mRNA Vaccine - A New Cancer Treatment Strategy

Page: [669 - 681] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

The corresponding mRNA vaccines Comirnaty (BNT162b2) and Spikevax (mRNA-1273) have been authorized for emergency use since the COVID-19 outbreak. Most clinical researches have also discovered that the mRNA vaccine is a revolutionary strategy for preventing and treating numerous diseases, including cancers. Unlike viral vectors or DNA vaccines, mRNA vaccines cause the body to directly produce proteins following injection. Delivery vectors and mRNAs that encode tumor antigens or immunomodulatory molecules work together to trigger an anti-tumor response. Before mRNA vaccines may be employed in clinical trials, a number of challenges need to be resolved. These include establishing effective and safe delivery systems, generating successful mRNA vaccines against diverse types of cancers, and proposing improved combination therapy. Therefore, we need to improve vaccine-specific recognition and develop mRNA delivery mechanisms. This review summarizes the complete mRNA vaccines’ elemental composition and discusses recent research progress and future direction for mRNA tumor vaccines.

Graphical Abstract

[1]
Brenner, S.; Jacob, F.; Meselson, M. An unstable intermediate carrying information from genes to ribosomes for protein synthesis. Nature, 1961, 190(4776), 576-581.
[http://dx.doi.org/10.1038/190576a0] [PMID: 20446365]
[2]
Wolff, J.A.; Malone, R.W.; Williams, P.; Chong, W.; Acsadi, G.; Jani, A.; Felgner, P.L. Direct gene transfer into mouse muscle in vivo. Science, 1990, 247(4949), 1465-1468.
[http://dx.doi.org/10.1126/science.1690918] [PMID: 1690918]
[3]
Petsch, B.; Schnee, M.; Vogel, A.B.; Lange, E.; Hoffmann, B.; Voss, D.; Schlake, T.; Thess, A.; Kallen, K.J.; Stitz, L.; Kramps, T. Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. Nat. Biotechnol., 2012, 30(12), 1210-1216.
[http://dx.doi.org/10.1038/nbt.2436] [PMID: 23159882]
[4]
Pardi, N.; Parkhouse, K.; Kirkpatrick, E.; McMahon, M.; Zost, S.J.; Mui, B.L.; Tam, Y.K.; Karikó, K.; Barbosa, C.J.; Madden, T.D.; Hope, M.J.; Krammer, F.; Hensley, S.E.; Weissman, D. Nucleoside-modified mRNA immunization elicits influenza virus hemagglutinin stalk-specific antibodies. Nat. Commun., 2018, 9(1), 3361.
[http://dx.doi.org/10.1038/s41467-018-05482-0] [PMID: 30135514]
[5]
Feldman, R.A.; Fuhr, R.; Smolenov, I.; Mick Ribeiro, A.; Panther, L.; Watson, M.; Senn, J.J.; Smith, M.; Almarsson, Ӧ.; Pujar, H.S.; Laska, M.E.; Thompson, J.; Zaks, T.; Ciaramella, G. mRNA vaccines against H10N8 and H7N9 influenza viruses of pandemic potential are immunogenic and well tolerated in healthy adults in phase 1 randomized clinical trials. Vaccine, 2019, 37(25), 3326-3334.
[http://dx.doi.org/10.1016/j.vaccine.2019.04.074] [PMID: 31079849]
[6]
Guardo, A.C.; Joe, P.T.; Miralles, L.; Bargalló, M.E.; Mothe, B.; Krasniqi, A.; Heirman, C.; García, F.; Thielemans, K.; Brander, C.; Aerts, J.L.; Plana, M. Preclinical evaluation of an mRNA HIV vaccine combining rationally selected antigenic sequences and adjuvant signals (HTI-TriMix). AIDS, 2017, 31(3), 321-332.
[http://dx.doi.org/10.1097/QAD.0000000000001276] [PMID: 27677160]
[7]
de Jong, W.; Leal, L.; Buyze, J.; Pannus, P.; Guardo, A.; Salgado, M.; Mothe, B.; Molto, J.; Moron-Lopez, S.; Gálvez, C.; Florence, E.; Vanham, G.; van Gorp, E.; Brander, C.; Allard, S.; Thielemans, K.; Martinez-Picado, J.; Plana, M.; García, F.; Gruters, R.A. Therapeutic vaccine in chronically hiv-1-infected patients: A randomized, double-blind, placebo-controlled phase iia trial with htitrimix. Vaccines (Basel), 2019, 7(4), 209.
[http://dx.doi.org/10.3390/vaccines7040209] [PMID: 31817794]
[8]
Erasmus, J.H.; Khandhar, A.P.; O’Connor, M.A.; Walls, A.C.; Hemann, E.A.; Murapa, P.; Archer, J.; Leventhal, S.; Fuller, J.T.; Lewis, T.B.; Draves, K.E.; Randall, S.; Guerriero, K.A.; Duthie, M.S.; Carter, D.; Reed, S.G.; Hawman, D.W.; Feldmann, H.; Gale, M., Jr; Veesler, D.; Berglund, P.; Fuller, D.H. An Alphavirus -derived replicon RNA vaccine induces SARS-CoV-2 neutralizing antibody and T cell responses in mice and nonhuman primates. Sci. Transl. Med., 2020, 12(555), eabc9396.
