Antioxidant and Antiangiogenic Effect of Homoleptic Palladium (II) Carboxamide Complex Loaded Chitosan Modified PLGA Nanoparticles: In vitro Evaluation and In vivo Chick Embryo Chorioallantoic Membrane (CAM) Assay

Page: [1158 - 1170] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Background: Angiogenesis is a natural and complex mechanism that is regulated by biomolecules formed by the body. Medicinal inorganic chemistry is increasing in popularity due to metal-based compounds, offering significant chances and possibilities for building novel anti-cancer medicines with promising anti-angiogenic effects.

Objective: This study aimed to examine the successful results obtained from treatments with nanoparticle formulations of active drug substances.

Methods: The nanoprecipitation/solvent displacement approach, with some changes, was used to make PLGA-based NPs.

Result: The particle size obtained in the blank formulation was 82.4-473.9 nm, while the particle size in the API-loaded NPs was 193.2-678.0 nm. Among the formulations, NP-950-P, NP-390-P, and NP-350- CSP2 were found to have significant antioxidant potentials with IC50 values of 3.025, 5.198, and 7.4242 μg.mL-1, respectively, when compared to Vit C. According to the microscopic evaluations, NP-950-P (including Pd(PyCrbx)2Cl2 as 50 μg.pellet-1) and NP-950-CSP2 (including Pd(PyCrbx)2Cl2 as 50 μg.pellet-1) showed strong anti-angiogenic effect whereas the other NP formulations showed weak antiangiogenic effect when compared with the positive control (±)-Thalidomide at the concentration of 50 μg.pellet-1.

Conclusion: When the results were examined, it was found that nanoscale drug carrier systems were prepared, and high antioxidant activity and anti-angiogenesis activity were detected, especially in nanoparticles prepared with 950. As per our knowledge, it is the first study in this field that will bring a new perspective to cancer treatment.

[1]
İlem-Özdemir, D.; Karavana, S.Y.; Şenyiğit, Z.A.; Çalışkan, Ç.; Ekinci, M.; Asikoglu, M.; Baloğlu, E. Radiolabeling and cell incorporation studies of gemcitabine HCl microspheres on bladder cancer and papilloma cell line. J. Radioanal. Nucl. Chem., 2016, 310(2), 515-522.
[http://dx.doi.org/10.1007/s10967-016-4805-6]
[2]
Eki̇nci̇, M.; İlem-Özdemir, D. Nanoteranostikler. Ankara Univers. Eczacilik Fakult. Dergisi, 2021, 45, 131-155.
[http://dx.doi.org/10.33483/jfpau.717067]
[3]
Sedrak, M.S.; Freedman, R.A.; Cohen, H.J.; Muss, H.B.; Jatoi, A.; Klepin, H.D.; Wildes, T.M.; Le-Rademacher, J.G.; Kimmick, G.G.; Tew, W.P.; George, K.; Padam, S.; Liu, J.; Wong, A.R.; Lynch, A.; Djulbegovic, B.; Mohile, S.G.; Dale, W. Older adult participation in cancer clinical trials: A systematic review of barriers and interventions. CA Cancer J. Clin., 2021, 71(1), 78-92.
[http://dx.doi.org/10.3322/caac.21638] [PMID: 33002206]
[4]
Casado, J. Proteogenomics methods for translational cancer research. Doctoral Dissertation. Research Program in Systems Oncology.University of Helsinki, Finland, April 2021.
[5]
Carmeliet, P.; Jain, R.K. Angiogenesis in cancer and other diseases. Nature, 2000, 407(6801), 249-257.
[http://dx.doi.org/10.1038/35025220] [PMID: 11001068]
[6]
Nishida, N.; Yano, H.; Nishida, T.; Kamura, T.; Kojiro, M. Angiogenesis in cancer. Vasc. Health Risk Manag., 2006, 2(3), 213-219.
[http://dx.doi.org/10.2147/vhrm.2006.2.3.213] [PMID: 17326328]
[7]
Yang, Y.; Sun, M.; Wang, L.; Jiao, B. HIFs, angiogenesis, and cancer. J. Cell. Biochem., 2013, 114(5), 967-974.
[http://dx.doi.org/10.1002/jcb.24438] [PMID: 23225225]
[8]
Carmeliet, P. Mechanisms of angiogenesis and arteriogenesis. Nat. Med., 2000, 6(4), 389-395.
