Polycaprolactone-based Nanocarriers Containing 5-fluorouracil as a Therapeutic Guided Drug Delivery Approach for Enhancing Anticancer Activity

Page: [524 - 533] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Nowadays, nano-platforms designed for drug delivery systems (DDSs) such as polymers, liposomes, and micelles have been demonstrated to be clinically efficient. The sustained drug release is one of the advantages of DDSs, especially polymer-based nanoparticles. The formulation could enhance the drug's durability, in which the biodegradable polymers are the most interesting building blocks of DDSs. Nano-carriers could circumvent many issues by localized drug delivery and release via certain internalization routes such as intracellular endocytosis paths and increasing biocompatibility. Polymeric nanoparticles and their nanocomposite are one of the most important classes of materials that can be used for the assembly of nanocarriers that can form complex, conjugated and encapsulated forms. The site-specific drug delivery may arise from the ability of nanocarriers to pass through the biological barrier, their specific interactions with receptors, and passive targeting. The better circulation, uptake, and stability along with targeting attributes lead to lesser side effects and damage to normal cells. Hence, in this review, the most recent achievements on polycaprolactone-based or -modified nanoparticles in drug delivery systems (DDSs) for 5-fluorouracil (5-FU) are presented.

Graphical Abstract

[1]
Hanemann, T.; Szabó, D.V. Polymer-nanoparticle composites: From synthesis to modern applications. Materials, 2010, 3(6), 3468-3517.
[http://dx.doi.org/10.3390/ma3063468]
[2]
Liechty, W.B.; Peppas, N.A. Expert opinion: Responsive polymer nanoparticles in cancer therapy. Eur. J. Pharm. Biopharm., 2012, 80(2), 241-246.
[http://dx.doi.org/10.1016/j.ejpb.2011.08.004] [PMID: 21888972]
[3]
Calzoni, E.; Cesaretti, A.; Polchi, A.; Di Michele, A.; Tancini, B.; Emiliani, C. Biocompatible polymer nanoparticles for drug delivery applications in cancer and neurodegenerative disorder therapies. J. Funct. Biomater., 2019, 10(1), 4.
[http://dx.doi.org/10.3390/jfb10010004] [PMID: 30626094]
[4]
Zhang, X.; Dong, Y.; Zeng, X.; Liang, X.; Li, X.; Tao, W.; Chen, H.; Jiang, Y.; Mei, L.; Feng, S.S. The effect of autophagy inhibitors on drug delivery using biodegradable polymer nanoparticles in cancer treatment. Biomaterials, 2014, 35(6), 1932-1943.
[http://dx.doi.org/10.1016/j.biomaterials.2013.10.034] [PMID: 24315578]
[5]
Xu, S.; Wang, L.; Liu, Z. Molecularly imprinted polymer nanoparticles: An emerging versatile platform for cancer therapy. Angew. Chem. Int. Ed., 2021, 60(8), 3858-3869.
[http://dx.doi.org/10.1002/anie.202005309] [PMID: 32789971]
[6]
Maleki, P.; Nemati, F.; Gholoobi, A.; Hashemzadeh, A.; Sabouri, Z.; Darroudi, M. Green facile synthesis of silver-doped cerium oxide nanoparticles and investigation of their cytotoxicity and antibacterial activity. Inorg. Chem. Commun., 2021, 131, 108762.
[http://dx.doi.org/10.1016/j.inoche.2021.108762]
[7]
Hashemzadeh, A.; Drummen, G.P.C.; Avan, A.; Darroudi, M.; Khazaei, M.; Khajavian, R.; Rangrazi, A.; Mirzaei, M. When metal–organic framework mediated smart drug delivery meets gastrointestinal cancers. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(19), 3967-3982.
[http://dx.doi.org/10.1039/D1TB00155H] [PMID: 33908592]
[8]
Adityan, S.; Tran, M.; Bhavsar, C.; Wu, S.Y. Nano-therapeutics for modulating the tumour microenvironment: Design, development, and clinical translation. J. Control. Release, 2020, 327, 512-532.
[http://dx.doi.org/10.1016/j.jconrel.2020.08.016] [PMID: 32800879]
[9]
Lunova, M.; Prokhorov, A.; Jirsa, M.; Hof, M.; Olżyńska, A.; Jurkiewicz, P.; Kubinová, Š.; Lunov, O.; Dejneka, A. Nanoparticle core stability and surface functionalization drive the mTOR signaling pathway in hepatocellular cell lines. Sci. Rep., 2017, 7(1), 16049.
[http://dx.doi.org/10.1038/s41598-017-16447-6] [PMID: 29167516]
[10]
Hashemzadeh, A.; Avan, A.; Ferns, G.A.; Khazaei, M. Vaccines based on virus-like nano-particles for use against Middle East Respiratory Syndrome (MERS) coronavirus. Vaccine, 2020, 38(36), 5742-5746.
[http://dx.doi.org/10.1016/j.vaccine.2020.07.003] [PMID: 32684497]
[11]
Asgharzadeh, F.; Hashemzadeh, A.; Rahmani, F.; Yaghoubi, A.; Nazari, S.E.; Avan, A.; Mehr, S.M.H.; Soleimanpour, S.; Khazaei, M. Cerium oxide nanoparticles acts as a novel therapeutic agent for ulcerative colitis through anti-oxidative mechanism. Life Sci., 2021, 278, 119500.
[http://dx.doi.org/10.1016/j.lfs.2021.119500] [PMID: 33862111]
[12]
Hashemzadeh, A.; Amerizadeh, F.; Asgharzadeh, F.; Drummen, G.P.; Hassanian, S.M.; Landarani, M. Magnetic amine-functionalized UiO-66 for oxaliplatin delivery to colon cancer cells: In vitro studies. J. Clust. Sci., 2022, 33(5), 2345-2361.
[13]
Hashemzadeh, A.; Amerizadeh, F.; Asgharzadeh, F.; Darroudi, M.; Avan, A.; Hassanian, S.M.; Landarani, M.; Khazaei, M. Delivery of oxaliplatin to colorectal cancer cells by folate-targeted UiO-66-NH2. Toxicol. Appl. Pharmacol., 2021, 423, 115573.
