Nature-derived Alkaloids as a Promising Bioactive Compound in Drug Discovery to Meet Global Leishmania Needs

Page: [34 - 61] Pages: 28

  • * (Excluding Mailing and Handling)

Abstract

Background: Natural products have been important resources for potential drug development. Among the many classes of natural products, alkaloids have the most therapeutic applications. Treatment of leishmaniasis by chemical drugs remains a challenge because of toxic side effects, limited efficacy, and drug resistance. This review focuses to embrace all researches on leishmanicidal alkaloids over a specific range of time, with special consideration the molecular mechanism of action, and structure-related activity.

Methods: All publications (in English) from Web of Science, PubMed, Science Direct, Scopus, and Google Scholar from 2000-2021 using a variety of keywords such as natural alkaloids, herbal alkaloids, marine alkaloids along with leishmaniasis were included in the present study. In this summary, the focus is mainly on natural alkaloids of plant, mineral, marine origin, etc., which have empirically demonstrated the antileishmanial effect.

Results: Fourteen categories of alkaloids with anti-leishmaniasis activity were extracted from the articles. The highest number of alkaloids belonged to isoquinoline, indole, and quinoline alkaloids (21.78%, 20.67%, and 16.48% respectively). This review indicated that the mentioned alkaloids are able to inhibit the proliferation of parasites, the respiratory chain and protein synthesis, arrest the cell cycle, disrupt the mitochondrial membrane integrity, inhibit leishmanial topoisomerase, induce mitochondrial dysfunction, and changes in the parasite morphology.

Discussion: The present study highlighted antileishmanial alkaloids that are active against different species of Leishmania in vitro and some of them are also active in visceral and cutaneous leishmaniasis models. However, more clinical studies are needed to clarify the anti-leishmanial activity of alkaloids against leishmania in detail.

Conclusion: Among the reported compounds, two main classes of alkaloids including isoquinoline and indole alkaloids cover a wider range of anti-parasitic compounds, and structure-activity relationships (SAR) studies of these molecular skeletons may be good lead compounds and afford the structural clues to develop novel medicines with more selective therapeutic profiles.

Graphical Abstract

[1]
Nawaz, M.; Din, M.; Khan, A.; Khan, A.; Ali, M.; Din, S.U.; Aslam, K. Epidemiological features of cutaneous leishmaniasis endemic in hilly areas of district Karak, Khyber-Pakhtunkhwa province of Pakistan. J. Parasit. Dis., 2020, 44(4), 725-729.
[http://dx.doi.org/10.1007/s12639-020-01250-4] [PMID: 33184539]
[2]
Sabzevari, S.; Mohebali, M.; Hashemi, A. Cutaneous and visceral leishmaniasis: parasites, vectors and reservoir hosts in endemic foci of North Khorasan, Northeastern Iran-a Narrative Review. J. Med. Microbiol. Infect. Dis., 2020, 8(2), 40-44.
[http://dx.doi.org/10.29252/JoMMID.8.2.40]
[3]
Nasimiyu, K.C.; Muia, N.C.; Geoffrey, M.; Samuel, M.; Johnstone, I.; Venny, N.; Omukhango, A.C. In vitro and in vivo efficacy of combination therapy using allium sativum and aloe secundiflora against leishmania major infected balb/c mice. Int. J. Fauna Biol., 2016, 3(2), 102-108.
[4]
Alemayehu, B.; Alemayehu, M. Leishmaniasis: A review on parasite, vector and reservoir host. Health Sci. J., 2017, 11(4), 1.
[http://dx.doi.org/10.21767/1791-809X.1000519]
[5]
Mhaidi, I.; Ait Kbaich, M.; El Kacem, S.; Daoui, O.; Akarid, K.; Spitzova, T.; Halada, P.; Dvorak, V.; Lemrani, M. Entomological study in an anthroponotic cutaneous leishmaniasis focus in Morocco: Fauna survey, Leishmania infection screening, molecular characterization and MALDI-TOF MS protein profiling of relevant Phlebotomus species. Transbound. Emerg. Dis., 2021, 69(3), 1073-1083.
[PMID: 33686765]
[6]
Haq, R. U.; Saeed, A.; Lashari, W. A.; Ahmed, N.; Ramzan, T.; Kannar, A. Psychological and social burden of Cutaneous Leishmaniasis among the residents of Quetta city, Pakistan. . Camb. Med. J., 2021, 1-6.
[7]
Crimmins, E.M.; Shim, H.; Zhang, Y.S.; Kim, J.K. Differences between men and women in mortality and the health dimensions of the morbidity process. Clin. Chem., 2019, 65(1), 135-145.
[http://dx.doi.org/10.1373/clinchem.2018.288332] [PMID: 30478135]
[8]
Sundar, S.; Singh, O.P.; Chakravarty, J. Visceral leishmaniasis elimination targets in India, strategies for preventing resurgence. Expert Rev. Anti Infect. Ther., 2018, 16(11), 805-812.
[http://dx.doi.org/10.1080/14787210.2018.1532790] [PMID: 30289007]
[9]
Wilson, A.L.; Courtenay, O.; Kelly-Hope, L.A.; Scott, T.W.; Takken, W.; Torr, S.J.; Lindsay, S.W. The importance of vector control for the control and elimination of vector-borne diseases. PLoS Negl. Trop. Dis., 2020, 14(1), e0007831.
[http://dx.doi.org/10.1371/journal.pntd.0007831] [PMID: 31945061]
[10]
Ashwin, H.; Seifert, K.; Forrester, S.; Brown, N.; MacDonald, S.; James, S.; Lagos, D.; Timmis, J.; Mottram, J.C.; Croft, S.L. Tissue and host species-specific transcriptional changes in models of experimental visceral leishmaniasis. Wellcome Open Res., 2018, 3, 135.
[http://dx.doi.org/10.12688/wellcomeopenres.14867.1]
[11]
Choi, C.M.; Lerner, E.A. Leishmaniasis. Am. J. Clin. Dermatol., 2002, 3(2), 91-105.
[http://dx.doi.org/10.2165/00128071-200203020-00003] [PMID: 11893221]
[12]
Desjeux, P. Leishmaniasis: current situation and new perspectives. Comp. Immunol. Microbiol. Infect. Dis., 2004, 27(5), 305-318.
[http://dx.doi.org/10.1016/j.cimid.2004.03.004] [PMID: 15225981]
[13]
Quinnell, R.J.; Courtenay, O. Transmission, reservoir hosts and control of zoonotic visceral leishmaniasis. Parasitology, 2009, 136(14), 1915-1934.
[http://dx.doi.org/10.1017/S0031182009991156] [PMID: 19835643]
[14]
Ovalle-Bracho, C.; Londoño-Barbosa, D.; Salgado-Almario, J.; González, C. Evaluating the spatial distribution of Leishmania parasites in Colombia from clinical samples and human isolates (1999 to 2016). PLoS One, 2019, 14(3), e0214124.
[http://dx.doi.org/10.1371/journal.pone.0214124] [PMID: 30917177]
[15]
Inceboz, T. Epidemiology and ecology of leishmaniasis. In: Current topics in neglected tropical diseases; IntechOpen London, 2019; pp. 1-15.
[http://dx.doi.org/10.5772/intechopen.86359]
[16]
Pradhan, S.; Schwartz, R.; Patil, A.; Grabbe, S.; Goldust, M. Treatment options for leishmaniasis. Clin. Exp. Dermatol., 2021, 47(3), 516-521.
[PMID: 34480806]
[17]
Patino, L.H.; Mendez, C.; Rodriguez, O.; Romero, Y.; Velandia, D.; Alvarado, M.; Pérez, J.; Duque, M.C.; Ramírez, J.D. Spatial distribution, Leishmania species and clinical traits of Cutaneous Leishmaniasis cases in the Colombian army. PLoS Negl. Trop. Dis., 2017, 11(8), e0005876.
[http://dx.doi.org/10.1371/journal.pntd.0005876] [PMID: 28850603]
[18]
Erber, A.C.; Arana, B.; Ben Salah, A.; Bennis, I.; Boukthir, A.; Castro Noriega, M.M.; Cissé, M.; Cota, G.F.; Handjani, F.; López-Carvajal, L.; Marsh, K.; Medina, D.M.; Plugge, E.; Lang, T.; Olliaro, P. Patients’ preferences of cutaneous leishmaniasis treatment outcomes: Findings from an international qualitative study. PLoS Negl. Trop. Dis., 2020, 14(2), e0007996.
[http://dx.doi.org/10.1371/journal.pntd.0007996] [PMID: 32092059]
[19]
Riaz, S.; De Lorenzis, G.; Velasco, D.; Koehmstedt, A.; Maghradze, D.; Bobokashvili, Z.; Musayev, M.; Zdunic, G.; Laucou, V.; Andrew Walker, M.; Failla, O.; Preece, J.E.; Aradhya, M.; Arroyo-Garcia, R. Genetic diversity analysis of cultivated and wild grapevine (Vitis vinifera L.) accessions around the Mediterranean basin and Central Asia. BMC Plant Biol., 2018, 18(1), 137.
[http://dx.doi.org/10.1186/s12870-018-1351-0] [PMID: 29945553]
[20]
WHO launches global consultations for a new Roadmap on neglected tropical diseases. Available from:https://www.iapb.org/news/who-launches-global-consultations-for-a-new-roadmap-on-neglected-tropical-diseases/
[21]
Norman, F.F.; Comeche, B.; Chamorro, S.; Pérez-Molina, J.A.; López-Vélez, R. Update on the major imported protozoan infections in travelers and migrants. Future Microbiol., 2020, 15(3), 213-225.
[http://dx.doi.org/10.2217/fmb-2019-0212] [PMID: 32065535]
[22]
Ngere, I.; Gufu Boru, W.; Isack, A.; Muiruri, J.; Obonyo, M.; Matendechero, S.; Gura, Z. Burden and risk factors of cutaneous leishmaniasis in a peri-urban settlement in Kenya, 2016. PLoS One, 2020, 15(1), e0227697.