[http://dx.doi.org/10.1038/74651] [PMID: 10742145]
[9]
Rajabi, M.; Mousa, S. The role of angiogenesis in cancer treatment. Biomedicines, 2017, 5(4), 34.
[http://dx.doi.org/10.3390/biomedicines5020034] [PMID: 28635679]
[10]
Helmlinger, G.; Endo, M.; Ferrara, N.; Hlatky, L.; Jain, R.K. Formation of endothelial cell networks. Nature, 2000, 405(6783), 139-141.
[http://dx.doi.org/10.1038/35012132] [PMID: 10821260]
[11]
Hansen-Algenstaedt, N.; Stoll, B.R.; Padera, T.P.; Dolmans, D.E.; Hicklin, D.J.; Fukumura, D.; Jain, R.K. Tumor oxygenation in hormone-dependent tumors during vascular endothelial growth factor receptor-2 blockade, hormone ablation, and chemotherapy. Cancer Res., 2000, 60(16), 4556-4560.
[PMID: 10969807]
[12]
Zhu, S.; Ye, L.; Bennett, S.; Xu, H.; He, D.; Xu, J. Molecular structure, gene expression and functional role of WFDC1 in angiogenesis and cancer. Cell Biochem. Funct., 2021, 39(5), 588-595.
[http://dx.doi.org/10.1002/cbf.3624] [PMID: 33615507]
[13]
Bai, J.Y.; Jin, B.; Ma, J.B.; Liu, T.J.; Yang, C.; Chong, Y.; Wang, X.; He, D.; Guo, P. HOTAIR and androgen receptor synergistically increase GLI2 transcription to promote tumor angiogenesis and cancer stemness in renal cell carcinoma. Cancer Lett., 2021, 498, 70-79.
[http://dx.doi.org/10.1016/j.canlet.2020.10.031] [PMID: 33157157]
[14]
Yousefi, H.; Vatanmakanian, M.; Mahdiannasser, M.; Mashouri, L.; Alahari, N.V.; Monjezi, M.R.; Ilbeigi, S.; Alahari, S.K. Understanding the role of integrins in breast cancer invasion, metastasis, angiogenesis, and drug resistance. Oncogene, 2021, 40(6), 1043-1063.
[http://dx.doi.org/10.1038/s41388-020-01588-2] [PMID: 33420366]
[15]
Zhou, L.; Yin, R.; Gao, N.; Sun, H.; Chen, D.; Cai, Y.; Ren, L.; Yang, L.; Zuo, Z.; Zhang, H.; Zhao, J. Oligosaccharides from fucosylated glycosaminoglycan prevent breast cancer metastasis in mice by inhibiting heparanase activity and angiogenesis. Pharmacol. Res., 2021, 166, 105527.
[http://dx.doi.org/10.1016/j.phrs.2021.105527] [PMID: 33667689]
[16]
Yin, H.; Yu, S.; Xie, Y.; Dai, X.; Dong, M.; Sheng, C.; Hu, J. Cancer-associated fibroblasts-derived exosomes upregulate microRNA-135b-5p to promote colorectal cancer cell growth and angiogenesis by inhibiting thioredoxin-interacting protein. Cell. Signal., 2021, 84, 110029.
[http://dx.doi.org/10.1016/j.cellsig.2021.110029] [PMID: 33932496]
[17]
Xue, R.; Sheng, Y.; Duan, X.; Yang, Y.; Ma, S.; Xu, J.; Wei, N.; Shang, X.; Li, F.; Wan, J.; Qin, Z. Tie2‐expressing monocytes as a novel angiogenesis‐related cellular biomarker for non‐small cell lung cancer. Int. J. Cancer, 2021, 148(6), 1519-1528.
[http://dx.doi.org/10.1002/ijc.33381] [PMID: 33152113]
[18]
Leng, Y.; Chen, Z.; Ding, H.; Zhao, X.; Qin, L.; Pan, Y. Overexpression of microRNA-29b inhibits epithelial-mesenchymal transition and angiogenesis of colorectal cancer through the ETV4/ERK/EGFR axis. Cancer Cell Int., 2021, 21(1), 17.
[http://dx.doi.org/10.1186/s12935-020-01700-2] [PMID: 33407520]
[19]
Huang, Y.J.; Nan, G.X. Oxidative stress-induced angiogenesis. J. Clin. Neurosci., 2019, 63, 13-16.
