Computational Repurposing of Potential Dimerization Inhibitors against SARS-CoV-2 Main Protease

Page: [799 - 808] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: The screening, design, and synthesis of various dimerization inhibitors have been an active area of interest for structure-based drug design efforts. Functionally important dimers, such as human immunodeficiency virus (HIV) protease and surviving, are being targeted for such studies over time. Computational repurposing of potential drug candidates provides a cost and time-efficient way in the drug discovery life cycle.

Objective: Concerning the current coronavirus disease (COVID-19) scenario, the functionally active dimer of SARS-CoV-2 (severe acute respiratory syndrome) main protease (Mpro) is used as a target to screen possible dimerization inhibitors.

Methods: A database of small molecule protein-protein interaction inhibitors was screened for the study. This study used molecular docking, followed by molecular dynamics (MD) simulation and postsimulation binding energy predictions.

Results: From the selected 183 compounds, a diazene-based compound and a salicylic-type compound were identified as possible dimerization inhibitors in this study. These two compounds formed stable complexes with the Mpro during the MD simulations. The complexes formed by these two compounds were also unable to form important salt bridge interactions required for the dimerization of the protomers.

Conclusion: Experimental studies on both compounds were previously conducted as dimerization inhibitors in HIV. The data led to the possibility of exploring the identified compounds as dimerization inhibitors, which could be important for SARS-CoV-2 therapeutics.

Graphical Abstract

[1]
Garcia-Beltran, W.F.; Lam, E.C.; St Denis, K.; Nitido, A.D.; Garcia, Z.H.; Hauser, B.M.; Feldman, J.; Pavlovic, M.N.; Gregory, D.J.; Poznansky, M.C.; Sigal, A.; Schmidt, A.G.; Iafrate, A.J.; Naranbhai, V.; Balazs, A.B. Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell, 2021, 184(9), 2523.
[http://dx.doi.org/10.1016/j.cell.2021.04.006] [PMID: 33930298]
[2]
Shastri, J.; Parikh, S.; Aggarwal, V.; Agrawal, S.; Chatterjee, N.; Shah, R.; Devi, P.; Mehta, P.; Pandey, R. Severe SARS-CoV-2 breakthrough reinfection with delta variant after recovery from breakthrough infection by alpha variant in a fully vaccinated health worker. Front. Med. (Lausanne), 2021, 8, 737007.
[http://dx.doi.org/10.3389/fmed.2021.737007] [PMID: 34490316]
[3]
Kozlov, M. Why scientists are racing to develop more COVID antivirals. Nature, 2022, 601(7894), 496-496.
[http://dx.doi.org/10.1038/d41586-022-00112-8] [PMID: 35064230]
[4]
Mabonga, L.; Kappo, A.P. Protein-protein interaction modulators: advances, successes and remaining challenges. Biophys. Rev., 2019, 11(4), 559-581.
[http://dx.doi.org/10.1007/s12551-019-00570-x] [PMID: 31301019]
[5]
Ran, X.; Gestwicki, J.E. Inhibitors of protein-protein interactions (PPIs): an analysis of scaffold choices and buried surface area. Curr. Opin. Chem. Biol., 2018, 44, 75-86.
[http://dx.doi.org/10.1016/j.cbpa.2018.06.004] [PMID: 29908451]
[6]
Lu, H.; Zhou, Q.; He, J.; Jiang, Z.; Peng, C.; Tong, R.; Shi, J. Recent advances in the development of protein-protein interactions modulators: mechanisms and clinical trials. Signal Transduct. Target. Ther., 2020, 5(1), 213.
[http://dx.doi.org/10.1038/s41392-020-00315-3] [PMID: 32968059]
[7]
Zinzalla, G.; Thurston, D.E. Targeting protein-protein interactions for therapeutic intervention: a challenge for the future. Future Med. Chem., 2009, 1(1), 65-93.
[http://dx.doi.org/10.4155/fmc.09.12] [PMID: 21426071]
[8]
Goyal, B.; Goyal, D. Targeting the dimerization of the main protease of coronaviruses: A potential broad-spectrum therapeutic strategy. ACS Comb. Sci., 2020, 22(6), 297-305.
