Letters in Drug Design & Discovery

Author(s): Rasit Dinc*

DOI: 10.2174/1570180820666230228103903

Magnetic Nanoparticles with Aspects of their Use in Cancer Therapy

Page: [847 - 857] Pages: 11

  • * (Excluding Mailing and Handling)

Abstract

Cancers remain the leading cause of death worldwide, despite significant advances in their diagnosis and treatment. The inadequacy and ineffectiveness of standard treatments (chemotherapy, radiotherapy, and surgery), their severe side effects, and the resistance of tumor cells to chemotherapeutics have forced researchers to investigate alternative therapeutic strategies. Magnetic nanoparticles (MNPs) have been evaluated as one of the promising strategies in treating cancers, a major public health problem. Due to their intrinsic magnetic properties, MNPs are tools that can be designed to be multifunctional in medicine, including cancer therapy. Multifunctionality can be achieved with various drug/agent loadings, such as chemotherapeutic drugs, radionuclides, nucleic acids, and antibodies. This provides a multimodal theranostics platform for cancer diagnosis, monitoring, and therapy. These substances can then be delivered to the tumor tissue using an external magnetic field (EMF). Magnetic or photothermal applications kill cancer cells at the tumor site by inducing local hyperthermia, whereas photodynamic therapy kills them by producing reactive oxygen species. MNP applications also prevent drug resistance. In addition, alone or with different combination options, MNP applications provide synergistic effects and reduce side effects. Functionalized MNPs can be used to remove unwanted cells from blood, including circulating tumor cells (CTCs), which are key factors in the metastatic process and leukemia cells. Despite numerous successful studies, there are some unpredictable obstacles to be discovered in routine usage. This review focuses mainly on the application of MNPs in cancer treatment, covering future perspectives and challenges.

Graphical Abstract

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Owen, J.A.; Punt, J.S.; Sharon, A.; Jones, P.P. Kuby immunology, 7th ed; W.H. Freeman Company: New York, 2013, pp. 627-651.
[3]
Mukherjee, S.; Liang, L.; Veiseh, O. Recent advancements of magnetic nanomaterials in cancer therapy. Pharmaceutics, 2020, 12(2), 147.
[http://dx.doi.org/10.3390/pharmaceutics12020147] [PMID: 32053995]
[4]
Kong, J.Y.; Li, S.M.; Fan, H.Y.; Zhang, L.; Zhao, H.J.; Li, S.M. Transarterial chemoembolization extends long-term survival in patients with unresectable hepatocellular carcinoma. Medicine, 2018, 97(33), e11872.
[http://dx.doi.org/10.1097/MD.0000000000011872] [PMID: 30113483]
[5]
Idée, J.M.; Guiu, B. Use of lipiodol as a drug-delivery system for transcatheter arterial chemoembolization of hepatocellular carcinoma: A review. Crit. Rev. Oncol. Hematol., 2013, 88(3), 530-549.
[http://dx.doi.org/10.1016/j.critrevonc.2013.07.003] [PMID: 23921081]
[6]
Melchiorre, F.; Patella, F.; Pescatori, L.; Pesapane, F.; Fumarola, E.; Biondetti, P.; Brambillasca, P.; Monaco, C.; Ierardi, A.M.; Franceschelli, G.; Carrafiello, G. DEB-TACE: A standard review. Future Oncol., 2018, 14(28), 2969-2984.
[http://dx.doi.org/10.2217/fon-2018-0136] [PMID: 29987957]
[7]
Awasthi, R.; Roseblade, A.; Hansbro, P.M.; Rathbone, M.J.; Dua, K.; Bebawy, M. Nanoparticles in cancer treatment: Opportunities and obstacles. Curr. Drug Targets, 2018, 19(14), 1696-1709.
[http://dx.doi.org/10.2174/1389450119666180326122831] [PMID: 29577855]
[8]
Naeem, M.; Awan, U.A.; Subhan, F.; Cao, J.; Hlaing, S.P.; Lee, J.; Im, E.; Jung, Y.; Yoo, J.W. Advances in colon-targeted nano-drug delivery systems: Challenges and solutions. Arch. Pharm. Res., 2020, 43(1), 153-169.