[http://dx.doi.org/10.1016/j.jocn.2019.02.019] [PMID: 30837109]
[20]
Tertil, M.; Jozkowicz, A.; Dulak, J. Oxidative stress in tumor angiogenesis-therapeutic targets. Curr. Pharm. Des., 2010, 16(35), 3877-3894.
[http://dx.doi.org/10.2174/138161210794454969] [PMID: 21158725]
[21]
Kim, Y.W.; Byzova, T.V. Oxidative stress in angiogenesis and vascular disease. Blood, 2014, 123(5), 625-631.
[http://dx.doi.org/10.1182/blood-2013-09-512749] [PMID: 24300855]
[22]
Raj, S.; Khurana, S.; Choudhari, R.; Kesari, K.K.; Kamal, M.A.; Garg, N.; Ruokolainen, J.; Das, B.C.; Kumar, D. Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy. Semin. Cancer Biol., 2021, 69, 166-177.
[http://dx.doi.org/10.1016/j.semcancer.2019.11.002] [PMID: 31715247]
[23]
Gagliardi, A.; Giuliano, E.; Venkateswararao, E.; Fresta, M.; Bulotta, S.; Awasthi, V.; Cosco, D. Biodegradable polymeric nanoparticles for drug delivery to solid tumors. Front. Pharmacol., 2021, 12, 601626.
[http://dx.doi.org/10.3389/fphar.2021.601626] [PMID: 33613290]
[24]
Venkatraman, S.S.; Ma, L.L.; Natarajan, J.V.; Chattopadhyay, S. Polymer- and liposome-based nanoparticles in targeted drug delivery. Front. Biosci., 2010, 2(3), 801-814.
[http://dx.doi.org/10.2741/s103] [PMID: 20515826]
[25]
Goodall, S.; Jones, M.L.; Mahler, S. Monoclonal antibody-targeted polymeric nanoparticles for cancer therapy-future prospects. J. Chem. Technol. Biotechnol., 2015, 90(7), 1169-1176.
[http://dx.doi.org/10.1002/jctb.4555]
[26]
Sarcan, E.T.; Silindir-Gunay, M.; Ozer, A.Y. Theranostic polymeric nanoparticles for NIR imaging and photodynamic therapy. Int. J. Pharm., 2018, 551(1-2), 329-338.
[http://dx.doi.org/10.1016/j.ijpharm.2018.09.019] [PMID: 30244148]
[27]
Cruz, L.J.; van Dijk, T.; Vepris, O.; Li, T.M.W.Y.; Schomann, T.; Baldazzi, F.; Kurita, R.; Nakamura, Y.; Grosveld, F.; Philipsen, S.; Eich, C. PLGA-nanoparticles for intracellular delivery of the CRISPR-complex to elevate fetal globin expression in erythroid cells. Biomaterials, 2021, 268, 120580.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120580] [PMID: 33321292]
[28]
Oizumi, I.; Hamai, R.; Shiwaku, Y.; Mori, Y.; Anada, T.; Baba, K.; Miyatake, N.; Hamada, S.; Tsuchiya, K.; Nishimura, S.; Itoi, E.; Suzuki, O. Impact of simultaneous hydrolysis of OCP and PLGA on bone induction of a PLGA-OCP composite scaffold in a rat femoral defect. Acta Biomater., 2021, 124, 358-373.
[http://dx.doi.org/10.1016/j.actbio.2021.01.048] [PMID: 33556607]
[29]
Tsai, I.L.; Tsai, C.Y.; Kuo, L.L.; Woung, L.C.; Ku, R.Y.; Cheng, Y.H. PLGA nanoparticles containing Lingzhi extracts rescue corneal epithelial cells from oxidative damage. Exp. Eye Res., 2021, 206, 108539.
[http://dx.doi.org/10.1016/j.exer.2021.108539] [PMID: 33741324]
[30]
Gebreel, R.M.; Edris, N.A.; Elmofty, H.M.; Tadros, M.I.; El-Nabarawi, M.A.; Hassan, D.H. Development and characterization of PLGA nanoparticle-laden hydrogels for sustained ocular delivery of norfloxacin in the treatment of Pseudomonas keratitis: An experimental study. Drug Des. Devel. Ther., 2021, 15, 399-418.