[http://dx.doi.org/10.1016/j.taap.2021.115573] [PMID: 33991535]
[14]
Asgharzadeh, F.; Hashemzadeh, A.; Yaghoubi, A.; Avan, A.; Nazari, S.E.; Soleimanpour, S.; Hassanian, S.M.; Ferns, G.A.; Rahmani, F.; Khazaei, M. Therapeutic effects of silver nanoparticle containing sulfasalazine on DSS-induced colitis model. J. Drug Deliv. Sci. Technol., 2021, 61, 102133.
[http://dx.doi.org/10.1016/j.jddst.2020.102133]
[15]
Barreto, E.F.; Larson, T.R.; Koubek, E.J. Drug Excretion. In: Reference Module in Biomedical Sciences; Elsevier, 2021.
[16]
Taft, D.R. Drug Excretion. In: Pharmacology; Hacker, M.; Messer, W.; Bachmann, K., Eds.; Academic Press: San Diego, 2009; pp. 175-199.
[http://dx.doi.org/10.1016/B978-0-12-369521-5.00009-9]
[17]
Li, B.; Li, Q.; Mo, J.; Dai, H. Drug-loaded polymeric nanoparticles for cancer stem cell targeting. Front. Pharmacol., 2017, 8, 51.
[http://dx.doi.org/10.3389/fphar.2017.00051] [PMID: 28261093]
[18]
Zhao, Q.H.; Qiu, L.Y. An overview of the pharmacokinetics of polymer-based nanoassemblies and nanoparticles. Curr. Drug Metab., 2013, 14(8), 832-839.
[http://dx.doi.org/10.2174/138920021131400104] [PMID: 24016113]
[19]
Gagliardi, A.; Giuliano, E.; Venkateswararao, E.; Fresta, M.; Bulotta, S.; Awasthi, V.; Cosco, D. Biodegradable polymeric nanoparticles for drug delivery to solid tumors. Front. Pharmacol., 2021, 12, 601626.
[http://dx.doi.org/10.3389/fphar.2021.601626] [PMID: 33613290]
[20]
Karlsson, J.; Vaughan, H.J.; Green, J.J. Biodegradable polymeric nanoparticles for therapeutic cancer treatments. Annu. Rev. Chem. Biomol. Eng., 2018, 9(1), 105-127.
[http://dx.doi.org/10.1146/annurev-chembioeng-060817-084055] [PMID: 29579402]
[21]
Lin, G.; Zhang, H.; Huang, L. Smart polymeric nanoparticles for cancer gene delivery. Mol. Pharm., 2015, 12(2), 314-321.
[http://dx.doi.org/10.1021/mp500656v] [PMID: 25531409]
[22]
Fluorouracil. In: Aronson, J.K., Ed.; Meyler’s Side Effects of Drugs, 16th ed; Elsevier: Oxford, 2016, pp. 382-394.
[http://dx.doi.org/10.1016/B978-0-444-53717-1.00761-7]
[23]
Rider, B.J. 5 Fluorouracil. In: xPharm: The Comprehensive Pharmacology Reference;; Enna, S.J.; Bylund,, D.B., Eds.; Elsevier: New York, 2007; pp. 1-5.
[24]
Sprangers, B.E.N.; Cosmai, L.; Porta, C. 16 - Conventional chemotherapy. In: Onco-Nephrology; Finkel, K.W.; Perazella, M.A.; Cohen, E.P., Eds.; Elsevier: Philadelphia, 2020; pp. 127-53.e11.
[http://dx.doi.org/10.1016/B978-0-323-54945-5.00025-4]
[25]
Tiwari, G.; Tiwari, R.; Bannerjee, S.K.; Bhati, L.; Pandey, S.; Pandey, P.; Sriwastawa, B. Drug delivery systems: An updated review. Int. J. Pharm. Investig., 2012, 2(1), 2-11.
[http://dx.doi.org/10.4103/2230-973X.96920] [PMID: 23071954]
[26]
Entezar-Almahdi, E.; Mohammadi-Samani, S.; Tayebi, L.; Farjadian, F. Recent advances in designing 5-fluorouracil delivery systems: A stepping stone in the safe treatment of colorectal cancer. Int. J. Nanomedicine, 2020, 15, 5445-5458.
[http://dx.doi.org/10.2147/IJN.S257700] [PMID: 32801699]
[27]
Bennet, D. Kim, S Polymer Nanoparticles for Smart Drug Delivery. In: Application of Nanotechnology in Drug Delivery; InTechEditors; Ali Demir Sezer, 2014; pp. 257-310.
[http://dx.doi.org/10.5772/58422]
[28]
Calori, I.R.; Braga, G.; de Jesus, P.C.C.; Bi, H.; Tedesco, A.C. Polymer scaffolds as drug delivery systems. Eur. Polym. J., 2020, 129, 109621.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.109621]
[29]
Idrees, H.; Zaidi, S.Z.J.; Sabir, A.; Khan, R.U.; Zhang, X.; Hassan, S. A review of biodegradable natural polymer-based nanoparticles for drug delivery applications. Nanomaterials, 2020, 10(10), 1970.
[http://dx.doi.org/10.3390/nano10101970] [PMID: 33027891]
[30]
Wigmore, P.M.; Mustafa, S.; El-Beltagy, M.; Lyons, L.; Umka, J.; Bennett, G. Effects of 5-FU. Chemo fog; Springer, 2010, pp. 157-164.
[http://dx.doi.org/10.1007/978-1-4419-6306-2_20]
[31]
Scartozzi, M.; Maccaroni, E.; Giampieri, R.; Pistelli, M.; Bittoni, A.; Del Prete, M.; Berardi, R.; Cascinu, S. 5-fluorouracil pharmacogenomics: Still rocking after all these years? Pharmacogenomics, 2011, 12(2), 251-265.
[http://dx.doi.org/10.2217/pgs.10.167] [PMID: 21332317]
[32]
Yuan, J.; Lv, H.; Peng, B.; Wang, C.; Yu, Y.; He, Z. Role of BCRP as a biomarker for predicting resistance to 5-fluorouracil in breast cancer. Cancer Chemother. Pharmacol., 2009, 63(6), 1103-1110.