[http://dx.doi.org/10.1126/scitranslmed.abc9396] [PMID: 32690628]
[9]
Tombácz, I.; Weissman, D.; Pardi, N. Vaccination with messenger rna: A promising alternative to DNA vaccination. Methods Mol. Biol., 2021, 2197, 13-31.
[http://dx.doi.org/10.1007/978-1-0716-0872-2_2] [PMID: 32827130]
[10]
Miao, L.; Zhang, Y.; Huang, L. mRNA vaccine for cancer immunotherapy. Mol. Cancer, 2021, 20(1), 41.
[http://dx.doi.org/10.1186/s12943-021-01335-5] [PMID: 33632261]
[11]
Linares-Fernández, S.; Lacroix, C.; Exposito, J.Y.; Verrier, B. Tailoring mrna vaccine to balance innate/adaptive immune response. Trends Mol. Med., 2020, 26(3), 311-323.
[http://dx.doi.org/10.1016/j.molmed.2019.10.002] [PMID: 31699497]
[12]
Pardi, N.; Hogan, M.J.; Porter, F.W.; Weissman, D. mRNA vaccines — a new era in vaccinology. Nat. Rev. Drug Discov., 2018, 17(4), 261-279.
[http://dx.doi.org/10.1038/nrd.2017.243] [PMID: 29326426]
[13]
Iavarone, C.; O’hagan, D.T.; Yu, D.; Delahaye, N.F.; Ulmer, J.B. Mechanism of action of mRNA-based vaccines. Expert Rev. Vaccines, 2017, 16(9), 871-881.
[http://dx.doi.org/10.1080/14760584.2017.1355245] [PMID: 28701102]
[14]
Hu, Z.; Ott, P.A.; Wu, C.J. Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nat. Rev. Immunol., 2018, 18(3), 168-182.
[http://dx.doi.org/10.1038/nri.2017.131] [PMID: 29226910]
[15]
Jackson, N.A.C.; Kester, K.E.; Casimiro, D.; Gurunathan, S.; DeRosa, F. The promise of mRNA vaccines: a biotech and industrial perspective. NPJ Vaccines, 2020, 5(1), 11.
[http://dx.doi.org/10.1038/s41541-020-0159-8] [PMID: 32047656]
[16]
Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; Bailey, R.; Swanson, K.A.; Roychoudhury, S.; Koury, K.; Li, P.; Kalina, W.V.; Cooper, D.; Frenck, R.W., Jr; Hammitt, L.L.; Türeci, Ö.; Nell, H.; Schaefer, A.; Ünal, S.; Tresnan, D.B.; Mather, S.; Dormitzer, P.R.; Şahin, U.; Jansen, K.U.; Gruber, W.C. Safety and efficacy of the bnt162b2 mrna covid-19 vaccine. N. Engl. J. Med., 2020, 383(27), 2603-2615.
[http://dx.doi.org/10.1056/NEJMoa2034577] [PMID: 33301246]
[17]
Lamb, Y.N. Bnt162b2 mrna covid-19 vaccine: First approval. Drugs, 2021, 81(4), 495-501.
[http://dx.doi.org/10.1007/s40265-021-01480-7] [PMID: 33683637]
[18]
Thess, A.; Grund, S.; Mui, B.L.; Hope, M.J.; Baumhof, P.; Fotin-Mleczek, M.; Schlake, T. Sequence-engineered mrna without chemical nucleoside modifications enables an effective protein therapy in large animals. Mol. Ther., 2015, 23(9), 1456-1464.
[http://dx.doi.org/10.1038/mt.2015.103] [PMID: 26050989]
[19]
Karikó, K.; Muramatsu, H.; Welsh, F.A.; Ludwig, J.; Kato, H.; Akira, S.; Weissman, D. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol. Ther., 2008, 16(11), 1833-1840.
[http://dx.doi.org/10.1038/mt.2008.200] [PMID: 18797453]
[20]
Heiser, A.; Coleman, D.; Dannull, J.; Yancey, D.; Maurice, M.A.; Lallas, C.D.; Dahm, P.; Niedzwiecki, D.; Gilboa, E.; Vieweg, J. Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors. J. Clin. Invest., 2002, 109(3), 409-417.
[http://dx.doi.org/10.1172/JCI0214364] [PMID: 11828001]
[21]
Weide, B.; Carralot, J.P.; Reese, A.; Scheel, B.; Eigentler, T.K.; Hoerr, I.; Rammensee, H.G.; Garbe, C.; Pascolo, S. Results of the first phase I/II clinical vaccination trial with direct injection of mRNA. J. Immunother., 2008, 31(2), 180-188.
[http://dx.doi.org/10.1097/CJI.0b013e31815ce501] [PMID: 18481387]
[22]
Rittig, S.M.; Haentschel, M.; Weimer, K.J.; Heine, A.; Muller, M.R.; Brugger, W.; Horger, M.S.; Maksimovic, O.; Stenzl, A.; Hoerr, I.; Rammensee, H.G.; Holderried, T.A.W.; Kanz, L.; Pascolo, S.; Brossart, P. Intradermal vaccinations with RNA coding for TAA generate CD8+ and CD4+ immune responses and induce clinical benefit in vaccinated patients. Mol. Ther., 2011, 19(5), 990-999.