[http://dx.doi.org/10.2147/DDDT.S293127] [PMID: 33584095]
[31]
Raza, A.; Miles, J.A.; Sime, F.B.; Ross, B.P.; Roberts, J.A.; Popat, A.; Kumeria, T.; Falconer, J.R. PLGA encapsulated γ-cyclodextrin-meropenem inclusion complex formulation for oral delivery. Int. J. Pharm., 2021, 597, 120280.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120280] [PMID: 33540004]
[32]
Tripathi, S.K.; Patel, B.; Shukla, S.; Pachouri, C.; Pathak, S.; Pandey, A. Donepezil loaded PLGA nanoparticles, from modified nano-precipitation, an advanced drug delivery system to treat Alzheimer disease. J. Phys. Conf. Ser., 2021, 1849(1), 012001.
[http://dx.doi.org/10.1088/1742-6596/1849/1/012001]
[33]
Shahin, H.; Vinjamuri, B.P.; Mahmoud, A.A.; Mansour, S.M.; Chougule, M.B.; Chablani, L. Formulation and optimization of sildenafil citrate-loaded PLGA large porous microparticles using spray freeze-drying technique: A factorial design and in-vivo pharmacokinetic study. Int. J. Pharm., 2021, 597, 120320.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120320] [PMID: 33539999]
[34]
Shah, P.; Sarolia, J.; Vyas, B.; Wagh, P.; Ankur, K.; Kumar, M.A. PLGA nanoparticles for nose to brain delivery of Clonazepam: Formulation, optimization by 32 Factorial design, in vitro and in vivo evaluation. Curr. Drug Deliv., 2021, 18(6), 805-824.
[http://dx.doi.org/10.2174/18755704MTA3lOTgqw] [PMID: 32640955]
[35]
Du, X.; Xue, J.; Jiang, M.; Lin, S.; Huang, Y.; Deng, K.; Shu, L.; Xu, H.; Li, Z.; Yao, J.; Chen, S.; Shen, Z.; Feng, G. A multiepitope peptide, rOmp22, encapsulated in chitosan-PLGA nanoparticles as a candidate vaccine against Acinetobacter baumannii infection. Int. J. Nanomedicine, 2021, 16, 1819-1836.
[http://dx.doi.org/10.2147/IJN.S296527] [PMID: 33707942]
[36]
Boroumand, H.; Badie, F.; Mazaheri, S.; Seyedi, Z.S.; Nahand, J.S.; Nejati, M.; Baghi, H.B.; Abbasi-Kolli, M.; Badehnoosh, B.; Ghandali, M.; Hamblin, M.R.; Mirzaei, H. Chitosan-based nanoparticles against viral infections. Front. Cell. Infect. Microbiol., 2021, 11, 643953.
[http://dx.doi.org/10.3389/fcimb.2021.643953] [PMID: 33816349]
[37]
Kurakula, M.; Raghavendra Naveen, N. Electrospraying: A facile technology unfolding the chitosan based drug delivery and biomedical applications. Eur. Polym. J., 2021, 147, 110326.
[http://dx.doi.org/10.1016/j.eurpolymj.2021.110326]
[38]
Li, C.; Fang, K.; He, W.; Li, K.; Jiang, Y.; Li, J. Evaluation of chitosan-ferulic acid microcapsules for sustained drug delivery: Synthesis, characterizations, and release kinetics in vitro. J. Mol. Struct., 2021, 1227, 129353.
[http://dx.doi.org/10.1016/j.molstruc.2020.129353]
[39]
Shakeran, Z.; Keyhanfar, M.; Varshosaz, J.; Sutherland, D.S. Biodegradable nanocarriers based on chitosan-modified mesoporous silica nanoparticles for delivery of methotrexate for application in breast cancer treatment. Mater. Sci. Eng. C, 2021, 118, 111526.
[http://dx.doi.org/10.1016/j.msec.2020.111526] [PMID: 33255079]
[40]
Zhang, J.; Sun, H.; Gao, C.; Wang, Y.; Cheng, X.; Yang, Y.; Gou, Q.; Lei, L.; Chen, Y.; Wang, X.; Zou, Q.; Gu, J. Development of a chitosan‐modified PLGA nanoparticle vaccine for protection against Escherichia coli K1 caused meningitis in mice. J. Nanobiotechnology, 2021, 19(1), 69.