[http://dx.doi.org/10.1371/journal.pone.0227697] [PMID: 31971945]
[23]
Torres-Guerrero, E.; Quintanilla-Cedillo, M.R.; Ruiz-Esmenjaud, J.; Arenas, R. Leishmaniasis: a review. F1000 Res., 2017, 6, 750.
[http://dx.doi.org/10.12688/f1000research.11120.1] [PMID: 28649370]
[24]
Samuel Singh, N.; Singh, D.P. A review on major risk factors and current status of visceral leishmaniasis in north India. Am. J. Entomol., 2019, 3(1), 6-14.
[http://dx.doi.org/10.11648/j.aje.20190301.12]
[25]
Kone, A.K.; Niaré, D.S.; Piarroux, M.; Izri, A.; Marty, P.; Laurens, M.B.; Piarroux, R.; Thera, M.A.; Doumbo, O.K. Visceral leishmaniasis in West Africa: clinical characteristics, vectors, and reservoirs. J. Parasitol. Res., 2019, 2019, 9282690.
[http://dx.doi.org/10.1155/2019/9282690]
[26]
Henke, O.; Mapendo, P.J.; Mremi, A.; Mmbaga, L.G.; Pallangyo, A.E.; Harbaum, T.; Mkwizu, E. Skin maculae, chronic diarrhea, cachexia, and splenomegaly—Late presentation of the first autochthonous case of visceral leishmaniasis in Tanzania; Public Library of Science San Francisco: CA, USA, 2021.
[http://dx.doi.org/10.1371/journal.pntd.0008925]
[27]
Das, N.K.; Ghosh, P.; Roy, P.; Chaudhuri, S.J. Epidemiology of post-kala-azar dermal leishmaniasis. Indian J. Dermatol., 2021, 66(1), 12-23.
[http://dx.doi.org/10.4103/ijd.IJD_651_20] [PMID: 33911289]
[28]
Curtin, J.M.; Aronson, N.E. Leishmaniasis in the United States: Emerging issues in a region of low endemicity. Microorganisms, 2021, 9(3), 578.
[http://dx.doi.org/10.3390/microorganisms9030578] [PMID: 33799892]
[29]
Al-maeahi, A.M.; Marhoon, I.A. Parasitological survey of visceral leishmaniasis (kala-Azar) in Al-Diwaniyah Province, Iraq. J. Pharm. Sci. Res., 2018, 10(12), 3146.
[30]
Gurel, M.S.; Tekin, B.; Uzun, S. Cutaneous leishmaniasis: A great imitator. Clin. Dermatol., 2020, 38(2), 140-151.
[http://dx.doi.org/10.1016/j.clindermatol.2019.10.008] [PMID: 32513395]
[31]
Amanya, J.K.; Peng, H.J. Visceral leishmaniasis: evaluation of diagnostic tools, therapeutic regimens, and associated risk factors in areas with frequent outbreaks in South Sudan and Sudan: case reports and review of literature. J. Trop. Dis., 2018, 7(1), 293.
[http://dx.doi.org/10.4172/2329-891X.1000293]
[32]
Das, V.N.R.; Siddiqui, N.A.; Bhunia, G.S.; Pandey, K.; Sinha, S.K.; Ansari, M.Z.; Topno, R.K.; Lal, C.S.; Ranjan, A.; Singh, V.P.; Das, P. Improved kala-azar case management through implementation of health facility-based sentinel sites surveillance system in Bihar, India. PLoS Negl. Trop. Dis., 2021, 15(8), e0009598.
[http://dx.doi.org/10.1371/journal.pntd.0009598] [PMID: 34428232]
[33]
Organization., W. H. Fourth regional technical advisory group 156 meeting on elimination of Kala-azar, 2011, 12-14, 2011.
[34]
Chakravarty, J.; Sundar, S. Current and emerging medications for the treatment of leishmaniasis. Expert Opin. Pharmacother., 2019, 20(10), 1251-1265.
[http://dx.doi.org/10.1080/14656566.2019.1609940] [PMID: 31063412]
[35]
Zakharova, A.; Albanaz, A.T.S.; Opperdoes, F.R.; Škodová-Sveráková, I.; Zagirova, D.; Saura, A.; Chmelová, L.; Gerasimov, E.S.; Leštinová, T.; Bečvář, T.; Sádlová, J.; Volf, P.; Lukeš, J.; Horváth, A.; Butenko, A.; Yurchenko, V. Leishmania guyanensis M4147 as a new LRV1-bearing model parasite: Phosphatidate phosphatase 2-like protein controls cell cycle progression and intracellular lipid content. PLoS Negl. Trop. Dis., 2022, 16(6), e0010510.
[http://dx.doi.org/10.1371/journal.pntd.0010510] [PMID: 35749562]
[36]
Hajjaran, H.; Mahdi, M.; Mohebali, M.; Samimi-Rad, K.; Ataei-Pirkooh, A.; Kazemi-Rad, E.; Naddaf, S.R.; Raoofian, R. Detection and molecular identification of Leishmania RNA virus (LRV) in Iranian Leishmania species. Arch. Virol., 2016, 161(12), 3385-3390.
[http://dx.doi.org/10.1007/s00705-016-3044-z] [PMID: 27604119]
[37]
Sabzevari, S.; Mohebali, M.; Hashemi, S.A. Mucosal and mucocutaneous leishmaniasis in Iran from 1968 to 2018: a narrative review of clinical features, treatments, and outcomes. Int. J. Dermatol., 2020, 59(5), 606-612.
[http://dx.doi.org/10.1111/ijd.14762] [PMID: 31943166]
[38]
Reithinger, R.; Dujardin, J.C.; Louzir, H.; Pirmez, C.; Alexander, B.; Brooker, S. Cutaneous leishmaniasis. Lancet Infect. Dis., 2007, 7(9), 581-596.
[http://dx.doi.org/10.1016/S1473-3099(07)70209-8] [PMID: 17714672]
[39]
Organization, W.H. The leishmaniases: report of a WHO expert committee [meeting held in Geneva from 10 to 16 November 1982]; World Health Organization, 1984.
[40]
Organization, W.H. Report of a meeting of the WHO Expert Committee on the Control of Leishmaniases Geneva Switzerland, 22-26 March 2010. WHO Technical Report Series 2010.
[41]
Mendonça, D.V.C.; Martins, V.T.; Lage, D.P.; Dias, D.S.; Ribeiro, P.A.F.; Carvalho, A.M.R.S.; Dias, A.L.T.; Miyazaki, C.K.; Menezes-Souza, D.; Roatt, B.M.; Tavares, C.A.P.; Barichello, J.M.; Duarte, M.C.; Coelho, E.A.F. Comparing the therapeutic efficacy of different amphotericin B-carrying delivery systems against visceral leishmaniasis. Exp. Parasitol., 2018, 186, 24-35.
[http://dx.doi.org/10.1016/j.exppara.2018.02.003] [PMID: 29448040]
[42]
Oryan, A. Plant-derived compounds in treatment of leishmaniasis. Majallah-i Tahqiqat-i Dampizishki-i Iran, 2015, 16(1), 1-19.
[PMID: 27175144]
[43]
Alvar, J.; Croft, S.; Olliaro, P. Chemotherapy in the treatment and control of leishmaniasis. Adv. Parasitol., 2006, 61, 223-274.
[http://dx.doi.org/10.1016/S0065-308X(05)61006-8] [PMID: 16735166]
[44]
Soto, J.; Ardiles, J.; Toledo, J.; Rea, J.; Berman, J.; Valda, L.; Valderrama, M. Efficacy of extended (six weeks) treatment with miltefosine for mucosal leishmaniasis in Bolivia. Am. J. Trop. Med. Hyg., 2009, 81(3), 387-389.
[http://dx.doi.org/10.4269/ajtmh.2009.81.387] [PMID: 19706901]
[45]
Molina, J.; Martins-Filho, O.; Brener, Z.; Romanha, A.J.; Loebenberg, D.; Urbina, J.A. Activities of the triazole derivative SCH 56592 (posaconazole) against drug-resistant strains of the protozoan parasite Trypanosoma (Schizotrypanum) cruzi in immunocompetent and immunosuppressed murine hosts. Antimicrob. Agents Chemother., 2000, 44(1), 150-155.
[http://dx.doi.org/10.1128/AAC.44.1.150-155.2000] [PMID: 10602737]
[46]
Surur, A.S.; Fekadu, A.; Makonnen, E.; Hailu, A. Challenges and opportunities for drug discovery in developing countries: the example of cutaneous leishmaniasis. ACS Med. Chem. Lett., 2020, 11(11), 2058-2062.
[http://dx.doi.org/10.1021/acsmedchemlett.0c00446] [PMID: 33214808]
[47]
Al Nasr, I. In vitro anti-leishmanial assessment of some medicinal plants collected from Al Qassim, Saudi Arabia. Acta Parasitol., 2020, 65(3), 696-703.
[http://dx.doi.org/10.2478/s11686-020-00205-2] [PMID: 32347535]
[48]
Shah, N.A.; Khan, M.R.; Nadhman, A. Antileishmanial, toxicity, and phytochemical evaluation of medicinal plants collected from Pakistan. BioMed Res. Int.,, 2014, 2014.
[http://dx.doi.org/ 10.1155/2014/384204]
[49]
Da Silva, B.J.M.; Hage, A.A.P.; Silva, E.O.; Rodrigues, A.P.D. Medicinal plants from the Brazilian Amazonian region and their antileishmanial activity: A review. J. Integr. Med., 2018, 16(4), 211-222.