[http://dx.doi.org/10.1038/mt.2010.289] [PMID: 21189474]
[23]
Van Gulck, E.; Vlieghe, E.; Vekemans, M.; Van Tendeloo, V.F.I.; Van De Velde, A.; Smits, E.; Anguille, S.; Cools, N.; Goossens, H.; Mertens, L.; De Haes, W.; Wong, J.; Florence, E.; Vanham, G.; Berneman, Z.N. mRNA-based dendritic cell vaccination induces potent antiviral T-cell responses in HIV-1-infected patients. AIDS, 2012, 26(4), F1-F12.
[http://dx.doi.org/10.1097/QAD.0b013e32834f33e8] [PMID: 22156965]
[24]
Maus, M.V.; Haas, A.R.; Beatty, G.L.; Albelda, S.M.; Levine, B.L.; Liu, X.; Zhao, Y.; Kalos, M.; June, C.H. T cells expressing chimeric antigen receptors can cause anaphylaxis in humans. Cancer Immunol. Res., 2013, 1(1), 26-31.
[http://dx.doi.org/10.1158/2326-6066.CIR-13-0006] [PMID: 24777247]
[25]
Finn, O. J. Immuno-oncology: understanding the function and dysfunction of the immune system in cancer. Ann. Oncol., 2012, 23(S8), 6-9.
[http://dx.doi.org/10.1093/annonc/mds256]
[26]
Barbier, A.J.; Jiang, A.Y.; Zhang, P.; Wooster, R.; Anderson, D.G. The clinical progress of mRNA vaccines and immunotherapies. Nat. Biotechnol., 2022, 40(6), 840-854.
[http://dx.doi.org/10.1038/s41587-022-01294-2] [PMID: 35534554]
[27]
Zhang, C.; Maruggi, G.; Shan, H.; Li, J. Advances in mrna vaccines for infectious diseases. Front. Immunol., 2019, 10, 594.
[http://dx.doi.org/10.3389/fimmu.2019.00594] [PMID: 30972078]
[28]
Tatematsu, M.; Funami, K.; Seya, T.; Matsumoto, M. Extracellular rna sensing by pattern recognition receptors. J. Innate Immun., 2018, 10(5-6), 398-406.
[http://dx.doi.org/10.1159/000494034] [PMID: 30404092]
[29]
Jirikowski, G.F.; Sanna, P.P.; Maciejewski-Lenoir, D.; Bloom, F.E. Reversal of diabetes insipidus in Brattleboro rats: intrahypothalamic injection of vasopressin mRNA. Science, 1992, 255(5047), 996-998.
[http://dx.doi.org/10.1126/science.1546298] [PMID: 1546298]
[30]
Sahin, U.; Karikó, K.; Türeci, Ö. mRNA-based therapeutics — developing a new class of drugs. Nat. Rev. Drug Discov., 2014, 13(10), 759-780.
[http://dx.doi.org/10.1038/nrd4278] [PMID: 25233993]
[31]
Schlake, T.; Thess, A.; Fotin-Mleczek, M.; Kallen, K.J. Developing mRNA-vaccine technologies. RNA Biol., 2012, 9(11), 1319-1330.
[http://dx.doi.org/10.4161/rna.22269] [PMID: 23064118]
[32]
Pardi, N.; Muramatsu, H.; Weissman, D.; Karikó, K. In vitro transcription of long RNA containing modified nucleosides. Methods Mol. Biol., 2013, 969, 29-42.
[http://dx.doi.org/10.1007/978-1-62703-260-5_2] [PMID: 23296925]
[33]
Anderson, B.R.; Muramatsu, H.; Nallagatla, S.R.; Bevilacqua, P.C.; Sansing, L.H.; Weissman, D.; Karikó, K. Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res., 2010, 38(17), 5884-5892.
[http://dx.doi.org/10.1093/nar/gkq347] [PMID: 20457754]
[34]
Karikó, K.; Buckstein, M.; Ni, H.; Weissman, D. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity, 2005, 23(2), 165-175.
[http://dx.doi.org/10.1016/j.immuni.2005.06.008] [PMID: 16111635]
[35]
Wadhwa, A.; Aljabbari, A.; Lokras, A.; Foged, C.; Thakur, A. Opportunities and challenges in the delivery of mRNA-based vaccines. Pharmaceutics, 2020, 12(2), 102.
[http://dx.doi.org/10.3390/pharmaceutics12020102] [PMID: 32013049]
[36]
Bloom, K.; van den Berg, F.; Arbuthnot, P. Self-amplifying RNA vaccines for infectious diseases. Gene Ther., 2021, 28(3-4), 117-129.
[http://dx.doi.org/10.1038/s41434-020-00204-y] [PMID: 33093657]
[37]
Ramanathan, A.; Robb, G.B.; Chan, S.H. mRNA capping: biological functions and applications. Nucleic Acids Res., 2016, 44(16), 7511-7526.
[http://dx.doi.org/10.1093/nar/gkw551] [PMID: 27317694]
[38]
Devarkar, S.C.; Wang, C.; Miller, M.T.; Ramanathan, A.; Jiang, F.; Khan, A.G.; Patel, S.S.; Marcotrigiano, J. Structural basis for m7G recognition and 2′-O-methyl discrimination in capped RNAs by the innate immune receptor RIG-I. Proc. Natl. Acad. Sci. USA, 2016, 113(3), 596-601.