[http://dx.doi.org/10.1007/s12272-020-01219-0] [PMID: 31989477]
[9]
Iqbal, M.T.; Halasz, K.; Bhatia, D. Metallic nanoparticles for targeted drug delivery. Nanomat. Chem. Tech., 2017, 1, 3-5.
[10]
Walia, S.; Dua, J.S.; Prasad, D.N. A novel drug delivery of microspheres. J. Drug Deliv. Ther., 2021, 11(6), 257-264.
[http://dx.doi.org/10.22270/jddt.v11i6.5059]
[11]
Jeon, S.; Subbiah, R.; Bonaedy, T.; Van, S.; Park, K.; Yun, K. Surface functionalized magnetic nanoparticles shift cell behavior with on/off magnetic fields. J. Cell. Physiol., 2018, 233(2), 1168-1178.
[http://dx.doi.org/10.1002/jcp.25980] [PMID: 28464242]
[12]
Furlani, E.P. Magnetic biotransport: Analysis and applications. Materials, 2010, 3(4), 2412-2446.
[http://dx.doi.org/10.3390/ma3042412]
[13]
Sharma, R.; Mody, N.; Agrawal, U.; Vyas, S.P. Theranostic nanomedicine; A next generation platform for cancer diagnosis and therapy. Mini Rev. Med. Chem., 2017, 17(18), 1746-1757. [PMID: 26891932
[14]
Belyanina, I.; Kolovskaya, O.; Zamay, S.; Gargaun, A.; Zamay, T.; Kichkailo, A. Targeted magnetic nanotheranostics of cancer. Molecules, 2017, 22(6), 975.
[http://dx.doi.org/10.3390/molecules22060975] [PMID: 28604617]
[15]
Andrade, R.G.D.; Veloso, S.R.S.; Castanheira, E.M.S. Shape anisotropic iron oxide-based magnetic nanoparticles: Synthesis and biomedical applications. Int. J. Mol. Sci., 2020, 21(7), 2455.
[http://dx.doi.org/10.3390/ijms21072455] [PMID: 32244817]
[16]
Mehta, R.V. Synthesis of magnetic nanoparticles and their dispersions with special reference to applications in biomedicine and biotechnology. Mater. Sci. Eng. C, 2017, 79, 901-916.
[http://dx.doi.org/10.1016/j.msec.2017.05.135] [PMID: 28629096]
[17]
Zhao, S.; Yu, X.; Qian, Y.; Chen, W.; Shen, J. Multifunctional magnetic iron oxide nanoparticles: An advanced platform for cancer theranostics. Theranostics, 2020, 10(14), 6278-6309.
[http://dx.doi.org/10.7150/thno.42564] [PMID: 32483453]
[18]
Su, O.; Tertis, M.; Cristea, C. Implication of magnetic nanoparticles in cancer detection, screening and treatment. Magnetochemistry, 2019, 5(4), 55.
[http://dx.doi.org/10.3390/magnetochemistry5040055]
[19]
Wang, Z.; Chang, Z.; Lu, M.; Shao, D.; Yue, J.; Yang, D.; Zheng, X.; Li, M.; He, K.; Zhang, M.; Chen, L.; Dong, W. Shape-controlled magnetic mesoporous silica nanoparticles for magnetically-mediated suicide gene therapy of hepatocellular carcinoma. Biomaterials, 2018, 154, 147-157.
[http://dx.doi.org/10.1016/j.biomaterials.2017.10.047] [PMID: 29128843]
[20]
Chen, L.; Xie, J.; Wu, H.; Li, J.; Wang, Z.; Song, L.; Zang, F.; Ma, M.; Gu, N.; Zhang, Y. Precise study on size-dependent properties of magnetic iron oxide nanoparticles for in vivo magnetic resonance imaging. J. Nanomater., 2018, 2018, 1-9.
[http://dx.doi.org/10.1155/2018/3743164]
[21]
Pandey, P.; Ghimire, G.; Garcia, J.; Rubfiaro, A.; Wang, X.; Tomitaka, A.; Nair, M.; Kaushik, A.; He, J. Single-entity approach to investigate surface charge enhancement in magnetoelectric nanoparticles induced by AC magnetic field stimulation. ACS Sens., 2021, 6(2), 340-347.
