In vitro Cholinesterase Inhibitory Activities of Piper betle Stem and their Correlation with In silico Docking Studies of its Phytoconstituents

Page: [1066 - 1073] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Background: Worldwide, millions of people are affected by neurodegenerative diseases. Even though treatment may help to reduce some of the mental or physical symptoms connected with neurodegenerative diseases, there is at present no way to slow disease development and no recognized cure.

Objective: The current study was carried out to explore the cholinesterase (ChE) inhibitory properties of the stem of Piper betle and correlate them with in silico docking results of its phytoconstituents.

Methods: The dried Piper betle stem was used to be extracted with purified water by using the maceration technique. The resultant was assessed for ChE inhibitory activity using Ellman’s method. The inhibitory profile of the aqueous extract of Piper betle (AEPB) stem was compared with rivastigmine, which is a standard cholinesterase inhibitor. The phytoconstituents of AEPB were procured from various literature studies. In silico docking studies were carried out with the help of AutoDock 4.2 software.

Results: AEPB considerably inhibited AChE and BuChE with the inhibition constant values of 0.437 ± 0.62 μg/ml and 0.371 ± 0.62 μg/ml, respectively, in a dose-dependent manner. In computational evaluation, the selected phytoconstituents exhibited excellent binding interactions prevailing with cholinesterase targets than the standard rivastigmine.

Conclusion: Based on the in vitro and in silico evaluations, Piperol A showed notable concentrationdependent inhibition of AChE and BuChE. These in vitro analyses and molecular docking studies will be helpful for the development of potent ChE inhibitors for the management of Alzheimer’s disease.

