://dx.doi.org/10.1107/S0021889892009944]
[50]
Kumar, D.; Meena, M.K.; Kumari, K.; Kumar, R.V.; Bahadur, I.; Jain, P.; Singh, P. Exploring the effect of temperature on inhibition of non-structural protease 3 of Chikungunya virus using molecular dynamics simulations and thermodynamics parameters. J. Mol. Liq., 2021, 335, 116164.
[http://dx.doi.org/10.1016/j.molliq.2021.116164]
[51]
Tomasiak, L.; Karch, R.; Schreiner, W. The monoclonal antibody pembrolizumab alters dynamics of the human programmed cell death receptor 1 (PD-1). 2021 IEEE Int. Conf. Bioinforma. Biomed., IEEE,; , 2021, pp. 3315-21.
[http://dx.doi.org/10.1109/BIBM52615.2021.9669720]
[52]
Kumari, R.; Kumar, R.; Lynn, A. g_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model., 2014, 54(7), 1951-1962.
[http://dx.doi.org/10.1021/ci500020m] [PMID: 24850022]
[53]
Sarma, H.; Mattaparthi, V.S.K. Structure-based virtual screening of high-affinity ATP-Competitive inhibitors against human lemur tyrosine Kinase-3 (LMTK3) domain: A novel therapeutic target for breast cancer. Interdiscip. Sci., 2019, 11(3), 527-541.
[http://dx.doi.org/10.1007/s12539-018-0302-7] [PMID: 30066129]
[54]
Wang, F.; Wu, F.X.; Li, C.Z.; Jia, C.Y.; Su, S.W.; Hao, G.F.; Yang, G.F. ACID: A free tool for drug repurposing using consensus inverse docking strategy. J. Cheminform., 2019, 11(1), 73.
[http://dx.doi.org/10.1186/s13321-019-0394-z] [PMID: 33430982]
[55]
Hamza, A.; Tong, M. AbdulHameed, M.D.M.; Liu, J.; Goren, A.C.; Tai, H.H.; Zhan, C.G. Understanding microscopic binding of human microsomal prostaglandin E synthase-1 (mPGES-1) trimer with substrate PGH2 and cofactor GSH: Insights from computational alanine scanning and site-directed mutagenesis. J. Phys. Chem. B, 2010, 114(16), 5605-5616.
[http://dx.doi.org/10.1021/jp100668y] [PMID: 20369883]
[56]
De Barros, W.A.; Nunes, C.S.; Souza, J.A.C.R.; Nascimento, I.J.S.; Figueiredo, I.M.; de Aquino, T.M.; Vieira, L.; Farias, D.; Santos, J.C.C.; de Fátima, Â. The new psychoactive substances 25H-NBOMe and 25H-NBOH induce abnormal development in the zebrafish embryo and interact in the DNA major groove. Curr. Res. Toxicol., 2021, 2, 386-398.
[http://dx.doi.org/10.1016/j.crtox.2021.11.002] [PMID: 34888530]
[57]
Marques, D.N.; Siqueira, A.S.; Gonçalves, E.C.; Barros, N.L.F.; de Souza, C.R.B. Homology modeling and molecular dynamics simulations of a cassava translationally controlled tumor protein (MeTCTP). Plant Gene, 2019, 19, 100185.
[http://dx.doi.org/10.1016/j.plgene.2019.100185]
[58]
Santos Nascimento, I.J.; de Aquino, T.M.; da Silva-Júnior, E.F. Molecular docking and dynamics simulation studies of a dataset of NLRP3 inflammasome inhibitors. Recent Adv. Inflamm. Allergy Drug Discov., 2022, 15(2), 80-86.
[http://dx.doi.org/10.2174/2772270816666220126103909]
[59]
Santos Nascimento, I.J.; Silva-Júnior, E.F.; Aquino, T.M. Repurposing FDA-approved drugs targeting SARS-CoV2 3CL pro: A study by applying virtual screening, molecular dynamics, MM-PBSA calculations and covalent docking. Lett. Drug Des. Discov., 2022, 19(7), 637-653.
[http://dx.doi.org/10.2174/1570180819666220106110133]
[60]
Doganc, F.; Celik, I.; Eren, G.; Kaiser, M.; Brun, R.; Goker, H. Synthesis, in vitro antiprotozoal activity, molecular docking and molecular dynamics studies of some new monocationic guanidinobenzimidazoles. Eur. J. Med. Chem., 2021, 221, 113545.
