Development and Characterization of Enteric Polymer-based Solid Dispersion for Cholecalciferol Delivery

Page: [918 - 927] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: The deficiency of vitamin D is a global concern affecting individuals of all age groups. Insufficient exposure to sunlight and disease conditions can lead to cholecalciferol (vitamin D3) deficiency.

Objective: Cholecalciferol is a lipophilic crystalline molecule, and it is highly susceptible to degradation under environmental conditions, including light, temperature, and oxygen, and its degradation rate is high in the low pH range. Therefore, an enteric solid dispersion-based formulation was developed in the present study for the oral delivery of cholecalciferol.

Methods: Enteric polymer hydroxypropylmethylcellulose acetate succinate (HPMCAS)-based solid dispersion was developed and characterized by Fourier transform-infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and X-ray diffraction analysis. The effect of various concentrations of cholecalciferol formulations on the viability of Caco-2 cells was determined using an MTT assay. A dissolution and stability study of the product was also performed.

Results: An amorphous form of cholecalciferol in the solid dispersion was reported. The drug content of solid dispersions was in the order of 90%. The viability assay indicated that the surfactant used in the developed solid dispersion of cholecalciferol had no cytotoxic effect on Caco-2 cells. A dissolution study on enteric solid dispersion in two-stage dissolution under a biomimetic medium indicated the pHdependent release of cholecalciferol from the HPMCAS-based solid dispersion. Moreover, the stability study showed no significant changes in the cholecalciferol content in the developed formulation under storage at experimental conditions.

Conclusion: The enteric solid dispersion of cholecalciferol was developed, which exhibited compatibility with Caco-2 cells, improved dissolution, and acceptable stability profile, and represented a potential option for efficient delivery of cholecalciferol.