[http://dx.doi.org/10.1016/j.joim.2018.04.004] [PMID: 29691188]
[50]
Soosaraei, M.; Fakhar, M.; Hosseini Teshnizi, S.; Ziaei Hezarjaribi, H.; Banimostafavi, E.S. Medicinal plants with promising antileishmanial activity in Iran: A systematic review and meta-analysis. Ann. Med. Surg. (Lond.), 2017, 21, 63-80.
[http://dx.doi.org/10.1016/j.amsu.2017.07.057] [PMID: 28794869]
[51]
Zarandi, H.Z-A.; Shirani-Bidabadi, L.; Aghaei-Afshar, A.; Eghbalian, M.; Zolala, J.; Mirtadjadini, S.M.; Saghafipour, A.; Salarkia, E. In vitro evaluation of hydroalcoholic extracts of Capparis spinosa, Ricinus communis, and Solanum luteum on Leishmania major (MRHO/IR/75/ER) promastigotes. Jundishapur J. Nat. Pharm. Prod., 2022, 17(2), e115306.
[52]
Najm, M.; Hadighi, R.; Heidari-Kharaji, M.; Alipour, M.; Hajizadeh, M.; Rafiei-Sefiddashti, R.; Heidari, A.; Badirzadeh, A. Anti-Leishmanial activity of Artemisia persica, A. spicigera, and A. fragrance against Leishmania major. Iran. J. Parasitol., 2021, 16(3), 464-473.
[http://dx.doi.org/10.18502/ijpa.v16i3.7100] [PMID: 34630592]
[53]
Haddad, M.H.F.; Khodkar, I.; Samie, M. In vitro anti-leishmanial effects of hydroalcoholic extracts from six Iranian medicinal herbs on Leishmania major (MRHO/IR/75/ER) promastigotes. Jentashapir J. Health Res., 2016, 7(3), e33465.
[54]
Barati, M.; Sharifi, I. SHarififar, F. In vitro evaluation of anti-leishmanial activities of Zataria Multiflora Boiss, Peganum Harmala and Myrtus communis by colorimetric assay. J. Kerman Univ. Med. Sci., 2010, 16(1), 32-42.
[55]
Kheiri Manjili, H.; Jafari, H.; Ramazani, A.; Davoudi, N. Anti-leishmanial and toxicity activities of some selected Iranian medicinal plants. Parasitol. Res., 2012, 111(5), 2115-2121.
[http://dx.doi.org/10.1007/s00436-012-3059-7] [PMID: 22875395]
[56]
Mohseni, F.; Sharifi, I.; Oliaee, R.T.; Babaei, Z.; Mostafavi, M.; Almani, P.G.N.; Keyhani, A.; Salarkia, E.; Sharifi, F.; Nave, H.H.; Bamorovat, M.; Alahdin, S.; Sarlak, M.; Tavakoly, R. Antiproliferative properties of Turmerone on Leishmania major: Modes of action confirmed by antioxidative and immunomodulatory roles. Comp. Immunol. Microbiol. Infect. Dis., 2022, 84, 101797.
[http://dx.doi.org/10.1016/j.cimid.2022.101797] [PMID: 35325685]
[57]
Nooshadokht, M.; Mirzaei, M.; Sharifi, I.; Sharifi, F.; Lashkari, M.; Amirheidari, B. In silico and in vitro antileishmanial effects of gamma-terpinene: Multifunctional modes of action. Chem. Biol. Interact., 2022, 361, 109957.
[http://dx.doi.org/10.1016/j.cbi.2022.109957] [PMID: 35472413]
[58]
Oliaee, R.T.; Sharifi, I.; Bamorovat, M.; Keyhani, A.; Babaei, Z.; Salarkia, E.; Tavakoly, R.; Khosravi, A.; Mostafavi, M.; Sharifi, F.; Mousavi, S.M. The potential role of nicotinamide on Leishmania tropica: An assessment of inhibitory effect, cytokines gene expression and arginase profiling. Int. Immunopharmacol., 2020, 86, 106704.
[http://dx.doi.org/10.1016/j.intimp.2020.106704] [PMID: 32590317]
[59]
Mahmoudvand, H.; Sharififar, F.; Rahmat, M.S.; Tavakoli, R.; Dezaki, E.S.; Jahanbakhsh, S.; Sharifi, I. Evaluation of antileishmanial activity and cytotoxicity of the extracts of Berberis vulgaris and Nigella sativa against Leishmania tropica. J. Vector Borne Dis., 2014, 51(4), 294-299.
[PMID: 25540961]
[60]
Mahmoudvand, H.; Saedi Dezaki, E.; Ezatpour, B.; Sharifi, I.; Kheirandish, F.; Rashidipour, M. In vitro and in vivo antileishmanial activities of Pistacia vera essential oil. Planta Med., 2016, 82(4), 279-284.
[http://dx.doi.org/10.1055/s-0035-1558209] [PMID: 26829519]
[61]
Lind, K.; Hansen, E.; Østerud, B.; Eilertsen, K.E.; Bayer, A.; Engqvist, M.; Leszczak, K.; Jørgensen, T.; Andersen, J. Antioxidant and anti-inflammatory activities of barettin. Mar. Drugs, 2013, 11(7), 2655-2666.
[http://dx.doi.org/10.3390/md11072655] [PMID: 23880935]
[62]
Mandegary, A.; Pournamdari, M.; Sharififar, F.; Pournourmohammadi, S.; Fardiar, R.; Shooli, S. Alkaloid and flavonoid rich fractions of fenugreek seeds (Trigonella foenum-graecum L.) with antinociceptive and anti-inflammatory effects. Food Chem. Toxicol., 2012, 50(7), 2503-2507.
[http://dx.doi.org/10.1016/j.fct.2012.04.020] [PMID: 22542922]
[63]
Bogatcheva, E.; Hanrahan, C.; Nikonenko, B.; de los Santos, G.; Reddy, V.; Chen, P.; Barbosa, F.; Einck, L.; Nacy, C.; Protopopova, M. Identification of SQ609 as a lead compound from a library of dipiperidines. Bioorg. Med. Chem. Lett., 2011, 21(18), 5353-5357.
[http://dx.doi.org/10.1016/j.bmcl.2011.07.015] [PMID: 21807506]
[64]
Dey, P.; Kundu, A.; Kumar, A.; Gupta, M.; Lee, B.M.; Bhakta, T.; Dash, S.; Kim, H.S. Analysis of alkaloids (indole alkaloids, isoquinoline alkaloids, tropane alkaloids). In: Recent Advances in Natural Products Analysis; Elsevier: Amsterdam, 2020; pp. 505-567.
[http://dx.doi.org/10.1016/B978-0-12-816455-6.00015-9]
[65]
Hamid, H.A.; Ramli, A.N.M.; Yusoff, M.M. Indole alkaloids from plants as potential leads for antidepressant drugs: A mini review. Front. Pharmacol., 2017, 8, 96-96.
[http://dx.doi.org/10.3389/fphar.2017.00096] [PMID: 28293192]
[66]
Stærk, D.; Lemmich, E.; Christensen, J.; Kharazmi, A.; Olsen, C.E.; Jaroszewski, J.W. Leishmanicidal, antiplasmodial and cytotoxic activity of indole alkaloids from Corynanthe pachyceras. Planta Med., 2000, 66(6), 531-536.
[http://dx.doi.org/10.1055/s-2000-8661] [PMID: 10985079]
[67]
Delorenzi, J.C.; Attias, M.; Gattass, C.R.; Andrade, M.; Rezende, C.; da Cunha Pinto, Â.; Henriques, A.T.; Bou-Habib, D.C.; Saraiva, E.M.B. Antileishmanial activity of an indole alkaloid from Peschiera australis. Antimicrob. Agents Chemother., 2001, 45(5), 1349-1354.
[http://dx.doi.org/10.1128/AAC.45.5.1349-1354.2001] [PMID: 11302794]
[68]
Tanaka, J.C.A.; da Silva, C.C.; Ferreira, I.C.P.; Machado, G.M.C.; Leon, L.L.; de Oliveira, A.J.B. Antileishmanial activity of indole alkaloids from Aspidosperma ramiflorum. Phytomedicine, 2007, 14(6), 377-380.
[http://dx.doi.org/10.1016/j.phymed.2006.09.002] [PMID: 17140782]
[69]
Cunha, A.C.; Chierrito, T.P.C.; Machado, G.M.C.; Leon, L.L.P.; Silva, C.C.; Tanaka, J.C.; Souza, L.M.; Gonçalves, R.A.C.; Oliveira, A.J.B. Anti-leishmanial activity of alkaloidal extracts obtained from different organs of Aspidosperma ramiflorum. Phytomedicine, 2012, 19(5), 413-417.
[http://dx.doi.org/10.1016/j.phymed.2011.12.004] [PMID: 22326547]
[70]
Rahman, A.; Samoylenko, V.; Jacob, M.; Sahu, R.; Jain, S.; Khan, S.; Tekwani, B.; Muhammad, I. Antiparasitic and antimicrobial indolizidines from the leaves of Prosopis glandulosa var. glandulosa. Planta Med., 2011, 77(14), 1639-1643.
[http://dx.doi.org/10.1055/s-0030-1270906] [PMID: 21384317]
[71]
Reina, M.; Ruiz-Mesia, W.; López-Rodríguez, M.; Ruiz-Mesia, L.; González-Coloma, A.; Martínez-Díaz, R. Indole alkaloids from Geissospermum reticulatum. J. Nat. Prod., 2012, 75(5), 928-934.
[http://dx.doi.org/10.1021/np300067m] [PMID: 22551062]
[72]
da Silva, E.R.; Brogi, S.; Lucon-Júnior, J.F.; Campiani, G.; Gemma, S.; Maquiaveli, C.C. Dietary polyphenols rutin, taxifolin and quercetin related compounds target Leishmania amazonensis arginase. Food Funct., 2019, 10(6), 3172-3180.