[http://dx.doi.org/10.1016/j.ejmech.2021.113545] [PMID: 34091216]
[61]
Bhattacharya, U.; Panda, S.K.; Gupta, P.S.S.; Rana, M.K. Inhibitors of Heptosyltransferase I to prevent heptose transfer against antibiotic resistance of E. coli: Energetics and stability analysis by DFT and molecular dynamics. J. Mol. Struct., 2022, 1253, 132258.
[http://dx.doi.org/10.1016/j.molstruc.2021.132258]
[62]
Nagpal, P.; Jamal, S.; Singh, H.; Ali, W.; Tanweer, S.; Sharma, R.; Grover, A.; Grover, S. Long-range replica exchange molecular dynamics guided drug repurposing against tyrosine kinase PtkA of Mycobacterium tuberculosis. Sci. Rep., 2020, 10(1), 4413.
[http://dx.doi.org/10.1038/s41598-020-61132-w] [PMID: 32157138]
[63]
Boyenle, I.D.; Adelusi, T.I.; Ogunlana, A.T.; Oluwabusola, R.A.; Ibrahim, N.O.; Tolulope, A.; Okikiola, O.S.; Adetunji, B.L.; Abioye, I.O.; Kehinde Oyedele, A-Q. Consensus scoring-based virtual screening and molecular dynamics simulation of some TNF-alpha inhibitors. Informatics Med. Unlocked, 2022, 28, 100833.
[http://dx.doi.org/10.1016/j.imu.2021.100833]
[64]
Gupta, A.; Aparoy, P. Insights into the structure activity relationship of mPGES-1 inhibitors: Hints for better inhibitor design. Int. J. Biol. Macromol., 2016, 88, 624-632.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.03.038] [PMID: 27012893]
[65]
Di Micco, S.; Spatafora, C.; Cardullo, N.; Riccio, R.; Fischer, K.; Pergola, C.; Koeberle, A.; Werz, O.; Chalal, M.; Vervandier-Fasseur, D.; Tringali, C.; Bifulco, G. 2,3-Dihydrobenzofuran privileged structures as new bioinspired lead compounds for the design of mPGES-1 inhibitors. Bioorg. Med. Chem., 2016, 24(4), 820-826.
[http://dx.doi.org/10.1016/j.bmc.2016.01.002] [PMID: 26777299]
[66]
Di Micco, S.; Terracciano, S.; Cantone, V.; Fischer, K.; Koeberle, A.; Foglia, A.; Riccio, R.; Werz, O.; Bruno, I.; Bifulco, G. Discovery of new potent molecular entities able to inhibit mPGES-1. Eur. J. Med. Chem., 2018, 143, 1419-1427.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.039] [PMID: 29133047]
[67]
Hamza, A.; Zhao, X.; Tong, M.; Tai, H.H.; Zhan, C.G. Novel human mPGES-1 inhibitors identified through structure-based virtual screening. Bioorg. Med. Chem., 2011, 19(20), 6077-6086.
[http://dx.doi.org/10.1016/j.bmc.2011.08.040] [PMID: 21920764]
[68]
Psarra, A.; Nikolaou, A.; Kokotou, M.G.; Limnios, D.; Kokotos, G. Microsomal prostaglandin E2 synthase-1 inhibitors: A patent review. Expert Opin. Ther. Pat., 2017, 27(9), 1047-1059.
[http://dx.doi.org/10.1080/13543776.2017.1344218] [PMID: 28627961]
[69]
Zhou, Z.; Yuan, Y.; Zhou, S.; Ding, K.; Zheng, F.; Zhan, C.G. Selective inhibitors of human mPGES-1 from structure-based computational screening. Bioorg. Med. Chem. Lett., 2017, 27(16), 3739-3743.
[http://dx.doi.org/10.1016/j.bmcl.2017.06.075] [PMID: 28689972]
[70]
Costa, L.; Aquino, T.; Nascimento, I. Virtual screening based on covalent docking and MM-PBSA calculations predict the drugs neratinib, sacubitril, alprostadil, trandolapril, and florbetapir as promising cruzain inhibitors useful against Chagas disease. In: Proc. MOL2NET’21, Conf. Mol. Biomed. Comput. Sci. Eng,; 7th ed; January 25-30, December, 2021; MDPI: Basel, Switzerland,, 2021; p. 11647.
[http://dx.doi.org/10.3390/mol2net-07-11647]