[http://dx.doi.org/10.1073/pnas.1515152113] [PMID: 26733676]
[39]
Martin, S.A.; Paoletti, E.; Moss, B. Purification of mRNA guanylyltransferase and mRNA (guanine-7-) methyltransferase from vaccinia virions. J. Biol. Chem., 1975, 250(24), 9322-9329.
[http://dx.doi.org/10.1016/S0021-9258(19)40646-7] [PMID: 1194286]
[40]
Wojtczak, B.A.; Sikorski, P.J.; Fac-Dabrowska, K.; Nowicka, A.; Warminski, M.; Kubacka, D.; Nowak, E.; Nowotny, M.; Kowalska, J.; Jemielity, J. 5′-phosphorothiolate dinucleotide cap analogues: Reagents for messenger rna modification and potent smallmolecular inhibitors of decapping enzymes. J. Am. Chem. Soc., 2018, 140(18), 5987-5999.
[http://dx.doi.org/10.1021/jacs.8b02597] [PMID: 29676910]
[41]
Kiriakidou, M.; Tan, G.S.; Lamprinaki, S.; De Planell-Saguer, M.; Nelson, P.T.; Mourelatos, Z. An mRNA m7G cap binding-like motif within human Ago2 represses translation. Cell, 2007, 129(6), 1141-1151.
[http://dx.doi.org/10.1016/j.cell.2007.05.016] [PMID: 17524464]
[42]
Xu, S.; Yang, K.; Li, R.; Zhang, L. Mrna vaccine era-mechanisms, drug platform and clinical prospection. Int. J. Mol. Sci., 2020, 21(18), 6582.
[http://dx.doi.org/10.3390/ijms21186582] [PMID: 32916818]
[43]
Hinnebusch, A.G.; Ivanov, I.P.; Sonenberg, N. Translational control by 5′-untranslated regions of eukaryotic mRNAs. Science, 2016, 352(6292), 1413-1416.
[http://dx.doi.org/10.1126/science.aad9868] [PMID: 27313038]
[44]
Sonenberg, N.; Hinnebusch, A.G. Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell, 2009, 136(4), 731-745.
[http://dx.doi.org/10.1016/j.cell.2009.01.042] [PMID: 19239892]
[45]
Haizel, S.A.; Bhardwaj, U.; Gonzalez, R.L., Jr; Mitra, S.; Goss, D.J. 5′-UTR recruitment of the translation initiation factor eIF4GI or DAP5 drives cap-independent translation of a subset of human mRNAs. J. Biol. Chem., 2020, 295(33), 11693-11706.
[http://dx.doi.org/10.1074/jbc.RA120.013678] [PMID: 32571876]
[46]
Warren, L.; Manos, P.D.; Ahfeldt, T.; Loh, Y.H.; Li, H.; Lau, F.; Ebina, W.; Mandal, P.K.; Smith, Z.D.; Meissner, A.; Daley, G.Q.; Brack, A.S.; Collins, J.J.; Cowan, C.; Schlaeger, T.M.; Rossi, D.J. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell, 2010, 7(5), 618-630.
[http://dx.doi.org/10.1016/j.stem.2010.08.012] [PMID: 20888316]
[47]
Gustafsson, C.; Govindarajan, S.; Minshull, J. Codon bias and heterologous protein expression. Trends Biotechnol., 2004, 22(7), 346-353.
[http://dx.doi.org/10.1016/j.tibtech.2004.04.006] [PMID: 15245907]
[48]
Weissman, D. mRNA transcript therapy. Expert Rev. Vaccines, 2015, 14(2), 265-281.
[http://dx.doi.org/10.1586/14760584.2015.973859] [PMID: 25359562]
[49]
Gallie, D.R. The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev., 1991, 5(11), 2108-2116.
[http://dx.doi.org/10.1101/gad.5.11.2108] [PMID: 1682219]
[50]
Yu, S.; Kim, V.N. A tale of non-canonical tails: gene regulation by post-transcriptional RNA tailing. Nat. Rev. Mol. Cell Biol., 2020, 21(9), 542-556.
[http://dx.doi.org/10.1038/s41580-020-0246-8] [PMID: 32483315]
[51]
Peng, J.; Murray, E.L.; Schoenberg, D.R. In vivo and in vitro analysis of poly(A) length effects on mRNA translation. Methods Mol. Biol., 2008, 419, 215-230.
[http://dx.doi.org/10.1007/978-1-59745-033-1_15] [PMID: 18369986]
[52]
Oh, S.; Kessler, J.A. Design, assembly, production, and transfection of synthetic modified mrna. Methods, 2018, 133, 29-43.
[http://dx.doi.org/10.1016/j.ymeth.2017.10.008] [PMID: 29080741]
[53]
Proudfoot, N.J. Ending the message: poly(A) signals then and now. Genes Dev., 2011, 25(17), 1770-1782.
[http://dx.doi.org/10.1101/gad.17268411] [PMID: 21896654]
[54]
Pardi, N.; Hogan, M.J.; Pelc, R.S.; Muramatsu, H.; Andersen, H.; DeMaso, C.R.; Dowd, K.A.; Sutherland, L.L.; Scearce, R.M.; Parks, R.; Wagner, W.; Granados, A.; Greenhouse, J.; Walker, M.; Willis, E.; Yu, J.S.; McGee, C.E.; Sempowski, G.D.; Mui, B.L.; Tam, Y.K.; Huang, Y.J.; Vanlandingham, D.; Holmes, V.M.; Balachandran, H.; Sahu, S.; Lifton, M.; Higgs, S.; Hensley, S.E.; Madden, T.D.; Hope, M.J.; Karikó, K.; Santra, S.; Graham, B.S.; Lewis, M.G.; Pierson, T.C.; Haynes, B.F.; Weissman, D. Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature, 2017, 543(7644), 248-251.