[http://dx.doi.org/10.1021/acssensors.0c00664] [PMID: 32449356]
[22]
Tiwari, G.; Tiwari, R.; Bannerjee, S.K.; Bhati, L.; Pandey, S.; Pandey, P.; Sriwastawa, B. Drug delivery systems: An updated review. Int. J. Pharm. Investig., 2012, 2(1), 2-11.
[http://dx.doi.org/10.4103/2230-973X.96920] [PMID: 23071954]
[23]
David, K.I. T, S.R.; Sethuraman, S.; Uma, M.K. Investigations of an organic-inorganic nanotheranostic hybrid for pancreatic cancer therapy using cancer-in-a-dish and in vivo models. Biomed. Mater., 2022, 18(1), 015003.
[http://dx.doi.org/10.1088/1748-605X/ac9cb2]
[24]
Ganipineni, L.P.; Ucakar, B.; Joudiou, N.; Bianco, J.; Danhier, P.; Zhao, M.; Bastiancich, C.; Gallez, B.; Danhier, F.; Préat, V. Magnetic targeting of paclitaxel-loaded poly(lactic-co-glycolic acid)-based nanoparticles for the treatment of glioblastoma. Int. J. Nanomed.,, 2018, 13, 4509-4521.
[http://dx.doi.org/10.2147/IJN.S165184] [PMID: 30127603]
[25]
Dürr, S.; Janko, C.; Lyer, S.; Tripal, P.; Schwarz, M.; Zaloga, J.; Tietze, R.; Alexiou, C. Magnetic nanoparticles for cancer therapy. Nanotechnol. Rev., 2013, 2(4), 395-409.
[http://dx.doi.org/10.1515/ntrev-2013-0011]
[26]
Doswald, S.; Stark, W.J.; Beck-Schimmer, B. Biochemical functionality of magnetic particles as nanosensors: How far away are we to implement them into clinical practice? J. Nanobiotechnol.,, 2019, 17(1), 73.
[http://dx.doi.org/10.1186/s12951-019-0506-y] [PMID: 31151445]
[27]
Price, P.M.; Mahmoud, W.E.; Al-Ghamdi, A.A.; Bronstein, L.M. Magnetic drug delivery: Where the field is going. Front Chem., 2018, 6, 619.
[http://dx.doi.org/10.3389/fchem.2018.00619] [PMID: 30619827]
[28]
Portilho, F.L.; Pinto, S.R.; de Barros, A.O.; Helal-Neto, E.; Dos Santos, S.N.; Bernardes, E.S. In loco retention effect of magnetic core mesoporous silica nanoparticles doped with trastuzumab as intralesional nanodrug for breast cancer. Artif. Cells Nanomed. Biotechnol., 2018, 46(S3), S725-S733.
[http://dx.doi.org/10.1080/21691401.2018.1508030]
[29]
Seth, A.; Lafargue, D.; Poirier, C.; Badier, T.; Delory, N.; Laporte, A.; Delbos, J.M.; Jeannin, V.; Péan, J.M.; Ménager, C. Optimization of magnetic retention in the gastrointestinal tract: Enhanced bioavailability of poorly permeable drug. Eur. J. Pharm. Sci., 2017, 100, 25-35.
[http://dx.doi.org/10.1016/j.ejps.2016.12.022] [PMID: 28024888]
[30]
Navya, P.N.; Kaphle, A.; Srinivas, S.P.; Bhargava, S.K.; Rotello, V.M.; Daima, H.K. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg., 2019, 6(1), 23.
[http://dx.doi.org/10.1186/s40580-019-0193-2] [PMID: 31304563]
[31]
Huang, G.; Pan, S.T. ROS-mediated therapeutic strategy in chemo-/radiotherapy of head and neck cancer. Oxid. Med. Cell. Longev., 2020, 2020, 1-30.
[http://dx.doi.org/10.1155/2020/5047987] [PMID: 32774675]
[32]
Yang, C.T.; Li, K.Y.; Meng, F.Q.; Lin, J.F.; Young, I.C.; Ivkov, R.; Lin, F.H. ROS-induced HepG2 cell death from hyperthermia using magnetic hydroxyapatite nanoparticles. Nanotechnology, 2018, 29(37), 375101.
[http://dx.doi.org/10.1088/1361-6528/aacda1] [PMID: 29920184]
[33]
Saeed, M.; Ren, W.; Wu, A. Therapeutic applications of iron oxide based nanoparticles in cancer: Basic concepts and recent advances. Biomater. Sci., 2018, 6(4), 708-725.