[http://dx.doi.org/10.1186/s12951-021-00812-9] [PMID: 33673858]
[41]
Alshehri, S.; Imam, S.S.; Rizwanullah, M.; Fakhri, K.U.; Rizvi, M.M.A.; Mahdi, W.; Kazi, M.; Kazi, M. Effect of chitosan coating on PLGA Nanoparticles for oral delivery of thymoquinone: In vitro, ex vivo, and cancer cell line assessments. Coatings, 2020, 11(1), 6.
[http://dx.doi.org/10.3390/coatings11010006]
[42]
Takeuchi, I.; Suzuki, T.; Makino, K.; Makino, K. Iontophoretic transdermal delivery using chitosan-coated PLGA nanoparticles for transcutaneous immunization. Colloids Surf. A Physicochem. Eng. Asp., 2021, 608, 125607.
[http://dx.doi.org/10.1016/j.colsurfa.2020.125607] [PMID: 29017147]
[43]
Bruijnincx, P.C.A.; Sadler, P.J. New trends for metal complexes with anticancer activity. Curr. Opin. Chem. Biol., 2008, 12(2), 197-206.
[http://dx.doi.org/10.1016/j.cbpa.2007.11.013] [PMID: 18155674]
[44]
Frezza, M.; Hindo, S.; Chen, D.; Davenport, A.; Schmitt, S.; Tomco, D.; Ping, Dou Q. Novel metals and metal complexes as platforms for cancer therapy. Curr. Pharm. Des., 2010, 16(16), 1813-1825.
[http://dx.doi.org/10.2174/138161210791209009] [PMID: 20337575]
[45]
Ikitimur-Armutak, E.I.; Gurel-Gurevin, E.; Kiyan, H.T.; Aydinlik, S.; Yilmaz, V.T.; Dimas, K.; Ulukaya, E. Anti-angiogenic effect of a Palladium(II)-saccharinate complex of terpyridine in vitro and in vivo. Microvasc. Res., 2017, 109, 26-33.
[http://dx.doi.org/10.1016/j.mvr.2016.09.002] [PMID: 27613574]
[46]
Meghdadi, S.; Amirnasr, M.; Kiani, M.; Fadaei Tirani, F.; Bagheri, M.; Schenk, K.J. Benign synthesis of quinolinecarboxamide ligands, H2 bqbenzo and H2 bqb and their Pd(II) complexes: X-ray crystal structure, electrochemical and antibacterial studies. J. Coord. Chem., 2017, 70(14), 2409-2424.
[http://dx.doi.org/10.1080/00958972.2017.1336231]
[47]
Schulz, J.; Renfrew, A.K.; Císařová, I.; Dyson, P.J.; Štěpnička, P. Synthesis and anticancer activity of chalcogenide derivatives and platinum(II) and palladium(II) complexes derived from a polar ferrocene phosphanyl-carboxamide. Appl. Organomet. Chem., 2010, 24(5), n/a. p. 392-397.
[http://dx.doi.org/10.1002/aoc.1626]
[48]
Sheldrick, G.M. SHELXT-Integrated space-group and crystal-structure determination. Acta Crystallogr. A Found. Adv., 2015, 71(1), 3-8.
[http://dx.doi.org/10.1107/S2053273314026370] [PMID: 25537383]
[49]
Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem., 2015, 71(1), 3-8.
[http://dx.doi.org/10.1107/S2053229614024218] [PMID: 25567568]
[50]
Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A, 2008, 64(1), 112-122.
[http://dx.doi.org/10.1107/S0108767307043930] [PMID: 18156677]
[51]
Macrae, C.F.; Edgington, P.R.; McCabe, P.; Pidcock, E.; Shields, G.P.; Taylor, R.; Towler, M.; van de Streek, J. Mercury: Visualization and analysis of crystal structures. J. Appl. Cryst., 2006, 39(3), 453-457.
[http://dx.doi.org/10.1107/S002188980600731X]
[52]
Mahajan, H.D.; Dayaram Wagh, R.; Baviskar, D.T. Development and evaluation of acyclovir loaded poly lactic-Co-glycolic acid nanoparticles for ocular drug delivery. Int. J. Pharm. Investig., 2021, 11(1), 63-68.