[http://dx.doi.org/10.1038/nature21428] [PMID: 28151488]
[55]
Koh, K.J.; Liu, Y.; Lim, S.H.; Loh, X.J.; Kang, L.; Lim, C.Y.; Phua, K.K.L. Formulation, characterization and evaluation of mRNA-loaded dissolvable polymeric microneedles (RNApatch). Sci. Rep., 2018, 8(1), 11842.
[http://dx.doi.org/10.1038/s41598-018-30290-3] [PMID: 30087399]
[56]
Ehrengruber, M.U.; Lundstrom, K. Alphaviruses: Semliki Forest virus and Sindbis virus vectors for gene transfer into neurons. Curr. Protoc. Neurosci., 2011. Chapter 4:Unit 4.22.
[http://dx.doi.org/10.1002/0471142301.ns0422s41] [PMID: 21971849]
[57]
Rozovics, J.M.; Chase, A.J.; Cathcart, A.L.; Chou, W.; Gershon, P.D.; Palusa, S.; Wilusz, J.; Semler, B.L. Picornavirus modification of a host mRNA decay protein. MBio, 2012, 3(6), e00431-12.
[http://dx.doi.org/10.1128/mBio.00431-12] [PMID: 23131833]
[58]
Schott, J.W.; Morgan, M.; Galla, M.; Schambach, A. Viral and synthetic rna vector technologies and applications. Mol. Ther., 2016, 24(9), 1513-1527.
[http://dx.doi.org/10.1038/mt.2016.143] [PMID: 27377044]
[59]
Tezel, A.; Dokka, S.; Kelly, S.; Hardee, G.E.; Mitragotri, S. Topical delivery of anti-sense oligonucleotides using low-frequency sonophoresis. Pharm. Res., 2004, 21(12), 2219-2225.
[http://dx.doi.org/10.1007/s11095-004-7674-6] [PMID: 15648253]
[60]
Dhaliwal, H.K.; Fan, Y.; Kim, J.; Amiji, M.M. Intranasal delivery and transfection of mrna therapeutics in the brain using cationic liposomes. Mol. Pharm., 2020, 17(6), 1996-2005.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00170] [PMID: 32365295]
[61]
Pardi, N.; Hogan, M.J.; Weissman, D. Recent advances in mRNA vaccine technology. Curr. Opin. Immunol., 2020, 65, 14-20.
[http://dx.doi.org/10.1016/j.coi.2020.01.008] [PMID: 32244193]
[62]
Corbett, K.S.; Flynn, B.; Foulds, K.E.; Francica, J.R.; Boyoglu-Barnum, S.; Werner, A.P.; Flach, B.; O’Connell, S.; Bock, K.W.; Minai, M.; Nagata, B.M.; Andersen, H.; Martinez, D.R.; Noe, A.T.; Douek, N.; Donaldson, M.M.; Nji, N.N.; Alvarado, G.S.; Edwards, D.K.; Flebbe, D.R.; Lamb, E.; Doria-Rose, N.A.; Lin, B.C.; Louder, M.K.; O’Dell, S.; Schmidt, S.D.; Phung, E.; Chang, L.A.; Yap, C.; Todd, J.P.M.; Pessaint, L.; Van Ry, A.; Browne, S.; Greenhouse, J.; Putman-Taylor, T.; Strasbaugh, A.; Campbell, T.A.; Cook, A.; Dodson, A.; Steingrebe, K.; Shi, W.; Zhang, Y.; Abiona, O.M.; Wang, L.; Pegu, A.; Yang, E.S.; Leung, K.; Zhou, T.; Teng, I.T.; Widge, A.; Gordon, I.; Novik, L.; Gillespie, R.A.; Loomis, R.J.; Moliva, J.I.; Stewart-Jones, G.; Himansu, S.; Kong, W.P.; Nason, M.C.; Morabito, K.M.; Ruckwardt, T.J.; Ledgerwood, J.E.; Gaudinski, M.R.; Kwong, P.D.; Mascola, J.R.; Carfi, A.; Lewis, M.G.; Baric, R.S.; McDermott, A.; Moore, I.N.; Sullivan, N.J.; Roederer, M.; Seder, R.A.; Graham, B.S. Evaluation of the mrna-1273 vaccine against sars-cov-2 in nonhuman primates. N. Engl. J. Med., 2020, 383(16), 1544-1555.
[http://dx.doi.org/10.1056/NEJMoa2024671] [PMID: 32722908]
[63]
van den Brand, D.; Gorris, M.A.J.; van Asbeck, A.H.; Palmen, E.; Ebisch, I.; Dolstra, H.; Hällbrink, M.; Massuger, L.F.A.G.; Brock, R. Peptide-mediated delivery of therapeutic mRNA in ovarian cancer. Eur. J. Pharm. Biopharm., 2019, 141, 180-190.