[http://dx.doi.org/10.1039/C9FO00265K] [PMID: 31134235]
[73]
Chowdhury, S.R.; Kumar, A.; Godinho, J.L.P.; De Macedo Silva, S.T.; Zuma, A.A.; Saha, S.; Kumari, N.; Rodrigues, J.C.F.; Sundar, S.; Dujardin, J.C.; Roy, S.; De Souza, W.; Mukhopadhyay, S.; Majumder, H.K. Voacamine alters Leishmania ultrastructure and kills parasite by poisoning unusual bi-subunit topoisomerase IB. Biochem. Pharmacol., 2017, 138, 19-30.
[http://dx.doi.org/10.1016/j.bcp.2017.05.002] [PMID: 28483460]
[74]
Di Giorgio, C.; Delmas, F.; Ollivier, E.; Elias, R.; Balansard, G.; Timon-David, P. In vitro activity of the β-carboline alkaloids harmane, harmine, and harmaline toward parasites of the species Leishmania infantum. Exp. Parasitol., 2004, 106(3-4), 67-74.
[http://dx.doi.org/10.1016/j.exppara.2004.04.002] [PMID: 15172213]
[75]
Lala, S.; Pramanick, S.; Mukhopadhyay, S.; Bandyopadhyay, S.; Basu, M.K. Harmine: evaluation of its antileishmanial properties in various vesicular delivery systems. J. Drug Target., 2004, 12(3), 165-175.
[http://dx.doi.org/10.1080/10611860410001712696] [PMID: 15203896]
[76]
Gabriel, R.S.; Amaral, A.C.F.; Lima, I.C.; Cruz, J.D.; Garcia, A.R.; Souza, H.A.S.; Adade, C.M.; Vermelho, A.B.; Alviano, C.S.; Alviano, D.S.; Rodrigues, I.A. β-Carboline-1-propionic acid alkaloid: antileishmanial and cytotoxic effects. Rev. Bras. Farmacogn., 2019, 29(6), 755-762.
[http://dx.doi.org/10.1016/j.bjp.2019.08.002]
[77]
Morales-Jadán, D.; Blanco-Salas, J.; Ruiz-Téllez, T.; Centeno, F. Three alkaloids from an apocynaceae species, aspidosperma spruceanum as antileishmaniasis agents by in silico demo-case studies. Plants (Basel, Switzerland), 2020, 9(8)
[78]
Correa, J.; Ríos, C.; del Rosario Castillo, A.; Romero, L.; Ortega-Barría, E.; Coley, P.; Kursar, T.; Heller, M.; Gerwick, W.; Rios, L. Minor alkaloids from Guatteria dumetorum with antileishmanial activity. Planta Med., 2006, 72(3), 270-272.
[http://dx.doi.org/10.1055/s-2005-916179] [PMID: 16534735]
[79]
Montenegro, H.; Gutiérrez, M.; Romero, L.I.; Ortega-Barría, E.; Capson, T.L.; Rios, L.C. Aporphine alkaloids from Guatteria spp. with leishmanicidal activity. Planta Med., 2003, 69(7), 677-679.
[http://dx.doi.org/10.1055/s-2003-41126] [PMID: 12898429]
[80]
Bringmann, G.; Hamm, A.; Günther, C.; Michel, M.; Brun, R.; Mudogo, V. Ancistroealaines A and B, two new bioactive naphthylisoquinolines, and related naphthoic acids from Ancistrocladus ealaensis. J. Nat. Prod., 2000, 63(11), 1465-1470.
[http://dx.doi.org/10.1021/np000247+] [PMID: 11087584]
[81]
Muhammad, I.; Dunbar, D.C.; Khan, S.I.; Tekwani, B.L.; Bedir, E.; Takamatsu, S.; Ferreira, D.; Walker, L.A. Antiparasitic alkaloids from Psychotria klugii. J. Nat. Prod., 2003, 66(7), 962-967.
[http://dx.doi.org/10.1021/np030086k] [PMID: 12880315]
[82]
Cazorla, D.; Yépez, J.; Añez, N.; Sánchez de Mirt, A. Effect of intralesional treatment with emetine hydrochloride on Leishmania (Viannia) braziliensis in hamsters. Invest. Clin., 2001, 42(1), 5-21.
[PMID: 11294031]
[83]
Cohen, H.A.; Livshin, R. Treatment of leishmaniasis nodosa (oriental sore) with intralesionally injected emetine hydrochloride. J. Am. Acad. Dermatol., 1987, 17(4), 595-599.
[http://dx.doi.org/10.1016/S0190-9622(87)70242-4] [PMID: 3668005]
[84]
Mahmoudvand, H.; Ayatollahi Mousavi, S.A.; Sepahvand, A.; Sharififar, F.; Ezatpour, B.; Gorohi, F.; Saedi Dezaki, E.; Jahanbakhsh, S. Antifungal, antileishmanial, and cytotoxicity activities of various extracts of Berberis vulgaris (Berberidaceae) and its active principle berberine. ISRN Pharmacol., 2014, 2014, 1-6.
[http://dx.doi.org/10.1155/2014/602436] [PMID: 24977052]
[85]
Mahmoudvand, H.; Sharififar, F.; Sharifi, I.; Ezatpour, B.; Fasihi Harandi, M.; Makki, M.S.; Zia-Ali, N.; Jahanbakhsh, S. In vitro inhibitory effect of berberis vulgaris (berberidaceae) and its main component, berberine against different Leishmania species. Iran. J. Parasitol., 2014, 9(1), 28-36.
[PMID: 25642257]
[86]
Imanshahidi, M.; Hosseinzadeh, H. Pharmacological and therapeutic effects of Berberis vulgaris and its active constituent, berberine. Phytother. Res., 2008, 22(8), 999-1012.
[http://dx.doi.org/10.1002/ptr.2399] [PMID: 18618524]
[87]
Saha, L. Irritable bowel syndrome: Pathogenesis, diagnosis, treatment, and evidence-based medicine. World J. Gastroenterol., 2014, 20(22), 6759-6773.
[http://dx.doi.org/10.3748/wjg.v20.i22.6759] [PMID: 24944467]
[88]
De Sarkar, S.; Sarkar, D.; Sarkar, A.; Dighal, A.; Staniek, K.; Gille, L.; Chatterjee, M. Berberine chloride mediates its antileishmanial activity by inhibiting Leishmania mitochondria. Parasitol. Res., 2019, 118(1), 335-345.
[http://dx.doi.org/10.1007/s00436-018-6157-3] [PMID: 30470927]
[89]
Calvo, A.; Moreno, E.; Larrea, E.; Sanmartín, C.; Irache, J.M.; Espuelas, S. Berberine-loaded liposomes for the treatment of Leishmania infantum-infected BALB/c mice. Pharmaceutics, 2020, 12(9), 858.
[http://dx.doi.org/10.3390/pharmaceutics12090858] [PMID: 32916948]
[90]
Alamzeb, M.; Ali, S.; Mamoon Ur, R.; Khan, B. Antileishmanialpotential of berberine alkaloids from berberis glaucocarpa roots: Molecular docking suggests relevant Leishmania protein targets 2021, 16.
[91]
Mahiou, V.; Roblot, F.; Fournet, A.; Hocquemiller, R. Bisbenzylisoquinoline alkaloids from Guatteria boliviana (Annonaceae). Phytochemistry, 2000, 54(7), 709-716.
[http://dx.doi.org/10.1016/S0031-9422(00)00178-3] [PMID: 10975506]
[92]
Sandjo, L.P.; de Moraes, M.H.; Kuete, V.; Kamdoum, B.C.; Ngadjui, B.T.; Steindel, M. Individual and combined antiparasitic effect of six plant metabolites against Leishmania amazonensis and Trypanosoma cruzi. Bioorg. Med. Chem. Lett., 2016, 26(7), 1772-1775.
[http://dx.doi.org/10.1016/j.bmcl.2016.02.044] [PMID: 26906638]
[93]
Costa, E.V.; Pinheiro, M.L.B.; Xavier, C.M.; Silva, J.R.A.; Amaral, A.C.F.; Souza, A.D.L.; Barison, A.; Campos, F.R.; Ferreira, A.G.; Machado, G.M.C.; Leon, L.L.P. A pyrimidine-beta-carboline and other alkaloids from Annona foetida with antileishmanial activity. J. Nat. Prod., 2006, 69(2), 292-294.
[http://dx.doi.org/10.1021/np050422s] [PMID: 16499336]
[94]
Vila-Nova, N.S.; Morais, S.M.; Falcão, M.J.C.; Machado, L.K.A.; Beviláqua, C.M.L.; Costa, I.R.S.; Brasil, N.V.G.P.S.; Andrade Júnior, H.F. Leishmanicidal activity and cytotoxicity of compounds from two Annonacea species cultivated in Northeastern Brazil. Rev. Soc. Bras. Med. Trop., 2011, 44(5), 567-571.
[http://dx.doi.org/10.1590/S0037-86822011000500007] [PMID: 22031071]
[95]
Fotie, J.; Bohle, D.S.; Olivier, M.; Adelaida Gomez, M.; Nzimiro, S. Trypanocidal and antileishmanial dihydrochelerythrine derivatives from Garcinia lucida. J. Nat. Prod., 2007, 70(10), 1650-1653.
[http://dx.doi.org/10.1021/np0702281] [PMID: 17880175]
[96]
Cavalcanti da Silva, E.; Dias Rayol, C.; Medeiros, P.L.; Figueiredo, R.C.B.Q.; Piuvezan, M.R.; Brabosa-Filho, J.M.; Fernandes Marinho, A.; Silva, T.G.; Militão, G.C.G.; Pimentel Cassilhas, A.P.; Paes de Andrade, P. Antileishmanial activity of warifteine: a bisbenzylisoquinoline alkaloid isolated from Cissampelos sympodialis Eichl. (Menispermaceae). ScientificWorldJournal, 2012, 2012, 516408-516408.