[http://dx.doi.org/10.1021/acscombsci.0c00058] [PMID: 32402186]
[9]
Ullrich, S.; Nitsche, C. The SARS-CoV-2 main protease as drug target. Bioorg. Med. Chem. Lett., 2020, 30(17), 127377.
[http://dx.doi.org/10.1016/j.bmcl.2020.127377] [PMID: 32738988]
[10]
Suárez, D.; Díaz, N. SARS-CoV-2 main protease: A molecular dynamics study. J. Chem. Inf. Model., 2020, 60(12), 5815-5831.
[http://dx.doi.org/10.1021/acs.jcim.0c00575] [PMID: 32678588]
[11]
Yang, H.; Yang, M.; Ding, Y.; Liu, Y.; Lou, Z.; Zhou, Z.; Sun, L.; Mo, L.; Ye, S.; Pang, H.; Gao, G.F.; Anand, K.; Bartlam, M.; Hilgenfeld, R.; Rao, Z. The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proc. Natl. Acad. Sci. USA, 2003, 100(23), 13190-13195.
[http://dx.doi.org/10.1073/pnas.1835675100] [PMID: 14585926]
[12]
Kneller, D.W.; Phillips, G.; O’Neill, H.M.; Jedrzejczak, R.; Stols, L.; Langan, P.; Joachimiak, A.; Coates, L.; Kovalevsky, A. Structural plasticity of SARS-CoV-2 3CL Mpro active site cavity revealed by room temperature X-ray crystallography. Nat. Commun., 2020, 11(1), 3202.
[http://dx.doi.org/10.1038/s41467-020-16954-7] [PMID: 32581217]
[13]
Mengist, H.M.; Fan, X.; Jin, T. Designing of improved drugs for COVID-19: Crystal structure of SARS-CoV-2 main protease Mpro. Signal Transduct. Target. Ther., 2020, 5(1), 67.
[http://dx.doi.org/10.1038/s41392-020-0178-y] [PMID: 32388537]
[14]
Fan, K.; Wei, P.; Feng, Q.; Chen, S.; Huang, C.; Ma, L.; Lai, B.; Pei, J.; Liu, Y.; Chen, J.; Lai, L. Biosynthesis, purification, and substrate specificity of severe acute respiratory syndrome coronavirus 3C-like proteinase. J. Biol. Chem., 2004, 279(3), 1637-1642.
[http://dx.doi.org/10.1074/jbc.M310875200] [PMID: 14561748]
[15]
Ferreira, J.C.; Fadl, S.; Rabeh, W.M. Key dimer interface residues impact the catalytic activity of 3CLpro, the main protease of SARS-CoV-2. J. Biol. Chem., 2022, 298(6), 102023.
[http://dx.doi.org/10.1016/j.jbc.2022.102023] [PMID: 35568197]
[16]
Wei, P.; Fan, K.; Chen, H.; Ma, L.; Huang, C.; Tan, L.; Xi, D.; Li, C.; Liu, Y.; Cao, A.; Lai, L. The N-terminal octapeptide acts as a dimerization inhibitor of SARS coronavirus 3C-like proteinase. Biochem. Biophys. Res. Commun., 2006, 339(3), 865-872.
[http://dx.doi.org/10.1016/j.bbrc.2005.11.102] [PMID: 16329994]
[17]
Cross, T.J.; Takahashi, G.R.; Diessner, E.M.; Crosby, M.G.; Farahmand, V.; Zhuang, S.; Butts, C.T.; Martin, R.W. Sequence characterization and molecular modeling of clinically relevant variants of the SARS-CoV-2 main protease. Biochemistry, 2020, 59(39), 3741-3756.
[http://dx.doi.org/10.1021/acs.biochem.0c00462] [PMID: 32931703]
[18]
Pekel, H.; Ilter, M.; Sensoy, O. Inhibition of SARS-CoV-2 main protease: a repurposing study that targets the dimer interface of the protein. J. Biomol. Struct. Dyn., 2022, 40(15), 7167-7182.