[http://dx.doi.org/10.1016/j.ejpb.2019.05.014] [PMID: 31103743]
[64]
Kang, Z.; Meng, Q.; Liu, K. Peptide-based gene delivery vectors. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(11), 1824-1841.
[http://dx.doi.org/10.1039/C8TB03124J] [PMID: 32255045]
[65]
Trepotec, Z.; Lichtenegger, E.; Plank, C.; Aneja, M.K.; Rudolph, C. Delivery of mRNA therapeutics for the treatment of hepatic diseases. Mol. Ther., 2019, 27(4), 794-802.
[http://dx.doi.org/10.1016/j.ymthe.2018.12.012] [PMID: 30655211]
[66]
Magadum, A.; Kaur, K.; Zangi, L. mRNA-based protein replacement therapy for the heart. Mol. Ther., 2019, 27(4), 785-793.
[http://dx.doi.org/10.1016/j.ymthe.2018.11.018] [PMID: 30611663]
[67]
Zahm, C.D.; Moseman, J.E.; Delmastro, L.E.; G Mcneel, D. PD-1 and LAG-3 blockade improve anti-tumor vaccine efficacy. OncoImmunology, 2021, 10(1), 1912892.
[http://dx.doi.org/10.1080/2162402X.2021.1912892] [PMID: 33996265]
[68]
Tchou, J.; Zhao, Y.; Levine, B.L.; Zhang, P.J.; Davis, M.M.; Melenhorst, J.J.; Kulikovskaya, I.; Brennan, A.L.; Liu, X.; Lacey, S.F.; Posey, A.D., Jr; Williams, A.D.; So, A.; Conejo-Garcia, J.R.; Plesa, G.; Young, R.M.; McGettigan, S.; Campbell, J.; Pierce, R.H.; Matro, J.M.; DeMichele, A.M.; Clark, A.S.; Cooper, L.J.; Schuchter, L.M.; Vonderheide, R.H.; June, C.H. Safety and efficacy of intratumoral injections of chimeric antigen receptor (car) t cells in metastatic breast cancer. Cancer Immunol. Res., 2017, 5(12), 1152-1161.
[http://dx.doi.org/10.1158/2326-6066.CIR-17-0189] [PMID: 29109077]
[69]
Parayath, N.N.; Stephan, S.B.; Koehne, A.L.; Nelson, P.S.; Stephan, M.T. In vitro-transcribed antigen receptor mRNA nanocarriers for transient expression in circulating T cells in vivo. Nat. Commun., 2020, 11(1), 6080.
[http://dx.doi.org/10.1038/s41467-020-19486-2] [PMID: 33247092]
[70]
Mitchell, D.A.; Batich, K.A.; Gunn, M.D.; Huang, M.N.; Sanchez-Perez, L.; Nair, S.K.; Congdon, K.L.; Reap, E.A.; Archer, G.E.; Desjardins, A.; Friedman, A.H.; Friedman, H.S.; Herndon, J.E., II; Coan, A.; McLendon, R.E.; Reardon, D.A.; Vredenburgh, J.J.; Bigner, D.D.; Sampson, J.H. Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. Nature, 2015, 519(7543), 366-369.
[http://dx.doi.org/10.1038/nature14320] [PMID: 25762141]
[71]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(1), 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[72]
Sabari, J.K.; Lok, B.H.; Laird, J.H.; Poirier, J.T.; Rudin, C.M. Unravelling the biology of SCLC: implications for therapy. Nat. Rev. Clin. Oncol., 2017, 14(9), 549-561.
[http://dx.doi.org/10.1038/nrclinonc.2017.71] [PMID: 28534531]
[73]
Khan, P.; Siddiqui, J.A.; Maurya, S.K.; Lakshmanan, I.; Jain, M.; Ganti, A.K.; Salgia, R.; Batra, S.K.; Nasser, M.W. Epigenetic landscape of small cell lung cancer: Small image of a giant recalcitrant disease. Semin. Cancer Biol., 2022, 83, 57-76.
[http://dx.doi.org/10.1016/j.semcancer.2020.11.006] [PMID: 33220460]
[74]
Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The different mechanisms of cancer drug resistance: A brief review. Adv. Pharm. Bull., 2017, 7(3), 339-348.
[http://dx.doi.org/10.15171/apb.2017.041] [PMID: 29071215]
[75]
Vasan, N.; Baselga, J.; Hyman, D.M. A view on drug resistance in cancer. Nature, 2019, 575(7782), 299-309.
[http://dx.doi.org/10.1038/s41586-019-1730-1] [PMID: 31723286]
[76]
Xu, R.; Lu, T.; Zhao, J.; Wang, J.; Peng, B.; Zhang, L. Identification of tumor antigens and immune subtypes in lung adenocarcinoma for mRNA vaccine development. Front. Cell Dev. Biol., 2022, 10, 815596.
[http://dx.doi.org/10.3389/fcell.2022.815596] [PMID: 35265614]
[77]
Papachristofilou, A.; Hipp, M.M.; Klinkhardt, U.; Früh, M.; Sebastian, M.; Weiss, C.; Pless, M.; Cathomas, R.; Hilbe, W.; Pall, G.; Wehler, T.; Alt, J.; Bischoff, H.; Geißler, M.; Griesinger, F.; Kallen, K.J.; Fotin-Mleczek, M.; Schröder, A.; Scheel, B.; Muth, A.; Seibel, T.; Stosnach, C.; Doener, F.; Hong, H.S.; Koch, S.D.; Gnad-Vogt, U.; Zippelius, A. Phase Ib evaluation of a self-adjuvanted protamine formulated mRNA-based active cancer immunotherapy, BI1361849 (CV9202), combined with local radiation treatment in patients with stage IV non-small cell lung cancer. J. Immunother. Cancer, 2019, 7(1), 38.
