[3]
Asif, M. Study of currently used antimycobacterials, their analogoues and recently developed agents. IDrugs, 2012, 49(7), 5-19.
[6]
Surendra, S.B.; Arya, A.; Sudhir, K.S.; Vinita, C.; Rama, P.T. Synthesis and antitubercular activity of 5-benzyl-3-phenyl dihydroisoxazole. Inter. J. Drug Design & Discov., 2010, 1(1), 11-18.
[7]
Omar, A.; Ahmed, M.A. Synthesis of Some New 3H-quinazolin-4-One Derivatives as Potential Antitubercular Agents. World Appl. Sci. J., 2008, 5(1), 94-99.
[9]
World Health Organization (WHO) Global Tuberculosis control epidemiology, strategy, financing. Geneva, Switzerland, 2009.
[10]
Health and Social Services. Basic facts about Tuberculosis: TB Control: ‒Yukon Communicable Disease Control, 2014.
[13]
World Health Organization (WHO). Global tuberculosis report; Geneva, Switzerland, 2015.
[17]
World Health Organization (WHO). Totally drug‒resistant tuberculosis: a WHO consultation on the diagnostic definition and treatment options; Geneva, Switzerland, 2012.
[30]
Shafii, B.; Amini, M.; Akbarzadeh, T.; Shafiee, A. Synthesis and antitubercular activity of N3,N5-Diaryl-4-(5-arylisoxazol-3-yl)-1,4-dihydropyridine-3,5-dicarboxamide. J. Sci., 2008, 19(4), 323-328.
[36]
Nagarajan, K.; Mazumder, A.; Ghosh, L.K. Evaluation of anti-tubercular activity directly from Versa TREK mycobottles using Wrightia tomentosa alcoholic extracts. Pharmacologyonline, 2008, 1, 486-496.
[56]
Heifets, L.; Desmond, E. Clinical Mycobacteriology Laboratory. In: Tuberculosis and the tubercle bacillus; Cole, S.; Eisenach, K.; McMurray, D.; Jacobs, W., Jr, Eds.; ASM Press: Washington, DC, USA, 2005; pp. 9949-9970.
[162]
Daffe, M.; Brennan, P.J.; Mcneil, M. C-3 Alkyl/Arylalkyl-2,3-dideoxy hex-2-enopyranosides as Antitubercular Agents: Synthesis, Biological Evaluation and QSAR Study. J. Med. Chem., 2007, 50, 2492.
[213]
Koul, A.; Klebl, B.; Mueller, G.; Missio, A.; Schwab, W.; Hafenbradl, D.; Neumann, L.; Sommer, M.N.; Mueller, S.; Hoppe, E.; Freisleben, A.; Backes, A.; Hartung, C.; Felber, B.; Zech, B.; Engkvist, O.; Keri, G.; Oerfi, L.; Banhegyi, P.; Greff, Z. Preparation of hetero-bicyclic fused thieno-pyran compounds as antibacterial, antiviral, antitumor, and pharmaceutically active agents. WO 2005023818 A2, 2005; US2007275962 (A1); EP1670804 (A2); CA2572750 (A1); AU2004270394 (A1), 2004.
[214]
Pato, J.; Keri, G.; Orfi, L.; Waczek, F.; Horvath, Z.; Banhegyi, P.; Szabadkai, I.; Marosfalvi, J.; Hegymegi-Barakonyi, B.; Szekelyhidi, Zs.; Greff, Z.; Choidas, A.; Bacher, G.; Missio, A.; Koul, A. Inhibitors of mycobacterial serine/threonine protein kinases for the treatment of mycobacterial infections. US 20040171603 A1, 2004.
[218]
Ramneatu, O.M.; Lowary, T.L. Poster CARB-52 presented at the 220th National Meeting of the American Chemical Society, Washington D.C.; USA, 20-24 August, 2000. Derwent World Drug Alert abstract WD-2000-011652.
[228]
Saxena, N.; Srivastava, N.; Shukla, P.; Tripathi, G.K. The drug discovery development for treatment of tuberculosis. J. Drug Deliv. Ther., 2019, 9(3-s), 802-819.
[244]
Goswam, A.; Chakraborty, U.; Bhattacharya, B.; Pal, N.K. Association of generation time with anti-tubercular drug(s) resistance pattern of Mycobacterium Tuberculosis isolates among treatment failure pulmonary tuberculosis patients. Asian J. Pharm. Clin. Res., 2016, 9(1), 258-261.
[254]
Damtie, D.; Woldeyohannes, D.; Mathewos, B. Review on Molecular mechanism of first line antibiotic resistance in Mycobacterium Tuberculosis. Mycobact. Dis., 2014, 4(6), 174.
[272]
Gale, E.F.; Cundliffe, E.; Reynolds, P.E.; Richmond, M.H.; Waring, M.J. The molecular basis of antibiotic action. The Mol Basis Antibiot. Act, 1981, 62(9), 1577-1578.
[326]
Centers for Disease Control and Prevention. Emergence of Mycobacterium tuberculosis with extensive resistance to second-line drugs worldwide. MMWR Morb. Mortal. Wkly. Rep., 2006, 55, 301-305.
[327]
Garay, S.M. In Tuberculosis, W.N.A.G; Rom, S.M., Ed.; Lippincott Williams & Wilkins: Philadelphia, 2004, pp. 345-394.