[PMID: 22973173]
[97]
Castillo, D.; Sauvain, M.; Rivaud, M.; Jullian, V. In vitro and in vivo activity of benzo[c]phenanthridines against Leishmania amazonensis. Planta Med., 2014, 80(11), 902-906.
[http://dx.doi.org/10.1055/s-0034-1382826] [PMID: 25029171]
[98]
Fuchino, H.; Kawano, M.; Mori-Yasumoto, K.; Sekita, S.; Satake, M.; Ishikawa, T.; Kiuchi, F.; Kawahara, N. In vitro leishmanicidal activity of benzophenanthridine alkaloids from Bocconia pearcei and related compounds. Chem. Pharm. Bull. (Tokyo), 2010, 58(8), 1047-1050.
[http://dx.doi.org/10.1248/cpb.58.1047] [PMID: 20686258]
[99]
Ostan, I.; Saglam, H.; Limoncu, M.E.; Ertabaklar, H.; Toz, S.O.; Ozbel, Y.; Ozbilgin, A. In vitro and in vivo activities of Haplophyllum myrtifolium against Leishmania tropica. New Microbiol., 2007, 30(4), 439-445.
[PMID: 18080680]
[100]
Barreira, J.C.M.; Ferreira, I.C.F.R.; Oliveira, M.B.P.P.; Pereira, J.A. Antioxidant activity and bioactive compounds of ten Portuguese regional and commercial almond cultivars. Food Chem. Toxicol., 2008, 46(6), 2230-2235.
[http://dx.doi.org/10.1016/j.fct.2008.02.024] [PMID: 18400354]
[101]
Coy Barrera, C.A.; Coy Barrera, E.D.; Granados Falla, D.S.; Delgado Murcia, G.; Cuca Suarez, L.E. seco-limonoids and quinoline alkaloids from Raputia heptaphylla and their antileishmanial activity. Chem. Pharm. Bull. (Tokyo), 2011, 59(7), 855-859.
[http://dx.doi.org/10.1248/cpb.59.855] [PMID: 21720036]
[102]
Dos Santos, R.A.N.; Batista, J., Jr; Rosa, S.I.G.; Torquato, H.F.; Bassi, C.L.; Ribeiro, T.A.N.; De Sousa, P.T., Jr; Bessera, Â.M.S.S.; Fontes, C.J.F.; Da Silva, L.E.; Piuvezam, M.R. Leishmanicidal effect of Spiranthera odoratíssima (Rutaceae) and its isolated alkaloid skimmianine occurs by a nitric oxide dependent mechanism. Parasitology, 2011, 138(10), 1224-1233.
[http://dx.doi.org/10.1017/S0031182011001168] [PMID: 21810308]
[103]
Santos, M.F.C.; Harper, P.M.; Williams, D.E.; Mesquita, J.T.; Pinto, É.G.; da Costa-Silva, T.A.; Hajdu, E.; Ferreira, A.G.; Santos, R.A.; Murphy, P.J.; Andersen, R.J.; Tempone, A.G.; Berlinck, R.G.S. Anti-parasitic guanidine and pyrimidine alkaloids from the marine sponge Monanchora arbuscula. J. Nat. Prod., 2015, 78(5), 1101-1112.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00070] [PMID: 25924111]
[104]
Hua, H.; Peng, J.; Fronczek, F.R.; Kelly, M.; Hamann, M.T. Crystallographic and NMR studies of antiinfective tricyclic guanidine alkaloids from the sponge Monanchora unguifera. Bioorg. Med. Chem., 2004, 12(24), 6461-6464.
[http://dx.doi.org/10.1016/j.bmc.2004.09.026] [PMID: 15556763]
[105]
Nkwengoua, E.T.; Ngantchou, I.; Nyasse, B.; Denier, C.; Blonski, C.; Schneider, B. In vitro inhibitory effects of palmatine from Enantia chlorantha on Trypanosoma cruzI and Leishmania infantum. Nat. Prod. Res., 2009, 23(12), 1144-1150.
[http://dx.doi.org/10.1080/14786410902726241] [PMID: 19662580]
[106]
Vieira-Araújo, F.M.; Macedo Rondon, F.C.; Pinto Vieira, Í.G.; Pereira Mendes, F.N.; Carneiro de Freitas, J.C.; Maia de Morais, S. Sinergism between alkaloids piperine and capsaicin with meglumine antimoniate against Leishmania infantum. Exp. Parasitol., 2018, 188, 79-82.
[http://dx.doi.org/10.1016/j.exppara.2018.04.001] [PMID: 29625099]
[107]
Veerareddy, P.R.; Vobalaboina, V.; Nahid, A. Formulation and evaluation of oil-in-water emulsions of piperine in visceral leishmaniasis. Pharmazie, 2004, 59(3), 194-197.
[PMID: 15074591]
[108]
Moreira, F.; Riul, T.; Moreira, M.; Pilon, A.; Dias-Baruffi, M.; Araújo, M.; Lopes, N.; de Oliveira, A. Leishmanicidal effects of piperlongumine (piplartine) and its putative metabolites. Planta Med., 2018, 84(15), 1141-1148.
[http://dx.doi.org/10.1055/a-0614-2680] [PMID: 29763945]
[109]
Ferreira, C.; Soares, D.C.; Barreto-Junior, C.B.; Nascimento, M.T.; Freire-de-Lima, L.; Delorenzi, J.C.; Lima, M.E.F.; Atella, G.C.; Folly, E.; Carvalho, T.M.U.; Saraiva, E.M.; Pinto-da-Silva, L.H. Leishmanicidal effects of piperine, its derivatives, and analogues on Leishmania amazonensis. Phytochemistry, 2011, 72(17), 2155-2164.
[http://dx.doi.org/10.1016/j.phytochem.2011.08.006] [PMID: 21885074]
[110]
Lacerda, R.B.M.; Freitas, T.R.; Martins, M.M.; Teixeira, T.L.; da Silva, C.V.; Candido, P.A.; Oliveira, R.J.; Júnior, C.V.; Bolzani, V.S.; Danuello, A.; Pivatto, M. Isolation, leishmanicidal evaluation and molecular docking simulations of piperidine alkaloids from Senna spectabilis. Bioorg. Med. Chem., 2018, 26(22), 5816-5823.
[http://dx.doi.org/10.1016/j.bmc.2018.10.032] [PMID: 30413343]
[111]
Khaliq, T.; Misra, P.; Gupta, S.; Reddy, K.P.; Kant, R.; Maulik, P.R.; Dube, A.; Narender, T. Peganine hydrochloride dihydrate an orally active antileishmanial agent. Bioorg. Med. Chem. Lett., 2009, 19(9), 2585-2586.
[http://dx.doi.org/10.1016/j.bmcl.2009.03.039] [PMID: 19339182]
[112]
Misra, P.; Khaliq, T.; Dixit, A.; SenGupta, S.; Samant, M.; Kumari, S.; Kumar, A.; Kushawaha, P.K.; Majumder, H.K.; Saxena, A.K.; Narender, T.; Dube, A. Antileishmanial activity mediated by apoptosis and structure-based target study of peganine hydrochloride dihydrate: an approach for rational drug design. J. Antimicrob. Chemother., 2008, 62(5), 998-1002.
[http://dx.doi.org/10.1093/jac/dkn319] [PMID: 18694906]
[113]
Astelbauer, F.; Obwaller, A.; Raninger, A.; Brem, B.; Greger, H.; Duchêne, M.; Wernsdorfer, W.; Walochnik, J. Anti-leishmanial activity of plant-derived acridones, flavaglines, and sulfur-containing amides. Vector Borne Zoonotic Dis., 2011, 11(7), 793-798.
[http://dx.doi.org/10.1089/vbz.2010.0087] [PMID: 21417924]
[114]
Ahua, K.M.; Ioset, J.R.; Ransijn, A.; Mauël, J.; Mavi, S.; Hostettmann, K. Antileishmanial and antifungal acridone derivatives from the roots of Thamnosma rhodesica. Phytochemistry, 2004, 65(7), 963-968.
[http://dx.doi.org/10.1016/j.phytochem.2003.12.020] [PMID: 15081302]
[115]
González, P.; Marín, C.; Rodríguez-González, I.; Hitos, A.B.; Rosales, M.J.; Reina, M.; Díaz, J.G.; González-Coloma, A.; Sánchez-Moreno, M. In vitro activity of C20-diterpenoid alkaloid derivatives in promastigotes and intracellular amastigotes of Leishmania infantum. Int. J. Antimicrob. Agents, 2005, 25(2), 136-141.
[http://dx.doi.org/10.1016/j.ijantimicag.2004.08.010] [PMID: 15664483]
[116]
Di Giorgio, C.; Lamidi, M.; Delmas, F.; Balansard, G.; Ollivier, E. Antileishmanial activity of quinovic acid glycosides and cadambine acid isolated from Nauclea diderrichii. Planta Med., 2006, 72(15), 1396-1402.
[http://dx.doi.org/10.1055/s-2006-951726] [PMID: 17089325]
[117]
Medina, J.M.; Rodrigues, J.C.F.; De Souza, W.; Atella, G.C.; Barrabin, H. Tomatidine promotes the inhibition of 24-alkylated sterol biosynthesis and mitochondrial dysfunction in Leishmania amazonensis promastigotes. Parasitology, 2012, 139(10), 1253-1265.
[http://dx.doi.org/10.1017/S0031182012000522] [PMID: 22716777]
[118]
Abreu Miranda, M.; Tiossi, R.F.J.; da Silva, M.R.; Rodrigues, K.C.; Kuehn, C.C.; Rodrigues Oliveira, L.G.; Albuquerque, S.; McChesney, J.D.; Lezama-Davila, C.M.; Isaac-Marquez, A.P.; Kenupp Bastos, J. In vitro leishmanicidal and cytotoxic activities of the glycoalkaloids from Solanum lycocarpum (Solanaceae) fruits. Chem. Biodivers., 2013, 10(4), 642-648.