[http://dx.doi.org/10.1007/s00280-008-0838-z] [PMID: 18820913]
[33]
Sethy, C.; Kundu, C.N. 5-Fluorouracil (5-FU) resistance and the new strategy to enhance the sensitivity against cancer: Implication of DNA repair inhibition. Biomed. Pharmacother., 2021, 137, 111285.
[http://dx.doi.org/10.1016/j.biopha.2021.111285] [PMID: 33485118]
[34]
Chalabi-Dchar, M.; Fenouil, T.; Machon, C.; Vincent, A.; Catez, F.; Marcel, V. A novel view on an old drug, 5-fluorouracil: an unexpected RNA modifier with intriguing impact on cancer cell fate. NAR Cancer, 2021, 3(3), zcab032.
[35]
Zhang, L.; Song, R.; Gu, D.; Zhang, X.; Yu, B.; Liu, B.; Xie, J. The role of GLI1 for 5-Fu resistance in colorectal cancer. Cell Biosci., 2017, 7(1), 17.
[http://dx.doi.org/10.1186/s13578-017-0145-7] [PMID: 28413604]
[36]
Suetsugu, T.; Mori, R.; Futamura, M.; Fukada, M.; Tanaka, H.; Yasufuku, I.; Sato, Y.; Iwata, Y.; Imai, T.; Imai, H.; Tanaka, Y.; Okumura, N.; Matsuhashi, N.; Takahashi, T.; Yoshida, K. Mechanism of acquired 5FU resistance and strategy for overcoming 5FU resistance focusing on 5FU metabolism in colon cancer cell lines. Oncol. Rep., 2021, 45(4), 27.
[http://dx.doi.org/10.3892/or.2021.7978] [PMID: 33649846]
[37]
Hoffman, A.S. Stimuli-responsive polymers: Biomedical applications and challenges for clinical translation. Adv. Drug Deliv. Rev., 2013, 65(1), 10-16.
[http://dx.doi.org/10.1016/j.addr.2012.11.004] [PMID: 23246762]
[38]
Li, F.; Lu, J.; Kong, X.; Hyeon, T.; Ling, D. Dynamic nanoparticle assemblies for biomedical applications. Adv. Mater., 2017, 29(14), 1605897.
[http://dx.doi.org/10.1002/adma.201605897] [PMID: 28224677]
[39]
Lewis, D.R.; Kamisoglu, K.; York, A.W.; Moghe, P.V. Polymer‐based therapeutics: nanoassemblies and nanoparticles for management of atherosclerosis. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2011, 3(4), 400-420.
[http://dx.doi.org/10.1002/wnan.145] [PMID: 21523920]
[40]
Tang, Z.; He, C.; Tian, H.; Ding, J.; Hsiao, B.S.; Chu, B.; Chen, X. Polymeric nanostructured materials for biomedical applications. Prog. Polym. Sci., 2016, 60, 86-128.
[http://dx.doi.org/10.1016/j.progpolymsci.2016.05.005]
[41]
Zhou, N.; Liu, T.; Wen, B.; Gong, C.; Wei, G.; Su, Z. Recent advances in the construction of flexible sensors for biomedical applications. Biotechnol. J., 2020, 15(12), 2000094.
[http://dx.doi.org/10.1002/biot.202000094] [PMID: 32744777]
[42]
Rösler, A.; Vandermeulen, G.W.M.; Klok, H.A. Advanced drug delivery devices via self-assembly of amphiphilic block copolymers. Adv. Drug Deliv. Rev., 2012, 64, 270-279.
[http://dx.doi.org/10.1016/j.addr.2012.09.026] [PMID: 11733119]
[43]
Ebrahim Attia, A.B.; Ong, Z.Y.; Hedrick, J.L.; Lee, P.P.; Ee, P.L.R.; Hammond, P.T.; Yang, Y-Y. Mixed micelles self-assembled from block copolymers for drug delivery. Curr. Opin. Colloid Interface Sci., 2011, 16(3), 182-194.
[http://dx.doi.org/10.1016/j.cocis.2010.10.003]
[44]
Khalin, I.; Heimburger, D.; Melnychuk, N.; Collot, M.; Groschup, B.; Hellal, F.; Reisch, A.; Plesnila, N.; Klymchenko, A.S. Ultrabright fluorescent polymeric nanoparticles with a stealth pluronic shell for live tracking in the mouse brain. ACS Nano, 2020, 14(8), 9755-9770.
[http://dx.doi.org/10.1021/acsnano.0c01505] [PMID: 32680421]
[45]
Choi, K.Y.; Liu, G.; Lee, S.; Chen, X. Theranostic nanoplatforms for simultaneous cancer imaging and therapy: Current approaches and future perspectives. Nanoscale, 2012, 4(2), 330-342.
[http://dx.doi.org/10.1039/C1NR11277E] [PMID: 22134683]
[46]
Cheng, R.; Meng, F.; Deng, C.; Klok, H.A.; Zhong, Z. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials, 2013, 34(14), 3647-3657.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.084] [PMID: 23415642]
[47]
Ghosh, P.K. Hydrophilic polymeric nanoparticles as drug carriers. Indian J. Biochem. Biophys., 2000, 37, 273-282.
[48]
Liu, X.; Yang, Y.; Urban, M.W. Stimuli‐responsive polymeric nanoparticles. Macromol. Rapid Commun., 2017, 38(13), 1700030.
[http://dx.doi.org/10.1002/marc.201700030] [PMID: 28497535]
[49]
Gu, W.; Meng, F.; Haag, R.; Zhong, Z. Actively targeted nanomedicines for precision cancer therapy: Concept, construction, challenges and clinical translation. J. Control. Release, 2021, 329, 676-695.
[http://dx.doi.org/10.1016/j.jconrel.2020.10.003] [PMID: 33022328]
[50]
Deng, C.; Zhang, Q.; Guo, J.; Zhao, X.; Zhong, Z. Robust and smart polypeptide-based nanomedicines for targeted tumor therapy. Adv. Drug Deliv. Rev., 2020, 160, 199-211.