Graphical Abstract

[1]
Winner, B.; Kohl, Z.; Gage, F.H. Neurodegenerative disease and adult neurogenesis. Eur. J. Neurosci., 2011, 33(6), 1139-1151.
[http://dx.doi.org/10.1111/j.1460-9568.2011.07613.x] [PMID: 21395858]
[2]
Helman, A.M.; Murphy, M.P. Vascular cognitive impairment: Modeling a critical neurologic disease in vitro and in vivo. Biochim. Biophys. Acta Mol. Basis Dis., 2016, 1862(5), 975-982.
[http://dx.doi.org/10.1016/j.bbadis.2015.12.009] [PMID: 26704178]
[3]
Dolotov, O.V.; Inozemtseva, L.S.; Myasoedov, N.F.; Grivennikov, I.A. Stress-induced depression and Alzheimer’s disease: Focus on astrocytes. Int. J. Mol. Sci., 2022, 23(9), 4999-5005.
[http://dx.doi.org/10.3390/ijms23094999] [PMID: 35563389]
[4]
Efthymiou, A.G.; Goate, A.M. Late onset Alzheimer’s disease genetics implicates microglial pathways in disease risk. Mol. Neurodegener., 2017, 12(1), 43-48.
[http://dx.doi.org/10.1186/s13024-017-0184-x] [PMID: 28549481]
[5]
Francis, P.T.; Palmer, A.M.; Snape, M.; Wilcock, G.K. The cholinergic hypothesis of Alzheimer’s disease: A review of progress. J. Neurol. Neurosurg. Psychiatry, 1999, 66(2), 137-147.
[http://dx.doi.org/10.1136/jnnp.66.2.137] [PMID: 10071091]
[6]
Gella, A.; Durany, N. Oxidative stress in Alzheimer disease. Cell Adhes. Migr., 2009, 3(1), 88-93.
[http://dx.doi.org/10.4161/cam.3.1.7402] [PMID: 19372765]
[7]
Choudhary, D.; Kale, R.K. Antioxidant and non-toxic properties of Piper betle leaf extract: In vitro and in vivo studies. Phytother. Res., 2002, 16(5), 461-466.
[http://dx.doi.org/10.1002/ptr.1015] [PMID: 12203268]
[8]
Kirtikar, K.R.; Basu, B.D. Indian Medicinal Plants; Lalit Mohan Basu, India: Allahabad, 1935, pp. 159-165.
[9]
Lim, C.M.; Ee, G.C.L.; Rahmani, M.; Bong, C.F.J. Alkaloids from Piper nigrum and Piper betle. J. Sci. Technol., 2009, 17, 149-154.
[10]
Susmita, D.; Bratati, D. Acetylcholinesterase inhibitory property of Piper betle leaves. Pharmacologyonline, 2011, 1, 700-704.
[11]
Arutla, S.; Arra, G.S.; Prabhakar, C.M.; Krishna, D.R. Pro- and anti-oxidant effects of some antileprotic drugs in vitro and their influence on super oxide dismutase activity. Arzneimittelforschung, 1998, 48(10), 1024-1027.
[PMID: 9825121]
[12]
Konc, J.; Konc, J.T.; Penca, M. Janežič, D. Binding-sites prediction assisting protein-protein docking. Acta Chim. Slov., 2011, 58(3), 396-401.
[PMID: 24062097]
[13]
Kumar, P.; Pillay, V.; Choonara, Y.E.; Modi, G.; Naidoo, D.; Du Toit, L.C. In silico theoretical molecular modeling for Alzheimer’s disease: The nicotine-curcumin paradigm in neuroprotection and neurotherapy. Int. J. Mol. Sci., 2011, 12(1), 694-724.
[http://dx.doi.org/10.3390/ijms12010694] [PMID: 21340009]
[14]
Collignon, B.; Schulz, R.; Smith, J.C.; Baudry, J. Task-parallel message passing interface implementation of Autodock4 for docking of very large databases of compounds using high-performance super-computers. J. Comput. Chem., 2011, 32(6), 1202-1209.
[http://dx.doi.org/10.1002/jcc.21696] [PMID: 21387347]
[15]
Cosconati, S.; Forli, S.; Perryman, A.L.; Harris, R.; Goodsell, D.S.; Olson, A.J. Virtual screening with AutoDock: Theory and practice. Expert Opin. Drug Discov., 2010, 5(6), 597-607.
[http://dx.doi.org/10.1517/17460441.2010.484460] [PMID: 21532931]
[16]
Sen, T.; Samanta, S.K. Medicinal plants, human health and biodiversity: A broad review. Adv. Biochem. Eng. Biotechnol., 2014, 147, 59-110.
[http://dx.doi.org/10.1007/10_2014_273] [PMID: 25001990]
[17]
Arambewela, L.S.R.; Arawwawala, L.D.A.M.; Ratnasooriya, W.D. Antidiabetic activities of aqueous and ethanolic extracts of Piper betle leaves in rats. J. Ethnopharmacol., 2005, 102(2), 239-245.
[http://dx.doi.org/10.1016/j.jep.2005.06.016] [PMID: 16055288]
[18]
Ellman, G.L.; Courtney, K.D.; Andres, V. Jr.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 1961, 7(2), 88-95.