[http://dx.doi.org/10.1080/07391102.2021.1910571] [PMID: 33847241]
[19]
Yang, K.S.; Ma, X.R.; Ma, Y.; Alugubelli, Y.R.; Scott, D.A.; Vatansever, E.C.; Drelich, A.K.; Sankaran, B.; Geng, Z.Z.; Blankenship, L.R.; Ward, H.E.; Sheng, Y.J.; Hsu, J.C.; Kratch, K.C.; Zhao, B.; Hayatshahi, H.S.; Liu, J.; Li, P.; Fierke, C.A.; Tseng, C.T.K.; Xu, S.; Liu, W.R. A quick route to multiple highly potent SARS‐CoV‐2 main protease inhibitors**. ChemMedChem, 2021, 16(6), 942-948.
[http://dx.doi.org/10.1002/cmdc.202000924] [PMID: 33283984]
[20]
Lockbaum, G.J.; Reyes, A.C.; Lee, J.M.; Tilvawala, R.; Nalivaika, E.A.; Ali, A.; Kurt Yilmaz, N.; Thompson, P.R.; Schiffer, C.A. Crystal structure of SARS-CoV-2 main protease in complex with the non-covalent inhibitor ML188. Viruses, 2021, 13(2), 174.
[http://dx.doi.org/10.3390/v13020174] [PMID: 33503819]
[21]
Xia, Z.; Sacco, M.; Hu, Y.; Ma, C.; Meng, X.; Zhang, F.; Szeto, T.; Xiang, Y.; Chen, Y.; Wang, J. Rational design of hybrid SARS-CoV-2 main protease inhibitors guided by the superimposed cocrystal structures with the peptidomimetic inhibitors gc-376, telaprevir, and boceprevir. ACS Pharmacol. Transl. Sci., 2021, 4(4), 1408-1421.
[http://dx.doi.org/10.1021/acsptsci.1c00099] [PMID: 34414360]
[22]
Antonopoulou, I.; Sapountzaki, E.; Rova, U.; Christakopoulos, P. Inhibition of the main protease of SARS-CoV-2 (Mpro) by repurposing/designing drug-like substances and utilizing nature’s toolbox of bioactive compounds. Comput. Struct. Biotechnol. J., 2022, 20, 1306-1344.
[http://dx.doi.org/10.1016/j.csbj.2022.03.009] [PMID: 35308802]
[23]
Dai, W.; Zhang, B.; Jiang, X.M.; Su, H.; Li, J.; Zhao, Y.; Xie, X.; Jin, Z.; Peng, J.; Liu, F.; Li, C.; Li, Y.; Bai, F.; Wang, H.; Cheng, X.; Cen, X.; Hu, S.; Yang, X.; Wang, J.; Liu, X.; Xiao, G.; Jiang, H.; Rao, Z.; Zhang, L.K.; Xu, Y.; Yang, H.; Liu, H. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science, 2020, 368(6497), 1331-1335.
[http://dx.doi.org/10.1126/science.abb4489] [PMID: 32321856]
[24]
Gupta, S.; Singh, A.K.; Kushwaha, P.P.; Prajapati, K.S.; Shuaib, M.; Senapati, S.; Kumar, S. Identification of potential natural inhibitors of SARS-CoV2 main protease by molecular docking and simulation studies. J. Biomol. Struct. Dyn., 2020, 39(12), 1-12.
[PMID: 32476576]
[25]
Borkotoky, S.; Banerjee, M.; Modi, G.P.; Dubey, V.K. Identification of high affinity and low molecular alternatives of boceprevir against SARS-CoV-2 main protease: A virtual screening approach. Chem. Phys. Lett., 2021, 770, 138446.
[http://dx.doi.org/10.1016/j.cplett.2021.138446] [PMID: 33623170]
[26]
Kumar, Y.; Singh, H.; Patel, C.N. In silico prediction of potential inhibitors for the main protease of SARS-CoV-2 using molecular docking and dynamics simulation based drug-repurposing. J. Infect. Public Health, 2020, 13(9), 1210-1223.