[http://dx.doi.org/10.1039/C7BM00999B] [PMID: 29363682]
[34]
Shetake, N.G.; Ali, M.; Kumar, A.; Bellare, J.; Pandey, B.N. Theranostic magnetic nanoparticles enhance DNA damage and mitigate doxorubicin-induced cardio-toxicity for effective multi-modal tumor therapy. Biomater. Adv., 2022, 142, 213147.
[http://dx.doi.org/10.1016/j.bioadv.2022.213147]
[35]
Gurunathan, S.; Kang, M.H.; Qasim, M.; Kim, J.H. Nanoparticle-mediated combination therapy: Two-in-one approach for cancer. Int. J. Mol. Sci., 2018, 19(10), 3264.
[http://dx.doi.org/10.3390/ijms19103264] [PMID: 30347840]
[36]
Klein, S.; Sommer, A.; Distel, L.V.R.; Neuhuber, W.; Kryschi, C. Superparamagnetic iron oxide nanoparticles as radiosensitizer via enhanced reactive oxygen species formation. Biochem. Biophys. Res. Commun., 2012, 425(2), 393-397.
[http://dx.doi.org/10.1016/j.bbrc.2012.07.108] [PMID: 22842461]
[37]
Qi, L.; Wu, L.; Zheng, S.; Wang, Y.; Fu, H.; Cui, D. Cell-penetrating magnetic nanoparticles for highly efficient delivery and intracellular imaging of siRNA. Biomacromolecules, 2012, 13(9), 2723-2730.
[http://dx.doi.org/10.1021/bm3006903] [PMID: 22913876]
[38]
Evans, E.R.; Bugga, P.; Asthana, V.; Drezek, R. Metallic nanoparticles for cancer immunotherapy. Mater. Today, 2018, 21(6), 673-685.
[http://dx.doi.org/10.1016/j.mattod.2017.11.022] [PMID: 30197553]
[39]
Buabeid, M.A.; Arafa, E.S.A.; Murtaza, G. Emerging prospects for nanoparticle-enabled cancer immunotherapy. J. Immunol. Res., 2020, 2020, 1-11.
[http://dx.doi.org/10.1155/2020/9624532] [PMID: 32377541]
[40]
Gutiérrez, L.; Mejías, R.; Barber, D.F.; Veintemillas-Verdaguer, S.; Serna, C.J.; Lázaro, F.J. Fighting cancer with magnetic nanoparticles and immunotherapy. In: Colloidal Nanocrys. Biomed. Appl., 2012, 8232-82320X.
[http://dx.doi.org/10.1117/12.905890]
[41]
Zhang, H.; Liu, X.L.; Zhang, Y.F.; Gao, F.; Li, G.L.; He, Y.; Peng, M.L.; Fan, H.M. Magnetic nanoparticles based cancer therapy: Current status and applications. Sci. China Life Sci., 2018, 61(4), 400-414.
[http://dx.doi.org/10.1007/s11427-017-9271-1] [PMID: 29675551]
[42]
Wu, M.; Huang, S. Magnetic nanoparticles in cancer diagnosis, drug delivery and treatment. Mol. Clin. Oncol., 2017, 7(5), 738-746.
[http://dx.doi.org/10.3892/mco.2017.1399] [PMID: 29075487]
[43]
Huang, H.S.; Hainfeld, J.F. Intravenous magnetic nanoparticle cancer hyperthermia. Int. J. Nanomed., 2013, 8, 2521-2532. [PMID: 23901270
[44]
Li, L.; Nurunnabi, M.; Nafiujjaman, M.; Jeong, Y.Y.; Lee, Y.; Huh, K.M. A photosensitizer-conjugated magnetic iron oxide/gold hybrid nanoparticle as an activatable platform for photodynamic cancer therapy. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(19), 2929-2937.
[http://dx.doi.org/10.1039/c4tb00181h] [PMID: 32261487]
[45]
Kang, S.; Baskaran, R.; Ozlu, B.; Davaa, E.; Kim, J.J.; Shim, B.S.; Yang, S.G. T1-positive Mn2+-doped multi-stimuli responsive poly (L-DOPA) nanoparticles for photothermal and photodynamic combination cancer therapy. Biomedicines, 2020, 8(10), 417.