[http://dx.doi.org/10.1016/j.addr.2020.10.019] [PMID: 33137364]
[51]
Luo, G.F.; Chen, W.H.; Zeng, X.; Zhang, X.Z. Cell primitive-based biomimetic functional materials for enhanced cancer therapy. Chem. Soc. Rev., 2021, 50(2), 945-985.
[http://dx.doi.org/10.1039/D0CS00152J] [PMID: 33226037]
[52]
Sánchez, A.; Mejía, S.P.; Orozco, J. Recent advances in polymeric nanoparticle-encapsulated drugs against intracellular infections. Molecules, 2020, 25(16), 3760.
[http://dx.doi.org/10.3390/molecules25163760] [PMID: 32824757]
[53]
Navya, P.N.; Kaphle, A.; Srinivas, S.P.; Bhargava, S.K.; Rotello, V.M.; Daima, H.K. Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg., 2019, 6(1), 23.
[http://dx.doi.org/10.1186/s40580-019-0193-2] [PMID: 31304563]
[54]
Vasile, C.; Pamfil, D.; Stoleru, E.; Baican, M. New developments in medical applications of hybrid hydrogels containing natural polymers. Molecules, 2020, 25(7), 1539.
[http://dx.doi.org/10.3390/molecules25071539] [PMID: 32230990]
[55]
Coelho, J.F.; Ferreira, P.C.; Alves, P.; Cordeiro, R.; Fonseca, A.C.; Góis, J.R.; Gil, M.H. Drug delivery systems: Advanced technologies potentially applicable in personalized treatments. EPMA J., 2010, 1(1), 164-209.
[http://dx.doi.org/10.1007/s13167-010-0001-x] [PMID: 23199049]
[56]
Sharma, S.; Sudhakara, P.; Singh, J.; Ilyas, R.A.; Asyraf, M.R.M.; Razman, M.R. Critical review of biodegradable and bioactive polymer composites for bone tissue engineering and drug delivery applications. Polymers, 2021, 13(16), 2623.
[http://dx.doi.org/10.3390/polym13162623] [PMID: 34451161]
[57]
Gültekin, H.E. Biodegradable polymeric nanoparticles are effective systems for controlled drug delivery. Fabad. J. Pharm. Sci., 2013, 38, 107-118.
[58]
Zielińska, A.; Carreiró, F.; Oliveira, A.M.; Neves, A.; Pires, B.; Venkatesh, D.N.; Durazzo, A.; Lucarini, M.; Eder, P.; Silva, A.M.; Santini, A.; Souto, E.B. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules, 2020, 25(16), 3731.
[http://dx.doi.org/10.3390/molecules25163731] [PMID: 32824172]
[59]
Lu, X-Y.; Wu, D-C.; Li, Z-J.; Chen, G-Q. Chpater 7 - Polymer nanoparticles. In: Progress in Molecular Biology and Translational Science; Villaverde, A., Ed.; Academic Press, 2011; pp. 299-323.
[60]
Soppimath, K.S.; Aminabhavi, T.M.; Kulkarni, A.R.; Rudzinski, W.E. Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release, 2001, 70(1-2), 1-20.
[http://dx.doi.org/10.1016/S0168-3659(00)00339-4] [PMID: 11166403]
[61]
Zhang, S.; Wu, Y.; He, B.; Luo, K.; Gu, Z. Biodegradable polymeric nanoparticles based on amphiphilic principle: construction and application in drug delivery. Sci. China Chem., 2014, 57(4), 461-475.
[http://dx.doi.org/10.1007/s11426-014-5076-0]
[62]
Das, S.S.; Bharadwaj, P.; Bilal, M.; Barani, M.; Rahdar, A.; Taboada, P.; Bungau, S.; Kyzas, G.Z. Stimuli-responsive polymeric nanocarriers for drug delivery, imaging, and theragnosis. Polymers, 2020, 12(6), 1397.
[http://dx.doi.org/10.3390/polym12061397] [PMID: 32580366]
[63]
Wang, Z.; Duan, Y.; Duan, Y. Application of polydopamine in tumor targeted drug delivery system and its drug release behavior. J. Control. Release, 2018, 290, 56-74.
[http://dx.doi.org/10.1016/j.jconrel.2018.10.009] [PMID: 30312718]
[64]
Nichols, J.W.; Bae, Y.H. Odyssey of a cancer nanoparticle: From injection site to site of action. Nano Today, 2012, 7(6), 606-618.
[http://dx.doi.org/10.1016/j.nantod.2012.10.010] [PMID: 23243460]
[65]
Friberg, S.; Nyström, A.M. Nanomedicine: will it offer possibilities to overcome multiple drug resistance in cancer? J. Nanobiotechnol., 2016, 14(1), 17.
[http://dx.doi.org/10.1186/s12951-016-0172-2] [PMID: 26955956]
[66]
Nichols, J.W.; Bae, Y.H. Nanotechnology for cancer treatment: Possibilities and limitations. In: Cancer targeted drug delivery; Springer, 2013; pp. 37-56.
[http://dx.doi.org/10.1007/978-1-4614-7876-8_2]
[67]
Barua, S.; Mitragotri, S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review of current status and future prospects. Nano Today, 2014, 9(2), 223-243.
[http://dx.doi.org/10.1016/j.nantod.2014.04.008] [PMID: 25132862]
[68]
Deepa, G.; Ashwanikumar, N.; Pillai, J.J.; Kumar, G.S. Polymer nanoparticles--a novel strategy for administration of Paclitaxel in cancer chemotherapy. Curr. Med. Chem., 2012, 19(36), 6207-6213.
[http://dx.doi.org/10.2174/0929867311209066207] [PMID: 22834822]
[69]
Drozdov, A.S.; Nikitin, P.I.; Rozenberg, J.M. Systematic review of cancer targeting by nanoparticles revealed a global association between accumulation in tumors and spleen. Int. J. Mol. Sci., 2021, 22(23), 13011.
[http://dx.doi.org/10.3390/ijms222313011] [PMID: 34884816]
[70]
Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol., 2015, 33(9), 941-951.