[http://dx.doi.org/10.5530/ijpi.2021.1.12]
[53]
Holgado, M.A. Martin-banderas; Alvarez-fuentes; Duran-lobato; Prados, J.; Melguizo, F. Cannabinoid derivate-loaded PLGA nanocarriers for oral administration: Formulation, characterization, and cytotoxicity studies. Int. J. Nanomedicine, 2012, 7, 5793-5806.
[http://dx.doi.org/10.2147/IJN.S34633] [PMID: 23209365]
[54]
Öztürk, A.A.; Yenilmez, E.; Özarda, M.G. Clarithromycin-loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles for oral administration: Effect of polymer molecularweight and surface modification with chitosan on formulation, nanoparticle characterization and antibacterial Effects. Polymers, 2019, 11(10), 1632.
[http://dx.doi.org/10.3390/polym11101632] [PMID: 31600969]
[55]
Raheem, S.S.; Hasan, H.F. Preparation of poly(lactic-co-glycolic acid)-loaded pentoxyfilline by nanoparticipation technique. Med. J. Babylon, 2021, 18(1), 12-17.
[56]
Errico, C.; Bartoli, C.; Chiellini, F.; Chiellini, E. Poly(hydroxyalkanoates)-based polymeric nanoparticles for drug delivery. J. Biomed. Biotechnol., 2009, 2009, 571702.
[http://dx.doi.org/10.1155/2009/571702] [PMID: 19789653]
[57]
Lima, I.A.; Khalil, N.M.; Tominaga, T.T.; Lechanteur, A.; Sarmento, B.; Mainardes, R.M. Mucoadhesive chitosan-coated PLGA nanoparticles for oral delivery of ferulic acid. Artif. Cells Nanomed. Biotechnol., 2018, 46(Suppl. 2), 993-1002.
[http://dx.doi.org/10.1080/21691401.2018.1477788] [PMID: 29842790]
[58]
Durán-Lobato, M.; Martín-Banderas, L.; Gonçalves, L.M.D.; Fernández-Arévalo, M.; Almeida, A.J. Comparative study of chitosan- and PEG-coated lipid and PLGA nanoparticles as oral delivery systems for cannabinoids. J. Nanopart. Res., 2015, 17(2), 61.
[http://dx.doi.org/10.1007/s11051-015-2875-y]
[59]
Khan, N. Ameeduzzafar; Khanna, K.; Bhatnagar, A.; Ahmad, F.J.; Ali, A. Chitosan coated PLGA nanoparticles amplify the ocular hypotensive effect of forskolin: Statistical design, characterization and in vivo studies. Int. J. Biol. Macromol., 2018, 116, 648-663.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.04.122] [PMID: 29723623]
[60]
Zevallos Torres, L.A.; Woiciechowski, A.L.; Oliveira de Andrade Tanobe, V.; Zandoná Filho, A.; Alves de Freitas, R.; Noseda, M.D.; Saito Szameitat, E.; Faulds, C.; Coutinho, P.; Bertrand, E.; Soccol, C.R. Lignin from oil palm empty fruit bunches: Characterization, biological activities and application in green synthesis of silver nanoparticles. Int. J. Biol. Macromol., 2021, 167, 1499-1507.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.11.104] [PMID: 33212110]
[61]
Yunita, E.; Yulianto, D.; Fatimah, S.; Firanita, T. Validation of UV-Vis spectrophotometric method of quercetin in ethanol extract of tamarind Leaf. J. Fund. Appl. Pharmaceutic. Sci., 2020, 1(1), 11-18.
[http://dx.doi.org/10.18196/jfaps.010102]
[62]
Öztürk, A.A.; Güven, U.M.; Yenilmez, E. Flurbiprofen loaded gel based topical delivery system: Formulation and in vitro characterization with new developed UPLC method. ACTA Pharmaceutic. Sci., 2018, 56(4), 81-105.
[http://dx.doi.org/10.23893/1307-2080.APS.05627]
[63]
Öztürk, A.A.; Güven, U.M. Cefaclor monohydrate loaded microemulsion formulation for topical application: Characterization with new developed UPLC method and stability study. J. Res. Pharm., 2019, 23(3), 426-440.
[http://dx.doi.org/10.12991/jrp.2019.150]
[64]
Singh, S.K.; Girotra, P.; Gupta, S. Targeting silymarin for improved hepatoprotective activity through chitosan nanoparticles. Int. J. Pharm. Investig., 2014, 4(4), 156-163.