[http://dx.doi.org/10.1016/j.jiph.2020.06.016] [PMID: 32561274]
[27]
Ton, A.T.; Gentile, F.; Hsing, M.; Ban, F.; Cherkasov, A. Rapid identification of potential inhibitors of SARS‐CoV‐2 main protease by deep docking of 1.3 billion compounds. Mol. Inform., 2020, 39(8), 2000028.
[http://dx.doi.org/10.1002/minf.202000028] [PMID: 32162456]
[28]
Firouzi, R.; Ashouri, M.; Karimi-Jafari, M.H. Structural insights into the substrate‐binding site of main protease for the structure‐based COVID‐19 drug discovery. Proteins, 2022, 90(5), 1090-1101.
[http://dx.doi.org/10.1002/prot.26318] [PMID: 35119780]
[29]
Rai, H.; Barik, A.; Singh, Y.P.; Suresh, A.; Singh, L.; Singh, G.; Nayak, U.Y.; Dubey, V.K.; Modi, G. Molecular docking, binding mode analysis, molecular dynamics, and prediction of ADMET/toxicity properties of selective potential antiviral agents against SARS-CoV-2 main protease: an effort toward drug repurposing to combat COVID-19. Mol. Divers., 2021, 25(3), 1905-1927.
[http://dx.doi.org/10.1007/s11030-021-10188-5] [PMID: 33582935]
[30]
Omer, S.E.; Ibrahim, T.M.; Krar, O.A.; Ali, A.M.; Makki, A.A.; Ibraheem, W.; Alzain, A.A. Drug repurposing for SARS-CoV-2 main protease: Molecular docking and molecular dynamics investigations. Biochem. Biophys. Rep., 2022, 29, 101225.
[http://dx.doi.org/10.1016/j.bbrep.2022.101225] [PMID: 35128086]
[31]
Acharya, A.; Agarwal, R.; Baker, M.B.; Baudry, J.; Bhowmik, D.; Boehm, S.; Byler, K.G.; Chen, S.Y.; Coates, L.; Cooper, C.J.; Demerdash, O.; Daidone, I.; Eblen, J.D.; Ellingson, S.; Forli, S.; Glaser, J.; Gumbart, J.C.; Gunnels, J.; Hernandez, O.; Irle, S.; Kneller, D.W.; Kovalevsky, A.; Larkin, J.; Lawrence, T.J.; LeGrand, S.; Liu, S.H.; Mitchell, J.C.; Park, G.; Parks, J.M.; Pavlova, A.; Petridis, L.; Poole, D.; Pouchard, L.; Ramanathan, A.; Rogers, D.M.; Santos-Martins, D.; Scheinberg, A.; Sedova, A.; Shen, Y.; Smith, J.C.; Smith, M.D.; Soto, C.; Tsaris, A.; Thavappiragasam, M.; Tillack, A.F.; Vermaas, J.V.; Vuong, V.Q.; Yin, J.; Yoo, S.; Zahran, M.; Zanetti-Polzi, L. Supercomputer-based ensemble docking drug discovery pipeline with application to Covid-19. J. Chem. Inf. Model., 2020, 60(12), 5832-5852.
[http://dx.doi.org/10.1021/acs.jcim.0c01010] [PMID: 33326239]
[32]
Liang, J.; Karagiannis, C.; Pitsillou, E.; Darmawan, K.K.; Ng, K.; Hung, A.; Karagiannis, T.C. Site mapping and small molecule blind docking reveal a possible target site on the SARS-CoV-2 main protease dimer interface. Comput. Biol. Chem., 2020, 89, 107372.
[http://dx.doi.org/10.1016/j.compbiolchem.2020.107372] [PMID: 32911432]
[33]
Prakash, A.; Borkotoky, S.; Dubey, V.K. Targeting two potential sites of SARS-CoV-2 main protease through computational drug repurposing. J. Biomol. Struct. Dyn., 2022, 1-11.
[http://dx.doi.org/10.1080/07391102.2022.2044907] [PMID: 35266856]
[34]
Labbé, C.M.; Laconde, G.; Kuenemann, M.A.; Villoutreix, B.O.; Sperandio, O. iPPI-DB: a manually curated and interactive database of small non-peptide inhibitors of protein-protein interactions. Drug Discov. Today, 2013, 18(19-20), 958-968.