[http://dx.doi.org/10.1038/nbt.3330] [PMID: 26348965]
[71]
Ray, P.; Haideri, N.; Haque, I.; Mohammed, O.; Chakraborty, S.; Banerjee, S. The impact of nanoparticles on the immune system: A gray zone of nanomedicine. J Immunol. Sci., 2021, 5(1), 19-33.
[http://dx.doi.org/10.29245/2578-3009/2021/1.1206]
[72]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol., 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[73]
Park, S.J. Protein–nanoparticle interaction: corona formation and conformational changes in proteins on nanoparticles. Int. J. Nanomed., 2020, 15, 5783-5802.
[http://dx.doi.org/10.2147/IJN.S254808] [PMID: 32821101]
[74]
Corbo, C.; Molinaro, R.; Parodi, A.; Toledano Furman, N.E.; Salvatore, F.; Tasciotti, E. The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine (Lond.), 2016, 11(1), 81-100.
[http://dx.doi.org/10.2217/nnm.15.188] [PMID: 26653875]
[75]
Hickey, J.W.; Santos, J.L.; Williford, J.M.; Mao, H. -.Q. Control of polymeric nanoparticle size to improve therapeutic delivery. J. Control. Release, 2015, 219, 536-547.
[http://dx.doi.org/10.1016/j.jconrel.2015.10.006]
[76]
Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov., 2021, 20(2), 101-124.
[http://dx.doi.org/10.1038/s41573-020-0090-8] [PMID: 33277608]
[77]
Gadzinowski, M.; Kasprów, M.; Basinska, T.; Slomkowski, S.; Otulakowski, Ł.; Trzebicka, B.; Makowski, T. Synthesis, Hydrophilicity and Micellization of Coil-Brush Polystyrene-b-(polyglycidol-g-polyglycidol) Copolymer—Comparison with Linear Polystyrene-b-polyglycidol. Polymers (Basel), 2022, 14(2), 253.
[http://dx.doi.org/10.3390/polym14020253] [PMID: 35054660]
[78]
El Jundi, A.; Buwalda, S.J.; Bakkour, Y.; Garric, X.; Nottelet, B. Double hydrophilic block copolymers self-assemblies in biomedical applications. Adv. Colloid Interface Sci., 2020, 283, 102213.
[http://dx.doi.org/10.1016/j.cis.2020.102213] [PMID: 32739324]
[79]
Pinna, M.; Hiltl, S.; Guo, X.; Böker, A.; Zvelindovsky, A.V. Block copolymer nanocontainers. ACS Nano, 2010, 4(5), 2845-2855.
[http://dx.doi.org/10.1021/nn901853e] [PMID: 20496954]
[80]
Park, C.; Yoon, J.; Thomas, E.L. Enabling nanotechnology with self assembled block copolymer patterns. Polymer, 2003, 44(22), 6725-6760.
[http://dx.doi.org/10.1016/j.polymer.2003.08.011]
[81]
Jhaveri, A.M.; Torchilin, V.P. Multifunctional polymeric micelles for delivery of drugs and siRNA. Front. Pharmacol., 2014, 5, 77.
[http://dx.doi.org/10.3389/fphar.2014.00077] [PMID: 24795633]
[82]
Hasannia, M.; Aliabadi, A.; Abnous, K.; Taghdisi, S.M.; Ramezani, M.; Alibolandi, M. Synthesis of block copolymers used in polymersome fabrication: Application in drug delivery. J. Control. Release, 2022, 341, 95-117.
[http://dx.doi.org/10.1016/j.jconrel.2021.11.010] [PMID: 34774891]
[83]
Semsarilar, M.; Abetz, V. Polymerizations by RAFT: Developments of the technique and its application in the synthesis of tailored (co)polymers. Macromol. Chem. Phys., 2021, 222(1), 2000311.
[http://dx.doi.org/10.1002/macp.202000311]
[84]
Kurzhals, S.; Schroffenegger, M.; Gal, N.; Zirbs, R.; Reimhult, E. Influence of grafted block copolymer structure on thermoresponsiveness of superparamagnetic core–shell nanoparticles. Biomacromolecules, 2018, 19(5), 1435-1444.
[http://dx.doi.org/10.1021/acs.biomac.7b01403] [PMID: 29161516]
[85]
Arslan, H. Block and graft copolymerization by controlled/living radical polymerization methods. In: Polymerization; InTechOpen, 2012; pp. 279-320.
[86]
Gaitzsch, J.; Messager, L.; Morecroft, E.; Meier, W. Vesicles in multiple shapes: Fine-tuning polymersomes’ shape and stability by setting membrane hydrophobicity. Polymers, 2017, 9(12), 483.
[http://dx.doi.org/10.3390/polym9100483] [PMID: 30965785]
[87]
Hickey, R.J. Solution-phase assembly of nanoparticles and amphiphilic polymers: Controlling the morphology from vesicles to micelles; Phd Thesis, University of Pennsylvania, 2013.
[88]
Knop, K.; Hoogenboom, R.; Fischer, D.; Schubert, U.S. Poly(ethylene glycol) in drug delivery: Pros and cons as well as potential alternatives. Angew. Chem. Int. Ed., 2010, 49(36), 6288-6308.
[http://dx.doi.org/10.1002/anie.200902672] [PMID: 20648499]
[89]
Suk, J.S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev., 2016, 99(Pt A), 28-51.
[http://dx.doi.org/10.1016/j.addr.2015.09.012] [PMID: 26456916]
[90]
Hoang Thi, T.T.; Pilkington, E.H.; Nguyen, D.H.; Lee, J.S.; Park, K.D.; Truong, N.P. The importance of poly(ethylene glycol) alternatives for overcoming PEG immunogenicity in drug delivery and bioconjugation. Polymers, 2020, 12(2), 298.
[http://dx.doi.org/10.3390/polym12020298] [PMID: 32024289]
[91]
Douard, V.; Ferraris, R.P. Regulation of the fructose transporter GLUT5 in health and disease. Am. J. Physiol. Endocrinol. Metab., 2008, 295(2), E227-E237.