[http://dx.doi.org/10.1016/0006-2952(61)90145-9] [PMID: 13726518]
[19]
Ni, P.; Sun, Y.; Dai, H.; Jiang, S.; Lu, W.; Wang, Y.; Li, Z.; Li, Z. Colorimetric determination of the activity of acetylcholinesterase and its inhibitors by exploiting the iodide-catalyzed oxidation of 3,3′5,5′-tetramethylbenzidine by hydrogen peroxide. Mikrochim. Acta, 2016, 183(9), 2589-2595.
[http://dx.doi.org/10.1007/s00604-016-1874-8]
[20]
Ingkaninan, K.; Temkitthawon, P.; Chuenchom, K.; Yuyaem, T.; Thongnoi, W. Screening for acetylcholinesterase inhibitory activity in plants used in Thai traditional rejuvenating and neurotonic remedies. J. Ethnopharmacol., 2003, 89(2-3), 261-264.
[http://dx.doi.org/10.1016/j.jep.2003.08.008] [PMID: 14611889]
[21]
Ferreira, A.; Proença, C.; Serralheiro, M.L.M.; Araújo, M.E.M. The in vitro screening for acetylcholinesterase inhibition and antioxidant activity of medicinal plants from Portugal. J. Ethnopharmacol., 2006, 108(1), 31-37.
[http://dx.doi.org/10.1016/j.jep.2006.04.010] [PMID: 16737790]
[22]
Kuppusamy, A.; Arumugam, M.; George, S. Combining in silico and in vitro approaches to evaluate the acetylcholinesterase inhibitory profile of some commercially available flavonoids in the management of Alzheimer’s disease. Int. J. Biol. Macromol., 2017, 95, 199-203.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.11.062] [PMID: 27871793]
[23]
Madeswaran, A.; Midhuna, P.G. In silico evaluation of some commercially available flavonoids as Galactofuranoyltransferase-2 inhibitors in the management of Tuberculosis. Lett. Drug Des. Discov., 2022, 19(9), 858-863.
[http://dx.doi.org/10.2174/1570180819666220202155320]
[24]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and autodocktools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[25]
Shakil, S. Molecular interaction of anti-diabetic drugs with acetylcholinesterase and sodium glucose co-transporter 2. J. Cell. Biochem., 2017, 118(11), 3855-3865.
[http://dx.doi.org/10.1002/jcb.26036] [PMID: 28387957]
[26]
Madeswaran, A.; Brahmasundari, S.; Midhuna, P.G. In silico molecular docking studies of certain commercially available flavonoids as effective antiviral agents against spike glycoprotein of SARS-CoV-2. Eur. Rev. Med. Pharmacol. Sci., 2021, 25(21), 6741-6744.
[PMID: 34787879]
[27]
Seeliger, D.; de Groot, B.L. Ligand docking and binding site analysis with PyMOL and autodock/Vina. J. Comput. Aided Mol. Des., 2010, 24(5), 417-422.
[http://dx.doi.org/10.1007/s10822-010-9352-6] [PMID: 20401516]
[28]
Velmurugan, B.; Rathinasamy, B.; Lohanathan, B.; Thiyagarajan, V.; Weng, C.F. Neuroprotective role of phytochemicals. Molecules, 2018, 23(10), 2485.
[http://dx.doi.org/10.3390/molecules23102485] [PMID: 30262792]
[29]
Darvesh, S.; Cash, M.K.; Reid, G.A.; Martin, E.; Mitnitski, A.; Geula, C. Butyrylcholinesterase is associated with β-amyloid plaques in the transgenic APPSWE/PSEN1dE9 mouse model of Alzheimer disease. J. Neuropathol. Exp. Neurol., 2012, 71(1), 2-14.
[http://dx.doi.org/10.1097/NEN.0b013e31823cc7a6] [PMID: 22157615]
[30]
Suganthy, N.; Pandima Devi, K. In vitro antioxidant and anti-cholinesterase activities of Rhizophora mucronata. Pharm. Biol., 2016, 54(1), 118-129.
[http://dx.doi.org/10.3109/13880209.2015.1017886] [PMID: 25856713]
[31]
Singh, A.; Kumar, V.; Mishra, A.; Singh, V.K. Targeting the HIV-1 Tat and human Tat protein complex through natural products: An in silico docking and molecular dynamics simulation approach. Lett. Drug Des. Discov., 2022, 19(11), 982-995.
[http://dx.doi.org/10.2174/1570180819666220330122542]
[32]
Prakhov, N.D.; Chernorudskiy, A.L.; Gainullin, M.R. VSDocker: A tool for parallel high-throughput virtual screening using AutoDock on Windows-based computer clusters. Bioinformatics, 2010, 26(10), 1374-1375.