[http://dx.doi.org/10.1016/j.drudis.2013.05.003] [PMID: 23688585]
[35]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera?A visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[36]
Paasche, A.; Zipper, A.; Schäfer, S.; Ziebuhr, J.; Schirmeister, T.; Engels, B. Evidence for substrate binding-induced zwitterion formation in the catalytic Cys-His dyad of the SARS-CoV main protease. Biochemistry, 2014, 53(37), 5930-5946.
[http://dx.doi.org/10.1021/bi400604t] [PMID: 25196915]
[37]
Meng, X.Y.; Zhang, H.X.; Mezei, M.; Cui, M. Molecular docking: a powerful approach for structure-based drug discovery. Curr. Comput. Aided Drug Des., 2011, 7(2), 146-157.
[http://dx.doi.org/10.2174/157340911795677602] [PMID: 21534921]
[38]
Rajkumari, J.; Borkotoky, S.; Murali, A.; Busi, S. Anti-quorum sensing activity of Syzygium jambos (L.) Alston against Pseudomonas aeruginosa PAO1 and identification of its bioactive components. S. Afr. J. Bot., 2018, 118, 151-157.
[http://dx.doi.org/10.1016/j.sajb.2018.07.004]
[39]
Stanzione, F.; Giangreco, I.; Cole, J.C. Use of molecular docking computational tools in drug discovery.Progress in Medicinal Chemistry; Witty, D.R.; Cox, B., Eds.; Elsevier: Amsterdam, 2021, pp. 273-343.
[40]
Hazarika, Z.; Jha, A.N. A Comparative Evaluation of Docking Programs using Influenza Endonuclease as Target Protein. 2020International Conference on Computational Performance Evaluation (ComPE), , pp. 321-326.
[http://dx.doi.org/10.1109/ComPE49325.2020.9200180]
[41]
Jakhmola, S.; Hazarika, Z.; Jha, A.N.; Jha, H.C. In silico analysis of antiviral phytochemicals efficacy against Epstein-Barr virus glycoprotein H. J. Biomol. Struct. Dyn., 2022, 40(12), 5372-5385.
[http://dx.doi.org/10.1080/07391102.2020.1871074] [PMID: 33438528]
[42]
Thomsen, R.; Christensen, M.H. MolDock: a new technique for high-accuracy molecular docking. J. Med. Chem., 2006, 49(11), 3315-3321.
[http://dx.doi.org/10.1021/jm051197e] [PMID: 16722650]
[43]
Laskowski, R.A.; Swindells, M.B. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model., 2011, 51(10), 2778-2786.
[http://dx.doi.org/10.1021/ci200227u] [PMID: 21919503]
[44]
Jiménez-Alberto, A.; Ribas-Aparicio, R.M.; Aparicio-Ozores, G.; Castelán-Vega, J.A. Virtual screening of approved drugs as potential SARS-CoV-2 main protease inhibitors. Comput. Biol. Chem., 2020, 88, 107325.
[http://dx.doi.org/10.1016/j.compbiolchem.2020.107325] [PMID: 32623357]
[45]
Sharma, T.; Siddiqi, M.I. In silico identification and design of potent peptide inhibitors against PDZ-3 domain of Postsynaptic Density Protein (PSD-95). J. Biomol. Struct. Dyn., 2019, 37(5), 1241-1253.
[http://dx.doi.org/10.1080/07391102.2018.1454851] [PMID: 29557723]
[46]
Hazarika, Z.; Jha, A.N. Computational analysis of the silver nanoparticle-human serum albumin complex. ACS Omega, 2020, 5(1), 170-178.
[http://dx.doi.org/10.1021/acsomega.9b02340] [PMID: 31956763]
[47]
Das, S.; Hazarika, Z.; Sarmah, S.; Baruah, K.; Rohman, M.A.; Paul, D.; Jha, A.N.; Singha Roy, A. Exploring the interaction of bioactive kaempferol with serum albumin, lysozyme and hemoglobin: A biophysical investigation using multi-spectroscopic, docking and molecular dynamics simulation studies. J. Photochem. Photobiol. B, 2020, 205, 111825.