[http://dx.doi.org/10.1152/ajpendo.90245.2008] [PMID: 18398011]
[92]
Navale, A.M.; Paranjape, A.N. Glucose transporters: Physiological and pathological roles. Biophys. Rev., 2016, 8(1), 5-9.
[http://dx.doi.org/10.1007/s12551-015-0186-2] [PMID: 28510148]
[93]
Engler, A.C.; Ke, X.; Gao, S.; Chan, J.M.W.; Coady, D.J.; Ono, R.J.; Lubbers, R.; Nelson, A.; Yang, Y.Y.; Hedrick, J.L. Hydrophilic polycarbonates: Promising degradable alternatives to poly(ethylene glycol)-based stealth materials. Macromolecules, 2015, 48(6), 1673-1678.
[http://dx.doi.org/10.1021/acs.macromol.5b00156]
[94]
Kim, J.; Chhour, P.; Hsu, J.; Litt, H.I.; Ferrari, V.A.; Popovtzer, R.; Cormode, D.P. Use of nanoparticle contrast agents for cell tracking with computed tomography. Bioconjug. Chem., 2017, 28(6), 1581-1597.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00194] [PMID: 28485976]
[95]
Yuan, Y.; Liu, B. Visualization of drug delivery processes using AIEgens. Chem. Sci. (Camb.), 2017, 8(4), 2537-2546.
[http://dx.doi.org/10.1039/C6SC05421H] [PMID: 28553485]
[96]
Chinen, A.B.; Guan, C.M.; Ferrer, J.R.; Barnaby, S.N.; Merkel, T.J.; Mirkin, C.A. Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence. Chem. Rev., 2015, 115(19), 10530-10574.
[http://dx.doi.org/10.1021/acs.chemrev.5b00321] [PMID: 26313138]
[97]
Rayaprolu, B.M.; Strom, J.G. Design and evaluation of D-α tocopheryl polyethylene glycol 1000 succinate emulsified poly-ϵ-caprolactone nanoparticles for protein/peptide drug delivery. Drug Dev. Ind. Pharm., 2013, 39(7), 1046-1052.
[http://dx.doi.org/10.3109/03639045.2012.699069] [PMID: 22758209]
[98]
Salerno, A.; Domingo, C.; Saurina, J. PCL foamed scaffolds loaded with 5-fluorouracil anti-cancer drug prepared by an eco-friendly route. Mater. Sci. Eng. C, 2017, 75, 1191-1197.
[http://dx.doi.org/10.1016/j.msec.2017.03.011] [PMID: 28415406]
[99]
Wang, Z.; Wei, Y.; Fang, G.; Hong, D.; An, L.; Jiao, T.; Shi, Y.; Zang, A. Colorectal cancer combination therapy using drug and gene co-delivered, targeted poly(ethylene glycol)-ϵ-poly(caprolactone) nanocarriers. Drug Des. Devel. Ther., 2018, 12, 3171-3180.
[http://dx.doi.org/10.2147/DDDT.S175614] [PMID: 30288022]
[100]
Ortiz, R.; Prados, J.; Melguizo, C.; Arias, J.L.; Ruiz, M.A.; Álvarez, P.J.; Caba, O.; Luque, R.; Segura, A.; Aránega, A. 5-Fluorouracil-loaded poly(ε-caprolactone) nanoparticles combined with phage E gene therapy as a new strategy against colon cancer. Int. J. Nanomed., 2012, 7, 95-107.
[PMID: 22275826]
[101]
Yuan, M.; Xiao, Y.; Le, V.; Wei, C.; Fu, Y.; Liu, J.; Lang, M. Micelle controlled release of 5-fluorouracil: Follow the guideline for good polymer–drug compatibility. Colloids Surf. A Physicochem. Eng. Asp., 2014, 457, 116-124.
[http://dx.doi.org/10.1016/j.colsurfa.2014.04.062]
[102]
Yuan, Y.; Zhang, A.K.; Ling, J.; Yin, L.H.; Chen, Y.; Fu, G.D. Well-defined biodegradable amphiphilic conetworks. Soft Matter, 2013, 9(27), 6309-6318.
[http://dx.doi.org/10.1039/c3sm27853k]
[103]
Ashour, A.E.; Badran, M.M.; Kumar, A.; Rishi, A.K.; Yassin, A.E. Di-block PLCL and tri-block PLCLG matrix polymeric nanoparticles enhanced the anticancer activity of loaded 5-fluorouracil. IEEE Trans. Nanobiosci., 2016, 15(7), 739-747.
[http://dx.doi.org/10.1109/TNB.2016.2612340] [PMID: 28029617]
[104]
Klouda, L.; Mikos, A.G. Thermoresponsive hydrogels in biomedical applications. Eur. J. Pharm. Biopharm., 2008, 68(1), 34-45.
[http://dx.doi.org/10.1016/j.ejpb.2007.02.025] [PMID: 17881200]
[105]
Gong, C.; Shi, S.; Wu, L.; Gou, M.; Yin, Q.; Guo, Q.; Dong, P.; Zhang, F.; Luo, F.; Zhao, X.; Wei, Y.; Qian, Z. Biodegradable in situ gel-forming controlled drug delivery system based on thermosensitive PCL–PEG–PCL hydrogel. Part 2: Sol–gel–sol transition and drug delivery behavior. Acta Biomater., 2009, 5(9), 3358-3370.
[http://dx.doi.org/10.1016/j.actbio.2009.05.025] [PMID: 19470411]
[106]
Kasiński, A.; Zielińska-Pisklak, M.; Oledzka, E.; Sobczak, M. Smart hydrogels–synthetic stimuli-responsive antitumor drug release systems. Int. J. Nanomed., 2020, 15, 4541-4572.
[http://dx.doi.org/10.2147/IJN.S248987] [PMID: 32617004]
[107]
Matanović, M.R.; Kristl, J.; Grabnar, P.A. Thermoresponsive polymers: Insights into decisive hydrogel characteristics, mechanisms of gelation, and promising biomedical applications. Int. J. Pharm., 2014, 472(1-2), 262-275.