[http://dx.doi.org/10.1002/cbdv.201200063] [PMID: 23576350]
[119]
Shyaula, S.L.; Tamang, T.; Ghouri, N.; Adhikari, A.; Marasini, S.; Bajracharya, G.B.; Manandhar, M.D.; Choudhary, M.I. Antileishmanial diterpenoid alkaloids from Aconitum spicatum (Bruhl). Stapf. Nat. Prod. Res., 2016, 30(22), 2590-2593.
[http://dx.doi.org/10.1080/14786419.2015.1114941] [PMID: 26615865]
[120]
Ashok, P.; Ganguly, S.; Murugesan, S. Manzamine alkaloids: isolation, cytotoxicity, antimalarial activity and SAR studies. Drug Discov. Today, 2014, 19(11), 1781-1791.
[http://dx.doi.org/10.1016/j.drudis.2014.06.010] [PMID: 24953707]
[121]
Rao, K.V.; Santarsiero, B.D.; Mesecar, A.D.; Schinazi, R.F.; Tekwani, B.L.; Hamann, M.T. New manzamine alkaloids with activity against infectious and tropical parasitic diseases from an Indonesian sponge. J. Nat. Prod., 2003, 66(6), 823-828.
[http://dx.doi.org/10.1021/np020592u] [PMID: 12828469]
[122]
Nakao, Y.; Shiroiwa, T.; Murayama, S.; Matsunaga, S.; Goto, Y.; Matsumoto, Y.; Fusetani, N. Identification of Renieramycin A as an antileishmanial substance in a marine sponge neopetrosia sp. Mar. Drugs, 2004, 2(2), 55-62.
[http://dx.doi.org/10.3390/md202055]
[123]
Dube, A.; Singh, N.; Saxena, A.; Lakshmi, V. Antileishmanial potential of a marine sponge, Haliclona exigua (Kirkpatrick) against experimental visceral leishmaniasis. Parasitol. Res., 2007, 101(2), 317-324.
[http://dx.doi.org/10.1007/s00436-007-0469-z] [PMID: 17294216]
[124]
Guimarães, L.R.C.; Rodrigues, A.P.D.; Marinho, P.S.B.; Muller, A.H.; Guilhon, G.M.S.; Santos, L.S.; do Nascimento, J.L.M.; Silva, E.O. Activity of the julocrotine, a glutarimide alkaloid from Croton pullei var. glabrior, on Leishmania (L.) amazonensis. Parasitol. Res., 2010, 107(5), 1075-1081.
[http://dx.doi.org/10.1007/s00436-010-1973-0] [PMID: 20661748]
[125]
Roy, S.; Dutta, D.; Satyavarapu, E.M.; Yadav, P.K.; Mandal, C.; Kar, S.; Mandal, C. Mahanine exerts in vitro and in vivo antileishmanial activity by modulation of redox homeostasis. Sci. Rep., 2017, 7(1), 4141-4141.
[http://dx.doi.org/10.1038/s41598-017-03943-y] [PMID: 28646156]
[126]
Azadbakht, M.; Davoodi, A.; Hosseinimehr, S.J.; Keighobadi, M.; Fakhar, M.; Valadan, R.; Faridnia, R.; Emami, S.; Azadbakht, M.; Bakhtiyari, A. Tropolone alkaloids from Colchicum kurdicum (Bornm.) Stef. (Colchicaceae) as the potent novel antileishmanial compounds; purification, structure elucidation, antileishmanial activities and molecular docking studies. Exp. Parasitol., 2020, 213, 107902-107902.
[http://dx.doi.org/10.1016/j.exppara.2020.107902] [PMID: 32353376]
[127]
Ogungbe, I.V.; Ng, J.D.; Setzer, W.N. Interactions of antiparasitic alkaloids with Leishmania protein targets: a molecular docking analysis. Future Med. Chem., 2013, 5(15), 1777-1799.
[http://dx.doi.org/10.4155/fmc.13.114] [PMID: 24144413]
[128]
Kumar, A.; Chowdhury, S. R.; Jatte, K. K.; Chakrabarti, T.; Majumder, H. K.; Jha, T.; Mukhopadhyay, S. Anthocephaline, a new indole alkaloid and cadambine, a potent inhibitor of DNA topoisomerase IB of Leishmania donovani (LdTOP1LS), isolated from Anthocephalus cadamba. Nat. Product Commun. 2015, 10(2), 1934578X1501000221.
[129]
Hazra, S.; Ghosh, S.; Debnath, S.; Seville, S.; Prajapati, V.K.; Wright, C.W.; Sundar, S.; Hazra, B. Antileishmanial activity of cryptolepine analogues and apoptotic effects of 2,7-dibromocryptolepine against Leishmania donovani promastigotes. Parasitol. Res., 2012, 111(1), 195-203.
[http://dx.doi.org/10.1007/s00436-012-2818-9] [PMID: 22297912]
[130]
Turabekova, M.A.; Vinogradova, V.I.; Rasulev, B.F.; Levkovich, M.G.; Werbovetz, K.; Capers, J.; Abdullaev, N.D. Antiparasitic activity of certain isoquinoline alkaloids and their hypothetical complexes with oligonucleotides. Chem. Nat. Compd., 2008, 44(3), 341-345.
[http://dx.doi.org/10.1007/s10600-008-9057-4]
[131]
Malebo, H.M.; Wenzler, T.; Cal, M.; Swaleh, S.M.; Omolo, M.O.; Hassanali, A.; Séquin, U.; Häussinger, D.; Dalsgaard, P.; Hamburger, M.; Brun, R.; Ndiege, I.O. Anti-protozoal activity of aporphine and protoberberine alkaloids from Annickia kummeriae (Engl. & Diels) Setten & Maas (Annonaceae). BMC Complement. Altern. Med., 2013, 13(1), 48.
[http://dx.doi.org/10.1186/1472-6882-13-48] [PMID: 23445637]
[132]
Osorio, E.; Aguilera, C.; Naranjo, N.; Marín, M.; Muskus, C. Biochemical characterization of the bifunctional enzyme dihydrofolate reductase-thymidylate synthase from Leishmania (Viannia) and its evaluation as a drug target. Biomédica, 2013, 33(3), 393-401.
[PMID: 24652175]
[133]
Calla-Magariños, J.; Quispe, T.; Giménez, A.; Freysdottir, J.; Troye-Blomberg, M.; Fernández, C. Quinolinic alkaloids from Galipea longiflora Krause suppress production of proinflammatory cytokines in vitro and control inflammation in vivo upon Leishmania infection in mice. Scand. J. Immunol., 2013, 77(1), 30-38.
[http://dx.doi.org/10.1111/sji.12010] [PMID: 23126625]
[134]
Hung, J.; Castillo, J.; Jiménez, G.; Hasegawa, M.; Rodriguez, M. Spectroscopic study of antileishmanial drug incubated in the promastigotes of Leishmania mexicana. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2003, 59(13), 3177-3183.
[http://dx.doi.org/10.1016/S1386-1425(03)00136-7] [PMID: 14583293]
[135]
Sharma, M.; Chauhan, K.; Shivahare, R.; Vishwakarma, P.; Suthar, M.K.; Sharma, A.; Gupta, S.; Saxena, J.K.; Lal, J.; Chandra, P.; Kumar, B.; Chauhan, P.M.S. Discovery of a new class of natural product-inspired quinazolinone hybrid as potent antileishmanial agents. J. Med. Chem., 2013, 56(11), 4374-4392.
[http://dx.doi.org/10.1021/jm400053v] [PMID: 23611626]
[136]
Chibli, L.A.; Schmidt, T.J.; Nonato, M.C.; Calil, F.A.; Da Costa, F.B. Natural products as inhibitors of Leishmania major dihydroorotate dehydrogenase. Eur. J. Med. Chem., 2018, 157, 852-866.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.033] [PMID: 30145372]
[137]
Akhoundi, M.; Sereno, D.; Marteau, A.; Bruel, C.; Izri, A. Who bites me? A tentative discriminative key to diagnose hematophagous ectoparasites biting using clinical manifestations. Diagnostics (Basel), 2020, 10(5), 308.
[http://dx.doi.org/10.3390/diagnostics10050308] [PMID: 32429276]
[138]
Espinosa, O.A.; Serrano, M.G.; Camargo, E.P.; Teixeira, M.M.G.; Shaw, J.J. An appraisal of the taxonomy and nomenclature of trypanosomatids presently classified as Leishmania and Endotrypanum. Parasitology, 2018, 145(4), 430-442.
[http://dx.doi.org/10.1017/S0031182016002092] [PMID: 27976601]
[139]
Steverding, D. The history of leishmaniasis. Parasit. Vectors, 2017, 10(1), 82.
[http://dx.doi.org/10.1186/s13071-017-2028-5] [PMID: 28202044]
[140]
del Rayo Camacho, M.; Kirby, G.C.; Warhurst, D.C.; Croft, S.L.; Phillipson, J.D. Oxoaporphine alkaloids and quinones from Stephania dinklagei and evaluation of their antiprotozoal activities. Planta Med., 2000, 66(5), 478-480.
[http://dx.doi.org/10.1055/s-2000-8597] [PMID: 10909274]
[141]
Ferreira, M.E.; Rojas de Arias, A.; Torres de Ortiz, S.; Inchausti, A.; Nakayama, H.; Thouvenel, C.; Hocquemiller, R.; Fournet, A. Leishmanicidal activity of two canthin-6-one alkaloids, two major constituents of Zanthoxylum chiloperone var. angustifolium. J. Ethnopharmacol., 2002, 80(2-3), 199-202.
[http://dx.doi.org/10.1016/S0378-8741(02)00025-9] [PMID: 12007711]
[142]
Camacho, M.R.; Phillipson, J.D.; Croft, S.L.; Rock, P.; Marshall, S.J.; Schiff, P.L., Jr In vitro activity of Triclisia patens and some bisbenzylisoquinoline alkaloids against Eishmania donovani andTrypanosoma brucei. Phytother. Res., 2002, 16(5), 432-436.