[http://dx.doi.org/10.3390/biomedicines8100417] [PMID: 33066425]
[46]
Shen, S.; Wang, S.; Zheng, R.; Zhu, X.; Jiang, X.; Fu, D.; Yang, W. Magnetic nanoparticle clusters for photothermal therapy with near-infrared irradiation. Biomaterials, 2015, 39, 67-74.
[http://dx.doi.org/10.1016/j.biomaterials.2014.10.064] [PMID: 25477173]
[47]
Eskiizmir, G.; Ermertcan, A.T.; Yapici, K. Nanomaterials: Promising structures for the management of oral cancer.Nanostructures for Oral Medicine, 1st ed;; Andronescu, E.; Grumezescu, A.M., Eds.; Elsevier: Bucharest, 2017, pp. 511-544.
[http://dx.doi.org/10.1016/B978-0-323-47720-8.00018-3]
[48]
Chen, Y.; Ai, K.; Liu, J.; Sun, G.; Yin, Q.; Lu, L. Multifunctional envelope-type mesoporous silica nanoparticles for pH-responsive drug delivery and magnetic resonance imaging. Biomaterials, 2015, 60, 111-120.
[http://dx.doi.org/10.1016/j.biomaterials.2015.05.003] [PMID: 25988726]
[49]
Kang, T.; Li, F.; Baik, S.; Shao, W.; Ling, D.; Hyeon, T. Surface design of magnetic nanoparticles for stimuli-responsive cancer imaging and therapy. Biomaterials, 2017, 136, 98-114.
[http://dx.doi.org/10.1016/j.biomaterials.2017.05.013] [PMID: 28525855]
[50]
Hervault, A.; Thanh, N.T.K. Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. Nanoscale, 2014, 6(20), 11553-11573.
[http://dx.doi.org/10.1039/C4NR03482A] [PMID: 25212238]
[51]
Wang, J.; Wu, X.; Shen, P.; Wang, J.; Shen, Y.; Shen, Y.; Webster, T.J.; Deng, J. Applications of inorganic nanomaterials in photothermal therapy based on combinational cancer treatment. Int. J. Nanomed., 2020, 15, 1903-1914.
[http://dx.doi.org/10.2147/IJN.S239751] [PMID: 32256067]
[52]
Aires, A.; Ocampo, S.M.; Simões, B.M.; Josefa Rodríguez, M.; Cadenas, J.F.; Couleaud, P.; Spence, K.; Latorre, A.; Miranda, R.; Somoza, Á.; Clarke, R.B.; Carrascosa, J.L.; Cortajarena, A.L. Multifunctionalized iron oxide nanoparticles for selective drug delivery to CD44-positive cancer cells. Nanotechnology, 2016, 27(6), 065103.
[http://dx.doi.org/10.1088/0957-4484/27/6/065103] [PMID: 26754042]
[53]
Huang, X.; Yi, C.; Fan, Y.; Zhang, Y.; Zhao, L.; Liang, Z.; Pan, J. Magnetic Fe3O4 nanoparticles grafted with single-chain antibody (scFv) and docetaxel loaded β-cyclodextrin potential for ovarian cancer dual-targeting therapy. Mater. Sci. Eng. C, 2014, 42, 325-332.
[http://dx.doi.org/10.1016/j.msec.2014.05.041] [PMID: 25063125]
[54]
Yin, P.T.; Shah, B.P.; Lee, K.B. Combined magnetic nanoparticle-based microRNA and hyperthermia therapy to enhance apoptosis in brain cancer cells. Small, 2014, 10(20), 4106-4112.
[http://dx.doi.org/10.1002/smll.201400963] [PMID: 24947843]
[55]
Gobbo, O.L.; Sjaastad, K.; Radomski, M.W.; Volkov, Y.; Prina-Mello, A. Magnetic nanoparticles in cancer theranostics. Theranostics, 2015, 5(11), 1249-1263.