[http://dx.doi.org/10.1016/j.ijpharm.2014.06.029] [PMID: 24950367]
[108]
Dobrzynski, P. Synthesis of biodegradable copolymers with low-toxicity zirconium compounds. II. Copolymerization of glycolide with? -caprolactone initiated by zirconium(IV) acetylacetonate and zirconium(IV) chloride. J. Polym. Sci. A Polym. Chem., 2002, 40(10), 1379-1394.
[http://dx.doi.org/10.1002/pola.10222]
[109]
Kasiński, A.; Zielińska-Pisklak, M.; Kowalczyk, S.; Plichta, A.; Zgadzaj, A.; Oledzka, E.; Sobczak, M. Synthesis and characterization of new biodegradable injectable thermosensitive smart hydrogels for 5-fluorouracil delivery. Int. J. Mol. Sci., 2021, 22(15), 8330.
[http://dx.doi.org/10.3390/ijms22158330] [PMID: 34361098]
[110]
Zhu, S.; Wen, L.; Xiao, Y.; Lang, M. Poly(ε-caprolactone) with pH and UCST responsiveness as a 5-fluorouracil carrier. Polym. Chem., 2020, 11(32), 5173-5180.
[http://dx.doi.org/10.1039/D0PY00865F]
[111]
Le, V.M.; Wang, J.J.; Yuan, M.; Nguyen, T.L.; Yin, G.F.; Zheng, Y.H.; Shi, W.B.; Lang, M.D.; Xu, L.M.; Liu, J.W. An investigation of antitumor efficiency of novel sustained and targeted 5-fluorouracil nanoparticles. Eur. J. Med. Chem., 2015, 92, 882-889.
[http://dx.doi.org/10.1016/j.ejmech.2014.12.043] [PMID: 25676729]
[112]
Zhang, Y.; Li, J.; Lang, M.; Tang, X.; Li, L.; Shen, X. Folate-functionalized nanoparticles for controlled 5-Fluorouracil delivery. J. Colloid Interface Sci., 2011, 354(1), 202-209.
[http://dx.doi.org/10.1016/j.jcis.2010.10.054] [PMID: 21094493]
[113]
Li, J.; Zhang, Y.; Chen, J.; Wang, C.; Lang, M. Preparation, characterization and drug release behavior of 5-fluorouracil loaded carboxylic poly (ε-caprolactone) nanoparticles. Pure Appl. Chem., 2009, 46, 1103-1113.
[114]
Sengel-Turk, C.T.; Hascicek, C. Design of lipid-polymer hybrid nanoparticles for therapy of BPH: Part I. Formulation optimization using a design of experiment approach. J. Drug Deliv. Sci. Technol., 2017, 39, 16-27.
[http://dx.doi.org/10.1016/j.jddst.2017.02.012]
[115]
Khan, S.; Aamir, M.N.; Madni, A.; Jan, N.; Khan, A.; Jabar, A.; Shah, H.; Rahim, M.A.; Ali, A. Lipid poly (ɛ-caprolactone) hybrid nanoparticles of 5-fluorouracil for sustained release and enhanced anticancer efficacy. Life Sci., 2021, 284, 119909.
[http://dx.doi.org/10.1016/j.lfs.2021.119909] [PMID: 34450169]
[116]
Wang, M.; Hsieh, A.J.; Rutledge, G.C. Electrospinning of poly(MMA-co-MAA) copolymers and their layered silicate nanocomposites for improved thermal properties. Polymer (Guildf.), 2005, 46(10), 3407-3418.
[http://dx.doi.org/10.1016/j.polymer.2005.02.099]
[117]
Yu, D.G.; Zhu, L.M.; White, K.; Branford-White, C. Electrospun nanofiber-based drug delivery systems. Health (Irvine Calif.), 2009, 1(2), 67-75.
[http://dx.doi.org/10.4236/health.2009.12012]
[118]
Chakrapani, V.Y.; Gnanamani, A.; Giridev, V.R.; Madhusoothanan, M.; Sekaran, G. Electrospinning of type I collagen and PCL nano-fibers using acetic acid. J. Appl. Polym. Sci., 2012, 125(4), 3221-3227.
[http://dx.doi.org/10.1002/app.36504]
[119]
Li, Z.; Wang, C. One-dimensional nanostructures: electrospinning technique and unique nanofibers; Springer, 2013.
[http://dx.doi.org/10.1007/978-3-642-36427-3]
[120]
Zeng, J.; Yang, L.; Liang, Q.; Zhang, X.; Guan, H.; Xu, X.; Chen, X.; Jing, X. Influence of the drug compatibility with polymer solution on the release kinetics of electrospun fiber formulation. J. Control. Release, 2005, 105(1-2), 43-51.
[http://dx.doi.org/10.1016/j.jconrel.2005.02.024] [PMID: 15908033]
[121]
Dash, T.K.; Konkimalla, V.B. Poly-є-caprolactone based formulations for drug delivery and tissue engineering: A review. J. Control. Release, 2012, 158(1), 15-33.
[http://dx.doi.org/10.1016/j.jconrel.2011.09.064] [PMID: 21963774]
[122]
Reichert, J.C.; Cipitria, A.; Epari, D.R.; Saifzadeh, S.; Krishnakanth, P.; Berner, A. A tissue engineering solution for segmental defect regeneration in load-bearing long bones. Sci. Transl. Med., 2012, 4, 141ra93.
[http://dx.doi.org/10.1126/scitranslmed.3003720]
[123]
Feng, B.; Tu, H.; Yuan, H.; Peng, H.; Zhang, Y. Acetic-acid-mediated miscibility toward electrospinning homogeneous composite nano-fibers of GT/PCL. Biomacromolecules, 2012, 13(12), 3917-3925.
[http://dx.doi.org/10.1021/bm3009389] [PMID: 23131188]
[124]
Sahoo, N.; Sahoo, R.K.; Biswas, N.; Guha, A.; Kuotsu, K. Recent advancement of gelatin nanoparticles in drug and vaccine delivery. Int. J. Biol. Macromol., 2015, 81, 317-331.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.08.006] [PMID: 26277745]
[125]
Kai, D.; Prabhakaran, M.P.; Stahl, B.; Eblenkamp, M.; Wintermantel, E.; Ramakrishna, S. Mechanical properties and in vitro behavior of nanofiber–hydrogel composites for tissue engineering applications. Nanotechnology, 2012, 23(9), 095705.