[http://dx.doi.org/10.1016/j.jphotobiol.2020.111825] [PMID: 32142995]
[48]
Vidal-Limon, A.; Aguilar-Toalá, J.E.; Liceaga, A.M. Integration of molecular docking analysis and molecular dynamics simulations for studying food proteins and bioactive peptides. J. Agric. Food Chem., 2022, 70(4), 934-943.
[http://dx.doi.org/10.1021/acs.jafc.1c06110] [PMID: 34990125]
[49]
Chen, S.H.; Bell, D.R.; Luan, B. Understanding interactions between biomolecules and two-dimensional nanomaterials using in silico microscopes. Adv. Drug Deliv. Rev., 2022, 186, 114336.
[http://dx.doi.org/10.1016/j.addr.2022.114336] [PMID: 35597306]
[50]
Dror, R.O.; Dirks, R.M.; Grossman, J.P.; Xu, H.; Shaw, D.E. Biomolecular simulation: a computational microscope for molecular biology. Annu. Rev. Biophys., 2012, 41(1), 429-452.
[http://dx.doi.org/10.1146/annurev-biophys-042910-155245] [PMID: 22577825]
[51]
Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem., 2005, 26(16), 1701-1718.
[http://dx.doi.org/10.1002/jcc.20291] [PMID: 16211538]
[52]
Huang, W.; Lin, Z.; van Gunsteren, W.F. Validation of the GROMOS 54A7 Force Field with Respect to β-Peptide Folding. J. Chem. Theory Comput., 2011, 7(5), 1237-1243.
[http://dx.doi.org/10.1021/ct100747y] [PMID: 26610119]
[53]
Malde, A.K.; Zuo, L.; Breeze, M.; Stroet, M.; Poger, D.; Nair, P.C.; Oostenbrink, C.; Mark, A.E. An Automated Force Field Topology Builder (ATB) and Repository: Version 1.0. J. Chem. Theory Comput., 2011, 7(12), 4026-4037.
[http://dx.doi.org/10.1021/ct200196m] [PMID: 26598349]
[54]
Martoňák, R.; Laio, A.; Parrinello, M. Predicting crystal structures: the Parrinello-Rahman method revisited. Phys. Rev. Lett., 2003, 90(7), 075503.
[http://dx.doi.org/10.1103/PhysRevLett.90.075503] [PMID: 12633242]
[55]
Hess, B.; Bekker, H.; Berendsen, H.J.C.; Fraaije, J.G.E.M. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem., 1997, 18(12), 1463-1472.
[http://dx.doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463:AID-JCC4>3.0.CO;2-H]
[56]
Homeyer, N.; Gohlke, H. Free energy calculations by the molecular mechanics poisson−boltzmann surface area method. Mol. Inform., 2012, 31(2), 114-122.
[http://dx.doi.org/10.1002/minf.201100135] [PMID: 27476956]
[57]
Kumari, R.; Kumar, R.; Lynn, A.; Lynn, A. g_mmpbsa--a GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model., 2014, 54(7), 1951-1962.
[http://dx.doi.org/10.1021/ci500020m] [PMID: 24850022]
[58]
Ekhteiari Salmas, R.; Unlu, A. Bektaş M.; Yurtsever, M.; Mestanoglu, M.; Durdagi, S. Virtual screening of small molecules databases for discovery of novel PARP-1 inhibitors: combination of in silico and in vitro studies. J. Biomol. Struct. Dyn., 2017, 35(9), 1899-1915.
[http://dx.doi.org/10.1080/07391102.2016.1199328] [PMID: 27315035]
[59]
Rajkumari, J.; Borkotoky, S.; Murali, A.; Suchiang, K.; Mohanty, S.K.; Busi, S. Attenuation of quorum sensing controlled virulence factors and biofilm formation in Pseudomonas aeruginosa by pentacyclic triterpenes, betulin and betulinic acid. Microb. Pathog., 2018, 118, 48-60.