Graphical Abstract

[1]
Black, L.; Lucas, R.; Sherriff, J.; Björn, L.; Bornman, J. In pursuit of vitamin D in plants. Nutrients, 2017, 9(2), 136.
[http://dx.doi.org/10.3390/nu9020136] [PMID: 28208834]
[2]
Mithal, A.; Wahl, D.A.; Bonjour, J.P.; Burckhardt, P.; Dawson-Hughes, B.; Eisman, J.A.; El-Hajj Fuleihan, G.; Josse, R.G.; Lips, P.; Morales-Torres, J. Global vitamin D status and determinants of hypovitaminosis D. Osteoporos. Int., 2009, 20(11), 1807-1820.
[http://dx.doi.org/10.1007/s00198-009-0954-6] [PMID: 19543765]
[3]
Bruyère, O.; Slomian, J.; Beaudart, C.; Buckinx, F.; Cavalier, E.; Gillain, S.; Petermans, J.; Reginster, J.Y. Prevalence of vitamin D inadequacy in European women aged over 80 years. Arch. Gerontol. Geriatr., 2014, 59(1), 78-82.
[http://dx.doi.org/10.1016/j.archger.2014.03.010] [PMID: 24784761]
[4]
G, R.; Gupta, A. Vitamin D deficiency in India: prevalence, causalities and interventions. Nutrients, 2014, 6(2), 729-775.
[http://dx.doi.org/10.3390/nu6020729] [PMID: 24566435]
[5]
Bikle, D.D. Vitamin D metabolism, mechanism of action, and clinical applications. Chem. Biol., 2014, 21(3), 319-329.
[http://dx.doi.org/10.1016/j.chembiol.2013.12.016] [PMID: 24529992]
[6]
Thacher, T.D.; Clarke, B.L. Vitamin D insufficiency. Mayo Clin. Proc., 2011, 86(1), 50-60.
[http://dx.doi.org/10.4065/mcp.2010.0567] [PMID: 21193656]
[7]
Kennel, K.A.; Drake, M.T.; Hurley, D.L. Vitamin D deficiency in adults: when to test and how to treat. Mayo Clin. Proc., 2010, 85(8), 752-758.
[http://dx.doi.org/10.4065/mcp.2010.0138] [PMID: 20675513]
[8]
Joergensen, C.; Gall, M.A.; Schmedes, A.; Tarnow, L.; Parving, H.H.; Rossing, P. Vitamin D levels and mortality in type 2 diabetes. Diabetes Care, 2010, 33(10), 2238-2243.
[http://dx.doi.org/10.2337/dc10-0582] [PMID: 20606205]
[9]
Schwalfenberg, G. Vitamin D and diabetes: improvement of glycemic control with vitamin D3 repletion. Can. Fam. Physician, 2008, 54(6), 864-866.
[PMID: 18556494]
[10]
Deeb, K.K.; Trump, D.L.; Johnson, C.S. Vitamin D signalling pathways in cancer: potential for anticancer therapeutics. Nat. Rev. Cancer, 2007, 7(9), 684-700.
[http://dx.doi.org/10.1038/nrc2196] [PMID: 17721433]
[11]
Luo, Y.; Teng, Z.; Wang, Q. Development of zein nanoparticles coated with carboxymethyl chitosan for encapsulation and controlled release of vitamin D3. J. Agric. Food Chem., 2012, 60(3), 836-843.
[http://dx.doi.org/10.1021/jf204194z] [PMID: 22224939]
[12]
Gonnet, M.; Lethuaut, L.; Boury, F. New trends in encapsulation of liposoluble vitamins. J. Control. Release, 2010, 146(3), 276-290.
[http://dx.doi.org/10.1016/j.jconrel.2010.01.037] [PMID: 20600399]
[13]
Adams, J.S.; Hewison, M. Update in vitamin D. J Clin Endocrin Metab, 2010, 95(2), 471-478.
[14]
Borel, P.; Caillaud, D.; Cano, N.J. Vitamin D bioavailability: state of the art. Crit. Rev. Food Sci. Nutr., 2015, 55(9), 1193-1205.
[http://dx.doi.org/10.1080/10408398.2012.688897] [PMID: 24915331]
[15]
Makino, Y.; Suzuki, Y. Solid preparation of activated vitamin D3 having improved stability. European Patent No. 0413828A1, 1995.
[16]
Gupta, R.; Behera, C.; Paudwal, G.; Rawat, N.; Baldi, A.; Gupta, P.N. Recent advances in formulation strategies for efficient delivery of vitamin D. AAPS PharmSciTech, 2019, 20(1), 11.
[http://dx.doi.org/10.1208/s12249-018-1231-9] [PMID: 30560516]
[17]
Haham, M.; Ish-Shalom, S.; Nodelman, M.; Duek, I.; Segal, E.; Kustanovich, M.; Livney, Y.D. Stability and bioavailability of vitamin D nanoencapsulated in casein micelles. Food Funct., 2012, 3(7), 737-744.
[http://dx.doi.org/10.1039/c2fo10249h] [PMID: 22569895]
[18]
Teng, Z.; Luo, Y.; Wang, Q. Carboxymethyl chitosan-soy protein complex nanoparticles for the encapsulation and controlled release of vitamin D3. Food Chem., 2013, 141(1), 524-532.
[http://dx.doi.org/10.1016/j.foodchem.2013.03.043] [PMID: 23768389]
[19]
Yuan, T.; Qin, L.; Wang, Z.; Nie, J.; Guo, Z.; Li, G.; Wu, C. Solid lipid dispersion of calcitriol with enhanced dissolution and stability. Asian J. Pharm. Sci., 2013, 8(1), 39-47.
[http://dx.doi.org/10.1016/j.ajps.2013.07.005]
[20]
Diarrassouba, F.; Garrait, G.; Remondetto, G.; Alvarez, P.; Beyssac, E.; Subirade, M. Food protein-based microspheres for increased uptake of vitamin D3. Food Chem., 2015, 173(173), 1066-1072.
[http://dx.doi.org/10.1016/j.foodchem.2014.10.112] [PMID: 25466126]
[21]
Vo, C.L.N.; Park, C.; Lee, B.J. Current trends and future perspectives of solid dispersions containing poorly water-soluble drugs. Eur. J. Pharm. Biopharm., 2013, 85(3), 799-813.
[http://dx.doi.org/10.1016/j.ejpb.2013.09.007] [PMID: 24056053]
[22]
Paudwal, G.; Rawat, N.; Gupta, R.; Baldi, A.; Singh, G.; Gupta, P.N. Recent advances in solid dispersion technology for efficient delivery of poorly water-soluble drugs. Curr. Pharm. Des., 2019, 25(13), 1524-1535.