[http://dx.doi.org/10.4103/2230-973X.143113] [PMID: 25426436]
[65]
El-Nahas, A.E.; Allam, A.N.; Abdelmonsif, D.A.; El-Kamel, A.H. Silymarin-loaded eudragit nanoparticles: Formulation, characterization, and hepatoprotective and toxicity evaluation. AAPS PharmSciTech, 2017, 18(8), 3076-3086.
[http://dx.doi.org/10.1208/s12249-017-0799-9] [PMID: 28516410]
[66]
Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. Lebensm. Wiss. Technol., 1995, 28(1), 25-30.
[http://dx.doi.org/10.1016/S0023-6438(95)80008-5]
[67]
Vinderola, C.G.; Reinheimer, J.A. Culture media for the enumeration of Bifidobacterium bifidum and Lactobacillus acidophilus in the presence of yogurt bacteria. Int. Dairy J., 1999, 9(8), 497-505.
[http://dx.doi.org/10.1016/S0958-6946(99)00120-X]
[68]
Boorn, K.L.; Khor, Y.Y.; Sweetman, E.; Tan, F.; Heard, T.A.; Hammer, K.A. Antimicrobial activity of honey from the stingless bee Trigona carbonaria determined by agar diffusion, agar dilution, broth microdilution and time-kill methodology. J. Appl. Microbiol., 2010, 108(5), 1534-1543.
[http://dx.doi.org/10.1111/j.1365-2672.2009.04552.x] [PMID: 19811569]
[69]
CLSI.Methods for Dilution Antimicrobial Susceptibility Tests or Bacteria That Grow Aerobically; Approved St andard, 9th ed; Clinical and Laboratory Standards Institute: Wayne, PA, 2012.
[70]
Weinstein, M.P.; Lewis, J.S., II The clinical and laboratory standards institute subcommittee on antimicrobial susceptibility testing: background, organization, functions, and processes. J. Clin. Microbiol., 2020, 58(3), e01864-e19.
[http://dx.doi.org/10.1128/JCM.01864-19] [PMID: 31915289]
[71]
Mota, C.R.A.; Miranda, K.C.; Lemos, J.A.; Costa, C.R.; Souza, L.K.H.; Passos, X.S.; Silva, H.M.; Silva, M.R.R. Comparison of in vitro activity of five antifungal agents against dermatophytes, using the agar dilution and broth microdilution methods. Rev. Soc. Bras. Med. Trop., 2009, 42(3), 250-254.
[http://dx.doi.org/10.1590/S0037-86822009000300003] [PMID: 19684970]
[72]
Kıyan, H.T.; Demirci, B.; Başer, K.H.C.; Demirci, F. The in vivo evaluation of anti-angiogenic effects of Hypericum essential oils using the chorioallantoic membrane assay. Pharm. Biol., 2014, 52(1), 44-50.
[http://dx.doi.org/10.3109/13880209.2013.810647] [PMID: 24044783]
[73]
Singh, J.; Deb, M.; Elias, A.J. Palladacycles based on 8-aminoquinoline carboxamides of cobalt and iron sandwich compounds and a new method to α-alkylate Cp rings of metal sandwich carboxamides. Organometallics, 2015, 34(20), 4946-4951.
[http://dx.doi.org/10.1021/acs.organomet.5b00504]
[74]
Mukherjee, T.; Sen, B.; Zangrando, E.; Hundal, G.; Chattopadhyay, B.; Chattopadhyay, P. Palladium(II) and platinum(II) complexes of deprotonated N,N′-bis(2-pyridinecarboxamide)-1,2-benzene: Synthesis, structural characterization and binding interactions with DNA and BSA. Inorg. Chim. Acta, 2013, 406, 176-183.
[http://dx.doi.org/10.1016/j.ica.2013.04.033]
[75]
Navrátil, M.; Císařová, I.; Alemayehu, A.; Škoch, K.; Štěpnička, P. Synthesis and structural characterisation of an N ‐Phosphanyl ferrocene carboxamide and its ruthenium, rhodium and palladium complexes. ChemPlusChem, 2020, 85(6), 1325-1338.
[http://dx.doi.org/10.1002/cplu.202000303] [PMID: 32567813]
[76]
Şenel, B.; Öztürk, A.A. New approaches to tumor therapy with siRNA-decorated and chitosan-modified PLGA nanoparticles. Drug Dev. Ind. Pharm., 2019, 45(11), 1835-1848.