[http://dx.doi.org/10.1002/ptr.929] [PMID: 12203262]
[143]
Labraña, J.; Machocho, A.K.; Kricsfalusy, V.; Brun, R.; Codina, C.; Viladomat, F.; Bastida, J. Alkaloids from Narcissus angustifolius subsp. transcarpathicus (Amaryllidaceae). Phytochemistry, 2002, 60(8), 847-852.
[http://dx.doi.org/10.1016/S0031-9422(02)00154-1] [PMID: 12150811]
[144]
Bringmann, G.; Wohlfarth, M.; Rischer, H.; Schlauer, J.; Brun, R. Extract screening by HPLC coupled to MS-MS, NMR, and CD: a dimeric and three monomeric naphthylisoquinoline alkaloids from Ancistrocladus griffithii. Phytochemistry, 2002, 61(2), 195-204.
[http://dx.doi.org/10.1016/S0031-9422(02)00217-0] [PMID: 12169315]
[145]
Williams, C.; Espinosa, O.A.; Montenegro, H.; Cubilla, L.; Capson, T.L.; Ortega-Barría, E.; Romero, L.I. Hydrosoluble formazan XTT: its application to natural products drug discovery for Leishmania. J. Microbiol. Methods, 2003, 55(3), 813-816.
[http://dx.doi.org/10.1016/j.mimet.2003.08.013] [PMID: 14607426]
[146]
Bringmann, G.; Brun, R.; Kaiser, M.; Neumann, S. Synthesis and antiprotozoal activities of simplified analogs of naphthylisoquinoline alkaloids. Eur. J. Med. Chem., 2008, 43(1), 32-42.
[http://dx.doi.org/10.1016/j.ejmech.2007.03.003] [PMID: 17475370]
[147]
Copp, B.R.; Kayser, O.; Brun, R.; Kiderlen, A.F. Antiparasitic activity of marine pyridoacridone alkaloids related to the ascididemins. Planta Med., 2003, 69(6), 527-531.
[http://dx.doi.org/10.1055/s-2003-40640] [PMID: 12865971]
[148]
Bringmann, G.; Saeb, W.; Rückert, M.; Mies, J.; Michel, M.; Mudogo, V.; Brun, R.; Ancistrolikokine, D. Ancistrolikokine D, a 5,8′-coupled naphthylisoquinoline alkaloid, and related natural products from Ancistrocladus likoko. Phytochemistry, 2003, 62(4), 631-636.
[http://dx.doi.org/10.1016/S0031-9422(02)00570-8] [PMID: 12560038]
[149]
Bringmann, G.; Dreyer, M.; Faber, J.H.; Dalsgaard, P.W. Dan Stærk; Jaroszewski, J.W.; Ndangalasi, H.; Mbago, F.; Brun, R.; Christensen, S.B. Ancistrotanzanine C and related 5,1′- and 7,3′-coupled naphthylisoquinoline alkaloids from Ancistrocladus tanzaniensis. J. Nat. Prod., 2004, 67(5), 743-748.
[http://dx.doi.org/10.1021/np0340549] [PMID: 15165131]
[150]
Bringmann, G.; Dreyer, M.; Rischer, H.; Wolf, K.; Hadi, H.A.; Brun, R.; Meimberg, H.; Heubl, G.; Ancistrobenomine, A. Ancistrobenomine A, the first naphthylisoquinoline oxygenated at me-3, and related 5,1‘-coupled alkaloids, from the “new” plant species Ancistrocladus b enomensis. J. Nat. Prod., 2004, 67(12), 2058-2062.
[http://dx.doi.org/10.1021/np0497651] [PMID: 15620251]
[151]
Ponte-Sucre, A.; Faber, J.H.; Gulder, T.; Kajahn, I.; Pedersen, S.E.H.; Schultheis, M.; Bringmann, G.; Moll, H. Activities of naphthylisoquinoline alkaloids and synthetic analogs against Leishmania major. Antimicrob. Agents Chemother., 2007, 51(1), 188-194.
[http://dx.doi.org/10.1128/AAC.00936-06] [PMID: 17088484]
[152]
Fournet, A.; Ferreira, M.E.; Rojas de Arias, A.; Guy, I.; Guinaudeau, H.; Heinzen, H. Phytochemical and antiprotozoal activity of Ocotea lancifolia. Fitoterapia, 2007, 78(5), 382-384.
[http://dx.doi.org/10.1016/j.fitote.2007.03.003] [PMID: 17499454]
[153]
Reina, M.; Ruiz-Mesia, W.; Ruiz-Mesia, L.; Martínez-Díaz, R.; González-Coloma, A. Indole alkaloids from Aspidosperma rigidum and A. schultesii and their antiparasitic effects. Z. Naturforsch. C J. Biosci., 2011, 66(5-6), 225-234.
[http://dx.doi.org/10.1515/znc-2011-5-605] [PMID: 21812339]
[154]
Maurya, R.; Gupta, P.; Chand, K.; Kumar, M.; Dixit, P.; Singh, N.; Dube, A. Constituents of Tinospora sinensis and their antileishmanial activity against Leishmania donovani. Nat. Prod. Res., 2009, 23(12), 1134-1143.
[http://dx.doi.org/10.1080/14786410802682239] [PMID: 19662579]
[155]
Saha, P.; Sen, R.; Hariharan, C.; Kumar, D.; Das, P.; Chatterjee, M. Berberine chloride causes a caspase-independent, apoptotic-like death in Leishmania donovani promastigotes. Free Radic. Res., 2009, 43(11), 1101-1110.
[http://dx.doi.org/10.1080/10715760903186124] [PMID: 19669998]
[156]
da Silva, D.B.; Tulli, E.C.O.; Militão, G.C.G.; Costa-Lotufo, L.V.; Pessoa, C.; de Moraes, M.O.; Albuquerque, S.; de Siqueira, J.M. The antitumoral, trypanocidal and antileishmanial activities of extract and alkaloids isolated from Duguetia furfuracea. Phytomedicine, 2009, 16(11), 1059-1063.
[http://dx.doi.org/10.1016/j.phymed.2009.03.019] [PMID: 19423311]
[157]
Samoylenko, V.; Khan, S. I.; Jacob, M. R.; Tekwani, B. L.; Walker, L. A.; Hufford, C. D.; Muhammad, I. Bioactive (+)-manzamine A and (+)-8-hydroxymanzamine A tertiary bases and salts from Acanthostrongylophora ingens and their preparations. Nat. Product Commun. 2009, 4(2), 1934578X0900400204.
[158]
Ferreira, M.E.; Rojas de Arias, A.; Yaluff, G.; de Bilbao, N.V.; Nakayama, H.; Torres, S.; Schinini, A.; Guy, I.; Heinzen, H.; Fournet, A. Antileishmanial activity of furoquinolines and coumarins from Helietta apiculata. Phytomedicine, 2010, 17(5), 375-378.
[http://dx.doi.org/10.1016/j.phymed.2009.09.009] [PMID: 19879121]
[159]
Orhan, I.; Şener, B.; Kaiser, M.; Brun, R.; Tasdemir, D. Inhibitory activity of marine sponge-derived natural products against parasitic protozoa. Mar. Drugs, 2010, 8(1), 47-58.
[http://dx.doi.org/10.3390/md8010047] [PMID: 20161970]
[160]
Mwangi, E.; Keriko, J.; Machocho, A.; Wanyonyi, A.; Malebo, H.; Chhabra, S.; Tarus, P. Antiprotozoal activity and cytotoxicity of metabolites from leaves of Teclea trichocarpa. J. Med. Plants Res., 2010, 4(9), 726-731.
[161]
Scala, F.; Fattorusso, E.; Menna, M.; Taglialatela-Scafati, O.; Tierney, M.; Kaiser, M.; Tasdemir, D. Bromopyrrole alkaloids as lead compounds against protozoan parasites. Mar. Drugs, 2010, 8(7), 2162-2174.
[http://dx.doi.org/10.3390/md8072162] [PMID: 20714430]
[162]
Ahua, K.M.; Ioset, J.R.; Ioset, K.N.; Diallo, D.; Mauël, J.; Hostettmann, K. Antileishmanial activities associated with plants used in the Malian traditional medicine. J. Ethnopharmacol., 2007, 110(1), 99-104.
[http://dx.doi.org/10.1016/j.jep.2006.09.030] [PMID: 17097842]
[163]
da Silva, E. Silva, J.V.; Brigido, H.P.C.; de Albuquerque, K.C.O.; Carvalho, J.M.; Reis, J.M.; Faria, L.V.; Coelho-Ferreira, M.; Silveira, F.T.; da Silva Carneiro, A.; Percário, S.; do Rosário Marinho, A.M.; Dolabela, M.F. Flavopereirine-an alkaloid derived from Geissospermum vellosii-Presents leishmanicidal activity in vitro. Molecules, 2019, 24(4), 785.
[PMID: 30795632]
[164]
Rahman, F.; Ali, R.; Tabrez, S.; Mobeen, A.; Akand, S.K.; Arish, M.; AlAsmari, A.F.; Ali, N.; Rub, A. Exploration of potential inhibitors for autophagy‐related protein 8 as antileishmanial agents. Chem. Biol. Drug Des., 2022, 99(6), 816-827.
[http://dx.doi.org/10.1111/cbdd.14029] [PMID: 35147279]
[165]
dos Santos Thomazelli, A.P.F.; Tomiotto-Pellissier, F.; da Silva, S.S.; Panis, C.; Orsini, T.M.; Cataneo, A.H.D.; Miranda-Sapla, M.M.; Custódio, L.A.; Tatakihara, V.L.H.; Bordignon, J.; Silveira, G.F.; Sforcin, J.M.; Pavanelli, W.R.; Conchon-Costa, I. Brazilian propolis promotes immunomodulation on human cells from American Tegumentar Leishmaniasis patients and healthy donors infected with L. braziliensis. Cell. Immunol., 2017, 311, 22-27.