[http://dx.doi.org/10.2174/1381612825666190618121553] [PMID: 31258070]
[23]
Nakamichi, K.; Nakano, T.; Izumi, S.; Yasuura, H.; Kawashima, Y. The preparation of enteric solid dispersions with hydroxypropylmethylcellulose acetate succinate using a twin-screw extruder. J. Drug Deliv. Sci. Technol., 2004, 14(3), 193-198.
[http://dx.doi.org/10.1016/S1773-2247(04)50100-4]
[24]
Sha, X.; Yan, G.; Wu, Y.; Li, J.; Fang, X. Effect of self-microemulsifying drug delivery systems containing Labrasol on tight junctions in Caco-2 cells. Eur. J. Pharm. Sci., 2005, 24(5), 477-486.
[http://dx.doi.org/10.1016/j.ejps.2005.01.001] [PMID: 15784337]
[25]
Li, Y.; Mann, A.K.P.; Zhang, D.; Yang, Z. Processing impact on in vitro and in vivo performance of solid dispersions-A comparison between hot-melt extrusion and spray drying. Pharmaceutics, 2021, 13(8), 1307.
[http://dx.doi.org/10.3390/pharmaceutics13081307] [PMID: 34452269]
[26]
Marques, M.R.C.; Loebenberg, R.; Almukainzi, M. Simulated biological fluids with possible application in dissolution testing. Dissolut. Technol., 2011, 18(3), 15-28.
[http://dx.doi.org/10.14227/DT180311P15]
[27]
Vertzoni, M.; Fotaki, N.; Nicolaides, E.; Reppas, C.; Kostewicz, E.; Stippler, E.; Leuner, C.; Dressman, J. Dissolution media simulating the intralumenal composition of the small intestine: physiological issues and practical aspects. J. Pharm. Pharmacol., 2010, 56(4), 453-462.
[http://dx.doi.org/10.1211/0022357022935] [PMID: 15099440]
[28]
Dadkhodazade, E.; Mohammadi, A.; Shojaee-Aliabadi, S.; Mortazavian, A.M.; Mirmoghtadaie, L.; Hosseini, S.M. Yeast cell microcapsules as a novel carrier for cholecalciferol encapsulation: Development, characterization and release properties. Food Biophys., 2018, 13(4), 404-411.
[http://dx.doi.org/10.1007/s11483-018-9546-3]
[29]
Pantić M.; Knez, Ž.; Novak, Z. Supercritical impregnation as a feasible technique for entrapment of fat-soluble vitamins into alginate aerogels. J. Non-Cryst. Solids, 2016, 432, 519-526.
[http://dx.doi.org/10.1016/j.jnoncrysol.2015.11.011]
[30]
Alonzo, D.E.; Zhang, G.G.Z.; Zhou, D.; Gao, Y.; Taylor, L.S. Understanding the behavior of amorphous pharmaceutical systems during dissolution. Pharm. Res., 2010, 27(4), 608-618.
[http://dx.doi.org/10.1007/s11095-009-0021-1] [PMID: 20151181]
[31]
Fischer, S.M.; Brandl, M.; Fricker, G. Effect of the non-ionic surfactant Poloxamer 188 on passive permeability of poorly soluble drugs across Caco-2 cell monolayers. Eur. J. Pharm. Biopharm., 2011, 79(2), 416-422.
[http://dx.doi.org/10.1016/j.ejpb.2011.04.010] [PMID: 21549839]
[32]
Ménard, N.; Tsapis, N.; Poirier, C.; Arnauld, T.; Moine, L.; Lefoulon, F.; Péan, J.M.; Fattal, E. Drug solubilization and in vitro toxicity evaluation of lipoamino acid surfactants. Int. J. Pharm., 2012, 423(2), 312-320.
[http://dx.doi.org/10.1016/j.ijpharm.2011.11.030] [PMID: 22143086]
[33]
El-Sayed, M.; Ginski, M.; Rhodes, C.; Ghandehari, H. Transepithelial transport of poly(amidoamine) dendrimers across Caco-2 cell monolayers. J. Control. Release, 2002, 81(3), 355-365.
[http://dx.doi.org/10.1016/S0168-3659(02)00087-1] [PMID: 12044574]
[34]
Sandri, G.; Bonferoni, M.C.; Rossi, S.; Ferrari, F.; Gibin, S.; Zambito, Y.; Di Colo, G.; Caramella, C. Nanoparticles based on N-trimethylchitosan: Evaluation of absorption properties using in vitro (Caco-2 cells) and ex vivo (excised rat jejunum) models. Eur. J. Pharm. Biopharm., 2007, 65(1), 68-77.
[http://dx.doi.org/10.1016/j.ejpb.2006.07.016] [PMID: 16962751]
[35]
Mustafa, W.W.; Fletcher, J.; Khoder, M.; Alany, R.G. Solid dispersions of gefitinib prepared by spray drying with improved mucoadhesive and drug dissolution properties. AAPS PharmSciTech, 2022, 23(1), 48.
[http://dx.doi.org/10.1208/s12249-021-02187-4] [PMID: 34984564]
[36]
Tanno, F.; Nishiyama, Y.; Kokubo, H.; Obara, S. Evaluation of hypromellose acetate succinate (HPMCAS) as a carrier in solid dispersions. Drug Dev. Ind. Pharm., 2004, 30(1), 9-17.
[http://dx.doi.org/10.1081/DDC-120027506] [PMID: 15000425]
[37]
Kuramoto, M.; Shirai, Y.; Iwata, A.; Kihara, Y.; Nakamura, Y. Preparation of solid dispersion granules of a therapeutic drug of cerebrovascular disorders and its evaluation. J. Pharm. Sci. Technol., 2001, 61(2), 47-58.
[38]
Hasegawa, A.; Kawamura, R.; Nakagawa, H.; Sugimoto, I. Application of solid dispersions with enteric coating agents to overcome some pharmaceutical problems. Chem. Pharm. Bull. (Tokyo), 1986, 34(5), 2183-2190.
[http://dx.doi.org/10.1248/cpb.34.2183] [PMID: 3742658]
[39]
Kai, T.; Akiyama, Y.; Nomura, S.; Sato, M. Oral absorption improvement of poorly soluble drug using solid dispersion technique. Chem. Pharm. Bull. (Tokyo), 1996, 44(3), 568-571.
[http://dx.doi.org/10.1248/cpb.44.568] [PMID: 8882454]