[http://dx.doi.org/10.1088/0957-4484/23/9/095705] [PMID: 22322583]
[126]
Zheng, R.; Duan, H.; Xue, J.; Liu, Y.; Feng, B.; Zhao, S.; Zhu, Y.; Liu, Y.; He, A.; Zhang, W.; Liu, W.; Cao, Y.; Zhou, G. The influence of Gelatin/PCL ratio and 3-D construct shape of electrospun membranes on cartilage regeneration. Biomaterials, 2014, 35(1), 152-164.
[http://dx.doi.org/10.1016/j.biomaterials.2013.09.082] [PMID: 24135269]
[127]
Xue, J.; Feng, B.; Zheng, R.; Lu, Y.; Zhou, G.; Liu, W.; Cao, Y.; Zhang, Y.; Zhang, W.J. Engineering ear-shaped cartilage using electrospun fibrous membranes of gelatin/polycaprolactone. Biomaterials, 2013, 34(11), 2624-2631.
[http://dx.doi.org/10.1016/j.biomaterials.2012.12.011] [PMID: 23352044]
[128]
Faezeh, Ghahreman; Semnani, D.; Khorasani, S.N.; Varshosaz, J.; Khalili, S.; Mohammadi, S.; Kaviannasab, E. Polycaprolactone–gelatin membranes in controlled drug delivery of 5-fluorouracil. Polym. Sci. Ser. A, 2020, 62(6), 636-647.
[http://dx.doi.org/10.1134/S0965545X20330020]
[129]
Kaviannasab, E.; Semnani, D.; Khorasani, S.N.; Varshosaz, J.; Khalili, S.; Ghahreman, F. Core-shell nanofibers of poly (ε –caprolactone) and Polyvinylpyrrolidone for drug delivery system. Mater. Res. Express, 2019, 6(11), 115015.
[http://dx.doi.org/10.1088/2053-1591/ab4387]
[130]
Zhu, L.F.; Zheng, Y.; Fan, J.; Yao, Y.; Ahmad, Z.; Chang, M.W. A novel core-shell nanofiber drug delivery system intended for the synergistic treatment of melanoma. Eur. J. Pharm. Sci., 2019, 137, 105002.
[http://dx.doi.org/10.1016/j.ejps.2019.105002] [PMID: 31302215]
[131]
Badran, M.M.; Mady, M.M.; Ghannam, M.M.; Shakeel, F. Preparation and characterization of polymeric nanoparticles surface modified with chitosan for target treatment of colorectal cancer. Int. J. Biol. Macromol., 2017, 95, 643-649.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.11.098] [PMID: 27908720]
[132]
Zhao, A.; Yao, P.; Kang, C.; Yuan, X.; Chang, J.; Pu, P. Synthesis and characterization of tat-mediated O-CMC magnetic nanoparticles having anticancer function. J. Magn. Magn. Mater., 2005, 295(1), 37-43.
[http://dx.doi.org/10.1016/j.jmmm.2004.12.044]
[133]
Chassary, P.; Vincent, T.; Guibal, E. Metal anion sorption on chitosan and derivative materials: A strategy for polymer modification and optimum use. React. Funct. Polym., 2004, 60, 137-149.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2004.02.018]
[134]
Sunderland, C.J.; Steiert, M.; Talmadge, J.E.; Derfus, A.M.; Barry, S.E. Targeted nanoparticles for detecting and treating cancer. Drug Dev. Res., 2006, 67(1), 70-93.
[http://dx.doi.org/10.1002/ddr.20069]
[135]
Shi, W.B.; Le, V.M.; Gu, C.H.; Zheng, Y.H.; Lang, M.D.; Lu, Y.H.; Liu, J.W. Overcoming multidrug resistance in 2D and 3D culture models by controlled drug chitosan-graft poly(caprolactone)-based nanoparticles. J. Pharm. Sci., 2014, 103(4), 1064-1074.
[http://dx.doi.org/10.1002/jps.23860] [PMID: 24523221]
[136]
Kaewsaneha, C.; Tangboriboonrat, P.; Polpanich, D.; Eissa, M.; Elaissari, A. Janus colloidal particles: Preparation, properties, and biomedical applications. ACS Appl. Mater. Interfaces, 2013, 5(6), 1857-1869.
[http://dx.doi.org/10.1021/am302528g] [PMID: 23394306]
[137]
Zhang, J.; Zheng, X.; Wu, F.; Yan, B.; Zhou, S.; Qu, S.; Weng, J. Shape memory actuation of janus nanoparticles with amphipathic cross-linked network. ACS Macro Lett., 2016, 5(12), 1317-1321.
[http://dx.doi.org/10.1021/acsmacrolett.6b00730] [PMID: 35651214]
[138]
Qi, H.; Zhou, T.; Mei, S.; Chen, X.; Li, C.Y. Responsive shape change of sub-5 nm thin, janus polymer nanoplates. ACS Macro Lett., 2016, 5(6), 651-655.
[http://dx.doi.org/10.1021/acsmacrolett.6b00251] [PMID: 35614666]
[139]
Suzuki, D.; Tsuji, S.; Kawaguchi, H. Janus microgels prepared by surfactant-free pickering emulsion-based modification and their self-assembly. J. Am. Chem. Soc., 2007, 129(26), 8088-8089.
[http://dx.doi.org/10.1021/ja072258w] [PMID: 17552529]
[140]
Khoee, S.; Jalaeian Bashirzadeh, M. Preparation of Janus‐type superparamagnetic iron oxide nanoparticles modified with functionalized PCL/PHEMAvia photopolymerization for dual drug delivery. J. Appl. Polym. Sci., 2021, 138(1), 49627.
[http://dx.doi.org/10.1002/app.49627]
[141]
Khoee, S.; Karimi, M.R. Dual-drug loaded Janus graphene oxide-based thermoresponsive nanoparticles for targeted therapy. Polymer, 2018, 142, 80-98.
[http://dx.doi.org/10.1016/j.polymer.2018.03.022]