[http://dx.doi.org/10.1016/j.cellimm.2016.09.014] [PMID: 27702443]
[166]
Mollataghi, A.; Coudiere, E.; Hadi, A.H.A.; Mukhtar, M.R.; Awang, K.; Litaudon, M.; Ata, A. Anti-acetylcholinesterase, anti-α-glucosidase, anti-leishmanial and anti-fungal activities of chemical constituents of Beilschmiedia species. Fitoterapia, 2012, 83(2), 298-302.
[http://dx.doi.org/10.1016/j.fitote.2011.11.009] [PMID: 22119096]
[167]
Santos, V.A.F.F.M.; Regasini, L.O.; Nogueira, C.R.; Passerini, G.D.; Martinez, I.; Bolzani, V.S.; Graminha, M.A.S.; Cicarelli, R.M.B.; Furlan, M. Antiprotozoal sesquiterpene pyridine alkaloids from Maytenus ilicifolia. J. Nat. Prod., 2012, 75(5), 991-995.
[http://dx.doi.org/10.1021/np300077r] [PMID: 22559947]
[168]
Calla-Magariños, J.; Fernández, C.; Troye-Blomberg, M.; Freysdottir, J. Alkaloids from Galipea longiflora Krause modify the maturation of human dendritic cells and their ability to stimulate allogeneic CD4+ T cells. Int. Immunopharmacol., 2013, 16(1), 79-84.
[http://dx.doi.org/10.1016/j.intimp.2013.03.022] [PMID: 23562757]
[169]
Callejon, D.; Riul, T.; Feitosa, L.; Guaratini, T.; Silva, D.; Adhikari, A.; Shrestha, R.; Marques, L.; Baruffi, M.; Lopes, J.; Lopes, N. Leishmanicidal evaluation of tetrahydroprotoberberine and spirocyclic erythrina-alkaloids. Molecules, 2014, 19(5), 5692-5703.
[http://dx.doi.org/10.3390/molecules19055692] [PMID: 24802983]
[170]
Rocha, L.G.; Almeida, J.R.G.S.; Macêdo, R.O.; Barbosa-Filho, J.M. A review of natural products with antileishmanial activity. Phytomedicine, 2005, 12(6-7), 514-535.
[http://dx.doi.org/10.1016/j.phymed.2003.10.006] [PMID: 16008131]
[171]
Barrosa, K.; Pinto, E.; Tempone, A.; Martins, E.; Lago, J. Alchornedine, a new anti-trypanosomal guanidine alkaloid from Alchornea glandulosa. Planta Med., 2014, 80(15), 1310-1314.
[http://dx.doi.org/10.1055/s-0034-1382994] [PMID: 25177846]
[172]
Pan, L.; Terrazas, C.; Acuña, U.M.; Ninh, T.N.; Chai, H.; Carcache de Blanco, E.J.; Soejarto, D.D.; Satoskar, A.R.; Kinghorn, A.D. Bioactive indole alkaloids isolated from Alstonia angustifolia. Phytochem. Lett., 2014, 10, liv-lix.
[http://dx.doi.org/10.1016/j.phytol.2014.06.010] [PMID: 25584095]
[173]
de Albuquerque Melo, G.M.; Silva, M.C.R.; Guimarães, T.P.; Pinheiro, K.M.; da Matta, C.B.B.; de Queiroz, A.C.; Pivatto, M.; da Silva Bolzani, V.; Alexandre-Moreira, M.S.; Viegas, C., Jr Leishmanicidal activity of the crude extract, fractions and major piperidine alkaloids from the flowers of Senna spectabilis. Phytomedicine, 2014, 21(3), 277-281.
[http://dx.doi.org/10.1016/j.phymed.2013.09.024] [PMID: 24188737]
[174]
Santos, A.O.; Ueda-Nakamura, T.; Dias Filho, B.P.; Junior, V.F.V.; Pinto, A.C.; Nakamura, C.V.J.J.o.e. Effect of Brazilian copaiba oils on Leishmania amazonensis. J. Ethnopharmacol., 2008, 120(2), 204-208.
[http://dx.doi.org/10.1016/j.jep.2008.08.007]
[175]
Naman, C.B.; Gupta, G.; Varikuti, S.; Chai, H.; Doskotch, R.W.; Satoskar, A.R.; Kinghorn, A.D. Northalrugosidine is a bisbenzyltetrahydroisoquinoline alkaloid from Thalictrum alpinum with in vivo antileishmanial activity. J. Nat. Prod., 2015, 78(3), 552-556.
[http://dx.doi.org/10.1021/np501028u] [PMID: 25629555]
[176]
Kumar, A.; Chowdhury, S.R.; Sarkar, T.; Chakrabarti, T.; Majumder, H.K.; Jha, T.; Mukhopadhyay, S. A new bisbenzylisoquinoline alkaloid isolated from Thalictrum foliolosum, as a potent inhibitor of DNA topoisomerase IB of Leishmania donovani. Fitoterapia, 2016, 109, 25-30.
[http://dx.doi.org/10.1016/j.fitote.2015.11.021] [PMID: 26625837]
[177]
Lorenzo, V.; Lúcio, A.; Scotti, L.; Tavares, J.; Filho, J.; Lima, T.; Rocha, J.; Scotti, M. Structure-and ligand-based approaches to evaluate aporphynic alkaloids from annonaceae as multi-target agent against Leishmania donovani. Curr. Pharm. Des., 2016, 22(34), 5196-5203.
[http://dx.doi.org/10.2174/1381612822666160513144853] [PMID: 27174814]
[178]
Lezama-Dávila, C.M.; McChesney, J.D.; Bastos, J.K.; Miranda, M.A.; Tiossi, R.F.; da Costa, J.C.; Bentley, M.V.; Gaitan-Puch, S.E.; Isaac-Márquez, A.P. A new antileishmanial preparation of combined solamargine and solasonine heals cutaneous leishmaniasis through different immunochemical pathways. Antimicrob. Agents Chemother., 2016, 60(5), 2732-2738.
[http://dx.doi.org/10.1128/AAC.02804-15] [PMID: 26883711]
[179]
Tullius Scotti, M.; Scotti, L.; Ishiki, H.; Fávaro Ribeiro, F.; Marques Duarte da Cruz, R.; Pedrosa de Oliveira, M.; Jaime Bezerra Mendonça, F. Natural products as a source for antileishmanial and antitrypanosomal agents. Comb. Chem. High Throughput Screen., 2016, 19(7), 537-553.
[http://dx.doi.org/10.2174/1386207319666160506123921] [PMID: 27682867]
[180]
Zaheer, Z.; Khan, F.A.K.; Sangshetti, J.N.; Patil, R.H. Expeditious synthesis, antileishmanial and antioxidant activities of novel 3-substituted-4-hydroxycoumarin derivatives. Chin. Chem. Lett., 2016, 27(2), 287-294.
[http://dx.doi.org/10.1016/j.cclet.2015.10.028]
[181]
Herraiz, T.; Guillén, H.; Arán, V.J.; Salgado, A. Identification, occurrence and activity of quinazoline alkaloids in Peganum harmala. Food Chem. Toxicol., 2017, 103, 261-269.
[http://dx.doi.org/10.1016/j.fct.2017.03.010] [PMID: 28279698]
[182]
Tallini, L.; Andrade, J.; Kaiser, M.; Viladomat, F.; Nair, J.; Zuanazzi, J.; Bastida, J. Alkaloid constituents of the Amaryllidaceae plant Amaryllis belladonna L. Molecules, 2017, 22(9), 1437.
[http://dx.doi.org/10.3390/molecules22091437] [PMID: 28858260]
[183]
França, P.H.; da Silva-Júnior, E.F.; Santos, B.V.; Alexandre-Moreira, M.S.; Quintans-Junior, L.J.; de Aquino, T.M.; de Araujo-Junior, J.X. Antileishmanial marine compounds: A review. Rec. Nat. Prod., 2017, 11(2), 92.
[184]
Yang, F.; Hamann, M.T.; Zou, Y.; Zhang, M.Y.; Gong, X.B.; Xiao, J.R.; Chen, W.S.; Lin, H.W. Antimicrobial metabolites from the Paracel Islands sponge Agelas mauritiana. J. Nat. Prod., 2012, 75(4), 774-778.
[http://dx.doi.org/10.1021/np2009016] [PMID: 22360686]
[185]
Simoben, C.V.; Ntie-Kang, F.; Akone, S.H.; Sippl, W. Compounds from African medicinal plants with activities against selected parasitic diseases: Schistosomiasis, trypanosomiasis and leishmaniasis. Nat. Prod. Bioprospect., 2018, 8(3), 151-169.
[http://dx.doi.org/10.1007/s13659-018-0165-y] [PMID: 29744736]
[186]
Tshitenge, D.T.; Feineis, D.; Mudogo, V.; Kaiser, M.; Brun, R.; Seo, E.J.; Efferth, T.; Bringmann, G. Mbandakamine-type naphthylisoquinoline dimers and related alkaloids from the Central African liana Ancistrocladus ealaensis with antiparasitic and antileukemic activities. J. Nat. Prod., 2018, 81(4), 918-933.
[http://dx.doi.org/10.1021/acs.jnatprod.7b01041] [PMID: 29560715]
[187]
Osei, E.; Kwain, S.; Mawuli, G.; Anang, A.; Owusu, K.; Camas, M.; Camas, A.; Ohashi, M.; Alexandru-Crivac, C.N.; Deng, H.; Jaspars, M.; Kyeremeh, K. Paenidigyamycin A, potent antiparasitic imidazole alkaloid from the Ghanaian paenibacillus sp. DE2SH. Mar. Drugs, 2018, 17(1), 9.
[http://dx.doi.org/10.3390/md17010009] [PMID: 30586918]