[http://dx.doi.org/10.1186/s40425-019-0520-5] [PMID: 30736848]
[78]
Sebastian, M.; Schröder, A.; Scheel, B.; Hong, H.S.; Muth, A.; von Boehmer, L.; Zippelius, A.; Mayer, F.; Reck, M.; Atanackovic, D.; Thomas, M.; Schneller, F.; Stöhlmacher, J.; Bernhard, H.; Gröschel, A.; Lander, T.; Probst, J.; Strack, T.; Wiegand, V.; Gnad-Vogt, U.; Kallen, K.J.; Hoerr, I.; von der Muelbe, F.; Fotin-Mleczek, M.; Knuth, A.; Koch, S.D. A phase I/IIa study of the mRNA-based cancer immunotherapy CV9201 in patients with stage IIIB/IV non-small cell lung cancer. Cancer Immunol. Immunother., 2019, 68(5), 799-812.
[http://dx.doi.org/10.1007/s00262-019-02315-x] [PMID: 30770959]
[79]
Toomey, P.G.; Vohra, N.A.; Ghansah, T.; Sarnaik, A.A.; Pilon-Thomas, S.A. Immunotherapy for gastrointestinal malignancies. Cancer Contr., 2013, 20(1), 32-42.
[http://dx.doi.org/10.1177/107327481302000106] [PMID: 23302905]
[80]
Zumwalt, T.J.; Goel, A. Immunotherapy of metastatic colorectal cancer: Prevailing challenges and new perspectives. Curr. Colorectal Cancer Rep., 2015, 11(3), 125-140.
[http://dx.doi.org/10.1007/s11888-015-0269-2] [PMID: 26441489]
[81]
Molaei, F.; Forghanifard, M.M.; Fahim, Y.; Abbaszadegan, M.R. Molecular signaling in tumorigenesis of gastric cancer. Iran. Biomed. J., 2018, 22(4), 217-230.
[http://dx.doi.org/10.29252/ibj.22.4.217] [PMID: 29706061]
[82]
Liu, C.; Papukashvili, D.; Dong, Y.; Wang, X.; Hu, X.; Yang, N.; Cai, J.; Xie, F.; Rcheulishvili, N.; Wang, P.G. Identification of tumor antigens and design of mrna vaccine for colorectal cancer based on the immune subtype. Front. Cell Dev. Biol., 2022, 9, 783527.
[http://dx.doi.org/10.3389/fcell.2021.783527] [PMID: 35127707]
[83]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer, 2019, 144(8), 1941-1953.
[http://dx.doi.org/10.1002/ijc.31937] [PMID: 30350310]
[84]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[85]
Torre, L.A.; Siegel, R.L.; Ward, E.M.; Jemal, A. Global cancer incidence and mortality rates and trends--an update. Cancer Epidemiol. Biomarkers Prev., 2016, 25(1), 16-27.
[http://dx.doi.org/10.1158/1055-9965.EPI-15-0578] [PMID: 26667886]
[86]
Huang, X.; Zhang, G.; Tang, T.; Liang, T. Identification of tumor antigens and immune subtypes of pancreatic adenocarcinoma for mRNA vaccine development. Mol. Cancer, 2021, 20(1), 44.
[http://dx.doi.org/10.1186/s12943-021-01310-0] [PMID: 33648511]
[87]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[88]
Sinha, M.; Zhang, L.; Subudhi, S.; Chen, B.; Marquez, J.; Liu, E.V.; Allaire, K.; Cheung, A.; Ng, S.; Nguyen, C.; Friedlander, T.W.; Aggarwal, R.; Spitzer, M.; Allison, J.P.; Small, E.J.; Sharma, P.; Fong, L. Pre-existing immune status associated with response to combination of sipuleucel-T and ipilimumab in patients with metastatic castration-resistant prostate cancer. J. Immunother. Cancer, 2021, 9(5), e002254.
[http://dx.doi.org/10.1136/jitc-2020-002254] [PMID: 33986125]
[89]
Sartor, O.; Armstrong, A.J.; Ahaghotu, C.; McLeod, D.G.; Cooperberg, M.R.; Penson, D.F.; Kantoff, P.W.; Vogelzang, N.J.; Hussain, A.; Pieczonka, C.M.; Shore, N.D.; Quinn, D.I.; Small, E.J.; Heath, E.I.; Tutrone, R.F.; Schellhammer, P.F.; Harmon, M.; Chang, N.N.; Sheikh, N.A.; Brown, B.; Freedland, S.J.; Higano, C.S. Survival of African-American and Caucasian men after sipuleucel-T immunotherapy: outcomes from the PROCEED registry. Prostate Cancer Prostatic Dis., 2020, 23(3), 517-526.
[http://dx.doi.org/10.1038/s41391-020-0213-7] [PMID: 32111923]
[90]
Rausch, S.; Schwentner, C.; Stenzl, A.; Bedke, J. mRNA vaccine CV9103 and CV9104 for the treatment of prostate cancer. Hum. Vaccin. Immunother., 2014, 10(11), 3146-3152.