[http://dx.doi.org/10.1080/03639045.2019.1665061] [PMID: 31491363]
[77]
Zirak, M.B.; Pezeshki, A. Effect of surfactant concentration on the particle size, stability and potential zeta of beta carotene nano lipid carrier. Int. J. Curr. Microbiol. Appl. Sci., 2015, 4(9), 924-932.
[78]
Öztürk, A.A.; Aygül, A.; Şenel, B. Influence of glyceryl behenate, tripalmitin and stearic acid on the properties of clarithromycin incorporated solid lipid nanoparticles (SLNs): Formulation, characterization, antibacterial activity and cytotoxicity. J. Drug Deliv. Sci. Technol., 2019, 54, 101240.
[http://dx.doi.org/10.1016/j.jddst.2019.101240]
[79]
Emami, J.; Mohiti, H.; Hamishehkar, H.; Varshosaz, J. Formulation and optimization of solid lipid nanoparticle formulation for pulmonary delivery of budesonide using Taguchi and Box-Behnken design. Res. Pharm. Sci., 2015, 10(1), 17-33.
[PMID: 26430454]
[80]
Müller, R.H.; Mäder, K.; Gohla, S. Solid lipid nanoparticles (SLN) for controlled drug delivery-a review of the state of the art. Eur. J. Pharm. Biopharm., 2000, 50(1), 161-177.
[http://dx.doi.org/10.1016/S0939-6411(00)00087-4] [PMID: 10840199]
[81]
Chronopoulou, L.; Massimi, M.; Giardi, M.F.; Cametti, C.; Devirgiliis, L.C.; Dentini, M.; Palocci, C. Chitosan-coated PLGA nanoparticles: A sustained drug release strategy for cell cultures. Colloids Surf. B Biointerfaces, 2013, 103, 310-317.
[http://dx.doi.org/10.1016/j.colsurfb.2012.10.063] [PMID: 23261553]
[82]
Wang, Y.; Li, P.; Kong, L. Chitosan-modified PLGA nanoparticles with versatile surface for improved drug delivery. AAPS PharmSciTech, 2013, 14(2), 585-592.
[http://dx.doi.org/10.1208/s12249-013-9943-3] [PMID: 23463262]
[83]
Jayasundara, U.K.; Herath, H.M.M.B.; Kaushalya, P.V.N. Method development, validation, and concentration determination of metformin hydrochloride and atorvastatin calcium using UV-visible spectrophotometry. J. Anal. Bioanal. Tech., 2021, 12(2), 428.
[http://dx.doi.org/10.4172/2155-9872.1000428]
[84]
Shrestha, S.; Maharjan, S.; Pakhrin, S.; Poudel, A.; Poudel, S.; Thapa, N.; Gaire, A.; Shrestha, J.R. Estimation and validation of methylcobalamin in tablet dosage form using UV-visible spectrophotometric method. Am. Sci. Res. J. Eng. Technol. Sci., 2021, 77(1), 220-229.
[85]
Lavakumar, S.; Vivekanand, P.A.; Prince, A.A.M. Simultaneous analysis of octylmethoxycinnamate and butylmethoxydibenzoylmethane in sunscreen products by a validated UV-spectrophotometric method. Mater. Today Proc., 2021, 36, 893-897.
[http://dx.doi.org/10.1016/j.matpr.2020.07.025]
[86]
Ali, M.S.; Elsaman, T. Development and validation of the UV spectrophotometric method for simultaneous determination of paracetamol and pseudoephedrine in bulk and combined tablet dosage form. Pharm. Chem. J., 2021, 54(12), 1306-1310.
[http://dx.doi.org/10.1007/s11094-021-02360-w]
[87]
Shen, S.; Wu, Y.; Liu, Y.; Wu, D. High drug-loading nanomedicines: Progress, current status, and prospects. Int. J. Nanomedicine, 2017, 12, 4085-4109.
[http://dx.doi.org/10.2147/IJN.S132780] [PMID: 28615938]
[88]
Parveen, S.; Sahoo, S.K. Long circulating chitosan/PEG blended PLGA nanoparticle for tumor drug delivery. Eur. J. Pharmacol., 2011, 670(2-3), 372-383.
[http://dx.doi.org/10.1016/j.ejphar.2011.09.023] [PMID: 21951969]