[http://dx.doi.org/10.7150/thno.11544] [PMID: 26379790]
[56]
Liu, H.; Lv, L.; Yang, K. Chemotherapy targeting cancer stem cells. Am. J. Cancer Res., 2015, 5(3), 880-893. [PMID: 26045975
[57]
Herrmann, I.K.; Urner, M.; Koehler, F.M.; Hasler, M.; Roth-Z’Graggen, B.; Grass, R.N.; Ziegler, U.; Beck-Schimmer, B.; Stark, W.J. Blood purification using functionalized core/shell nanomagnets. Small, 2010, 6(13), 1388-1392.
[http://dx.doi.org/10.1002/smll.201000438] [PMID: 20564487]
[58]
Kondapavulur, S.; Cote, A.M.; Neumann, K.D.; Jordan, C.D.; McCoy, D.; Mabray, M.C.; Liu, D.; Sze, C.H.; Gautam, A.; VanBrocklin, H.F.; Wilson, M.; Hetts, S.W. Optimization of an endovascular magnetic filter for maximized capture of magnetic nanoparticles. Biomed. Microdevices, 2016, 18(6), 109.
[http://dx.doi.org/10.1007/s10544-016-0135-2] [PMID: 27830455]
[59]
Mabray, M.C.; Lillaney, P.; Sze, C.H.; Losey, A.D.; Yang, J.; Kondapavulur, S.; Liu, D.; Saeed, M.; Patel, A.; Cooke, D.; Jun, Y.W.; El-Sayed, I.; Wilson, M.; Hetts, S.W. In vitro capture of small ferrous particles with a magnetic filtration device designed for intravascular use with intraarterial chemotherapy: Proof-of-concept study. J. Vasc. Interv. Radiol., 2016, 27(3), 426-432.e1.
[http://dx.doi.org/10.1016/j.jvir.2015.09.014] [PMID: 26706187]
[60]
Zhu, D.M.; Wu, L.; Suo, M.; Gao, S.; Xie, W.; Zan, M.H.; Liu, A.; Chen, B.; Wu, W.T.; Ji, L.W.; Chen, L.; Huang, H.M.; Guo, S.S.; Zhang, W.F.; Zhao, X.Z.; Sun, Z.J.; Liu, W. Engineered red blood cells for capturing circulating tumor cells with high performance. Nanoscale, 2018, 10(13), 6014-6023.
[http://dx.doi.org/10.1039/C7NR08032H] [PMID: 29542756]
[61]
Blumenfeld, C.M.; Schulz, M.D.; Aboian, M.S.; Wilson, M.W.; Moore, T.; Hetts, S.W.; Grubbs, R.H. Drug capture materials based on genomic DNA-functionalized magnetic nanoparticles. Nat. Commun., 2018, 9(1), 2870.
[http://dx.doi.org/10.1038/s41467-018-05305-2] [PMID: 30030447]
[62]
Wilson, R.E., Jr; O’Connor, R.; Gallops, C.E.; Kwizera, E.A.; Noroozi, B.; Morshed, B.I.; Wang, Y.; Huang, X. Immunomagnetic capture and multiplexed surface marker detection of circulating tumor cells with magnetic multicolor surface-enhanced raman scattering nanotags. ACS Appl. Mater. Interfaces, 2020, 12(42), 47220-47232.
[http://dx.doi.org/10.1021/acsami.0c12395] [PMID: 32966038]
[63]
Ma, S.; Zhou, X.; Chen, Q.; Jiang, P.; Lan, F.; Yi, Q.; Wu, Y. Multi-targeting magnetic hyaluronan capsules efficiently capturing circulating tumor cells. J. Colloid Interface Sci., 2019, 545, 94-103.
[http://dx.doi.org/10.1016/j.jcis.2019.03.025] [PMID: 30875509]
[64]
Li, Z.; Ruan, J.; Zhuang, X. Effective capture of circulating tumor cells from an S180-bearing mouse model using electrically charged magnetic nanoparticles. J. Nanobiotechnol., 2019, 17(1), 59.
[http://dx.doi.org/10.1186/s12951-019-0491-1] [PMID: 31054582]
[65]
Liu, C.; Yang, B.; Chen, X.; Hu, Z.; Dai, Z.; Yang, D.; Zheng, X.; She, X.; Liu, Q. Capture and separation of circulating tumor cells using functionalized magnetic nanocomposites with simultaneous in situ chemotherapy. Nanotechnology, 2019, 30(28), 285706.
[http://dx.doi.org/10.1088/1361-6528/ab0e25] [PMID: 30849773]