[http://dx.doi.org/10.1093/bioinformatics/btq149] [PMID: 20378556]
[33]
Rösler, M.; Anand, R.; Cicin-Sain, A.; Gauthier, S.; Agid, Y.; Dal-Bianco, P.; Stähelin, H.B.; Hartman, R.; Gharabawi, M.; Bayer, T. Efficacy and safety of rivastigmine in patients with Alzheimer’s disease: international randomised controlled trial Commentary: Another piece of the Alzheimer’s jigsaw. BMJ, 1999, 318(7184), 633-640.
[http://dx.doi.org/10.1136/bmj.318.7184.633] [PMID: 10066203]
[34]
Berr, C. Cognitive impairment and oxidative stress in the elderly: Results of epidemiological studies. Biofactors, 2000, 13(1-4), 205-209.
[http://dx.doi.org/10.1002/biof.5520130132] [PMID: 11237183]
[35]
Verret, L.; Mann, E.O.; Hang, G.B.; Barth, A.M.; Cobos, I.; Ho, K. Key role of inter neuronal impairments in Alzheimer’s disease-related neural network and cognitive dysfunction. Biofactors, 2012, 22, 587-595.
[36]
Rajmohan, R.; Reddy, P.H. Amyloid-beta and phosphorylated tau accumulations cause abnormalities at synapses of Alzheimer’s disease neurons. J. Alzheimers Dis., 2017, 57(4), 975-999.
[http://dx.doi.org/10.3233/JAD-160612] [PMID: 27567878]
[37]
Helmuth, L. New therapies. New Alzheimer’s treatments that may ease the mind. Science, 2002, 297(5585), 1260-1262.
[http://dx.doi.org/10.1126/science.297.5585.1260] [PMID: 12193764]
[38]
Hitesh, G.D.; Kumar, M.D.A.; Pooja, R.D.; Deepti, P.D.; Rucha, G.D.; Varma, D.S.K. Effects of Piper betle leaves (paan) extract as anti-depressant and anti-anxiety in experimental animals. Mintage J. Pharm. Med. Sci., 2015, 4(2), 12-15.
[39]
Yousof Ali, M.; Jung, H.A.; Choi, J.S. Anti-diabetic and anti-Alzheimer’s disease activities of Angelica decursiva. Arch. Pharm. Res., 2015, 38(12), 2216-2227.
[http://dx.doi.org/10.1007/s12272-015-0629-0] [PMID: 26152875]
[40]
Rajesh, V.; Riju, T.; Venkatesh, S.; Babu, G. Memory enhancing activity of Lawsonia inermis Linn. leaves against scopolamine induced memory impairment in Swiss albino mice. Orient. Pharm. Exp. Med., 2017, 17(2), 127-142.
[http://dx.doi.org/10.1007/s13596-017-0268-8]
[41]
Topkara, K.C.; Kilinc, E.; Cetinkaya, A.; Salyan, A.; Demir, S. Therapeutic effects of carvacrol on beta-amyloi-induced impairments in in vitro models of Alzheimer’s disease. Eur. J. Neurosci., 2022, 56(9), 5714-5726.
[http://dx.doi.org/10.1111/ejn.15565]
[42]
Azizi, Z.; Salimi, M.; Amanzadeh, A.; Majelssi, N.; Naghdi, N. Carvacrol and thymol attenuate cytotoxicity induced by amyloid β25-35 via activating protein kinase C and inhibiting oxidative stress in PC12 cells. Iran. Biomed. J., 2020, 24(4), 243-250.
[http://dx.doi.org/10.29252/ibj.24.4.243] [PMID: 32306722]
[43]
Zare Mehrjerdi, F.; Niknazar, S.; Yadegari, M.; Akbari, F.A.; Pirmoradi, Z.; Khaksari, M. Carvacrol reduces hippocampal cell death and improves learning and memory deficits following lead-induced neurotoxicity via antioxidant activity. Naunyn Schmiedebergs Arch. Pharmacol., 2020, 393(7), 1229-1237.
[http://dx.doi.org/10.1007/s00210-020-01866-6] [PMID: 32303785]
[44]
Caruana, M.; Cauchi, R.; Vassallo, N. Putative role of red wine polyphenols against brain pathology in Alzheimer’s and Parkinson’s disease. Front. Nutr., 2016, 3, 31-38.
[http://dx.doi.org/10.3389/fnut.2016.00031] [PMID: 27570766]
[45]
Rishitha, N.; Muthuraman, A. Therapeutic evaluation of solid lipid nanoparticle of quercetin in pentylenetetrazole induced cognitive impairment of zebrafish. Life Sci., 2018, 199, 80-87.
[http://dx.doi.org/10.1016/j.lfs.2018.03.010] [PMID: 29522770]
[46]
Sabogal-Guáqueta, A.M.; Muñoz-Manco, J.I.; Ramírez-Pineda, J.R.; Lamprea-Rodriguez, M.; Osorio, E.; Cardona-Gómez, G.P. The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology, 2015, 93, 134-145.
[http://dx.doi.org/10.1016/j.neuropharm.2015.01.027] [PMID: 25666032]