[http://dx.doi.org/10.4161/hv.29553] [PMID: 25483661]
[91]
Zheng, X.; Xu, H.; Yi, X.; Zhang, T.; Wei, Q.; Li, H.; Ai, J. Tumor-antigens and immune landscapes identification for prostate adenocarcinoma mRNA vaccine. Mol. Cancer, 2021, 20(1), 160.
[http://dx.doi.org/10.1186/s12943-021-01452-1] [PMID: 34872584]
[92]
Lai, I.; Swaminathan, S.; Baylot, V.; Mosley, A.; Dhanasekaran, R.; Gabay, M.; Felsher, D.W. Lipid nanoparticles that deliver IL-12 messenger RNA suppress tumorigenesis in MYC oncogene-driven hepatocellular carcinoma. J. Immunother. Cancer, 2018, 6(1), 125.
[http://dx.doi.org/10.1186/s40425-018-0431-x] [PMID: 30458889]
[93]
Rizvi, S.; Khan, S.A.; Hallemeier, C.L.; Kelley, R.K.; Gores, G.J. Cholangiocarcinoma — evolving concepts and therapeutic strategies. Nat. Rev. Clin. Oncol., 2018, 15(2), 95-111.
[http://dx.doi.org/10.1038/nrclinonc.2017.157] [PMID: 28994423]
[94]
Rizvi, S.; Gores, G.J. Pathogenesis, diagnosis, and management of cholangiocarcinoma. Gastroenterology, 2013, 145(6), 1215-1229.
[http://dx.doi.org/10.1053/j.gastro.2013.10.013] [PMID: 24140396]
[95]
Nakanuma, Y.; Sato, Y.; Harada, K.; Sasaki, M.; Xu, J.; Ikeda, H. Pathological classification of intrahepatic cholangiocarcinoma based on a new concept. World J. Hepatol., 2010, 2(12), 419-427.
[http://dx.doi.org/10.4254/wjh.v2.i12.419] [PMID: 21191517]
[96]
Huang, X.; Tang, T.; Zhang, G.; Liang, T. Identification of tumor antigens and immune subtypes of cholangiocarcinoma for mRNA vaccine development. Mol. Cancer, 2021, 20(1), 50.
[http://dx.doi.org/10.1186/s12943-021-01342-6] [PMID: 33685460]
[97]
Kim, S.H.; Castro, F.; Paterson, Y.; Gravekamp, C. High efficacy of a Listeria-based vaccine against metastatic breast cancer reveals a dual mode of action. Cancer Res., 2009, 69(14), 5860-5866.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-4855] [PMID: 19584282]
[98]
Bauer, K.R.; Brown, M.; Cress, R.D.; Parise, C.A.; Caggiano, V. Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype. Cancer, 2007, 109(9), 1721-1728.
[http://dx.doi.org/10.1002/cncr.22618] [PMID: 17387718]
[99]
Yin, L.; Duan, J.J.; Bian, X.W.; Yu, S. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res., 2020, 22(1), 61.
[http://dx.doi.org/10.1186/s13058-020-01296-5] [PMID: 32517735]
[100]
Castro, N.P.; Fedorova-Abrams, N.D.; Merchant, A.S.; Rangel, M.C.; Nagaoka, T.; Karasawa, H.; Klauzinska, M.; Hewitt, S.M.; Biswas, K.; Sharan, S.K.; Salomon, D.S. Cripto-1 as a novel therapeutic target for triple negative breast cancer. Oncotarget, 2015, 6(14), 11910-11929.
[http://dx.doi.org/10.18632/oncotarget.4182] [PMID: 26059540]
[101]
Liu, L.; Wang, Y.; Miao, L.; Liu, Q.; Musetti, S.; Li, J.; Huang, L. Combination immunotherapy of muc1 mRNA nano-vaccine and CTLA-4 blockade effectively inhibits growth of triple negative breast cancer. Mol. Ther., 2018, 26(1), 45-55.
[http://dx.doi.org/10.1016/j.ymthe.2017.10.020] [PMID: 29258739]
[102]
Schumacher, T.; Bunse, L.; Pusch, S.; Sahm, F.; Wiestler, B.; Quandt, J.; Menn, O.; Osswald, M.; Oezen, I.; Ott, M.; Keil, M.; Balß, J.; Rauschenbach, K.; Grabowska, A.K.; Vogler, I.; Diekmann, J.; Trautwein, N.; Eichmüller, S.B.; Okun, J.; Stevanović, S.; Riemer, A.B.; Sahin, U.; Friese, M.A.; Beckhove, P.; von Deimling, A.; Wick, W.; Platten, M. A vaccine targeting mutant IDH1 induces antitumour immunity. Nature, 2014, 512(7514), 324-327.
[http://dx.doi.org/10.1038/nature13387] [PMID: 25043048]
[103]
Meo, S.A.; Bukhari, I.A.; Akram, J.; Meo, A.S.; Klonoff, D.C. COVID-19 vaccines: comparison of biological, pharmacological characteristics and adverse effects of Pfizer/BioNTech and Moderna Vaccines. Eur. Rev. Med. Pharmacol. Sci., 2021, 25(3), 1663-1669.
[http://dx.doi.org/10.26355/eurrev_202102_24877] [PMID: 33629336]