[http://dx.doi.org/10.1016/j.micpath.2018.03.012] [PMID: 29526565]
[60]
Chandel, S.; Singh, R.; Gautam, A.; Ravichandiran, V. Screening of Azadirachta indica phytoconstituents as GSK-3β inhibitor and its implication in neuroblastoma: Molecular docking, molecular dynamics, MM-PBSA binding energy, and in-vitro study. J. Biomol. Struct. Dyn., 2021, 40(23), 1-14.
[http://dx.doi.org/10.1080/07391102.2021.1977705]
[61]
Ornnork, N.; Kiriwan, D.; Lirdprapamongkol, K.; Choowongkomon, K.; Svasti, J.; Eurtivong, C. Molecular dynamics, MM/PBSA and in vitro validation of a novel quinazoline-based EGFR tyrosine kinase inhibitor identified using structure-based in silico screening. J. Mol. Graph. Model., 2020, 99, 107639.
[http://dx.doi.org/10.1016/j.jmgm.2020.107639] [PMID: 32534372]
[62]
Zhang, L.; Lin, D.; Sun, X.; Curth, U.; Drosten, C.; Sauerhering, L.; Becker, S.; Rox, K.; Hilgenfeld, R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science, 2020, 368(6489), 409-412.
[http://dx.doi.org/10.1126/science.abb3405] [PMID: 32198291]
[63]
Thomas, A.S.; Elcock, A.H. Molecular simulations suggest protein salt bridges are uniquely suited to life at high temperatures. J. Am. Chem. Soc., 2004, 126(7), 2208-2214.
[http://dx.doi.org/10.1021/ja039159c] [PMID: 14971956]
[64]
Truong, P.M.; Viet, M.H.; Nguyen, P.H.; Hu, C.K.; Li, M.S. Effect of Taiwan mutation (D7H) on structures of amyloid-β peptides: Replica exchange molecular dynamics study. J. Phys. Chem. B, 2014, 118(30), 8972-8981.
[http://dx.doi.org/10.1021/jp503652s] [PMID: 25010208]
[65]
Fidan, O.; Mujwar, S.; Kciuk, M. Discovery of adapalene and dihydrotachysterol as antiviral agents for the Omicron variant of SARS-CoV-2 through computational drug repurposing. Mol. Divers., 2022, 1-13.
[http://dx.doi.org/10.1007/s11030-022-10440-6] [PMID: 35507211]
[66]
Mujwar, S.; Sun, L.; Fidan, O. In silico evaluation of food‐derived carotenoids against SARS‐COV ‐2 drug targets: Crocin is a promising dietary supplement candidate for COVID ‐19. J. Food Biochem., 2022, 46(9), e14219.
[http://dx.doi.org/10.1111/jfbc.14219] [PMID: 35545850]
[67]
Mujwar, S.; Tripathi, A. Repurposing benzbromarone as antifolate to develop novel antifungal therapy for Candida albicans. J. Mol. Model., 2022, 28(7), 193.
[http://dx.doi.org/10.1007/s00894-022-05185-w] [PMID: 35716240]
[68]
Unal, U.; Comertpay, B.; Demirtas, T.Y.; Gov, E. Drug repurposing for rheumatoid arthritis: Identification of new drug candidates via bioinformatics and text mining analysis. Autoimmunity, 2022, 55(3), 147-156.
[http://dx.doi.org/10.1080/08916934.2022.2027922] [PMID: 35048767]
[69]
Hu, G.; Li, X.; Zhang, X.; Li, Y.; Ma, L.; Yang, L.M.; Liu, G.; Li, W.; Huang, J.; Shen, X.; Hu, L.; Zheng, Y.T.; Tang, Y. Discovery of inhibitors to block interactions of HIV-1 integrase with human LEDGF/p75 via structure-based virtual screening and bioassays. J. Med. Chem., 2012, 55(22), 10108-10117.
[http://dx.doi.org/10.1021/jm301226a] [PMID: 23046280]
[70]
Sanchez, T.W.; Debnath, B.; Christ, F.; Otake, H.; Debyser, Z.; Neamati, N. Discovery of novel inhibitors of LEDGF/p75-IN protein-protein interactions. Bioorg. Med. Chem., 2013, 21(4), 957-963.
[http://dx.doi.org/10.1016/j.bmc.2012.12.012] [PMID: 23306052]