[6]
Lanaras, C.; Baltsavias, E.; Schindler, K. Estimating the relative spatial and spectral sensor response for hyperspectral and multispectral image fusion. In: Proceedings of the Asian Conference on Remote Sensing (ACRS), Colombo, Sri Lanka17–21 October2016.
[7]
Dogra, J.; Jain, S.; Sood, M. Glioma extraction from MR images employing gbks graph cut technique. Visual Computer, Springer, 2019, 35(10), 1-17.
[10]
Arikan, M.; Fröhler, B.; Möller, T. Semi-automatic brain tumor segmentation using support vector machines and interactive seed selection. Proc. MICCAI-BRATS Workshop 2016, 2016, pp. 1-3.
[15]
Ambily, P.K.; James, S.P.; Mohan, R.R. Brain tumor detection using image fusion and neural network. Inter. J. Eng. Res. General Sci., 2015, 3(2), 1383-1388.
[16]
Wang, M.; Shang, X. A fast image fusionwith discrete cosine transform. IEEE Signal Processing Letters; IEEE, 2020, 27, 990-994.
[21]
Maya, A.T.; Suryono, S.; Anam, C. Image contrast improvement in image fusion between CT and MRI images of brain cancer patients. IJSRST, 2021, 8(1), 104-110.
[24]
Pal, B.; Mahajan, S.; Jain, S. Medical image fusion employing enhancement techniques. In: Conference on Electrical and Computer Engineering (WIECON-ECE), Bhubaneswar, IndiaDec 26-27, 2020, pp. 223-226.
[25]
Rajalingam, B.; Priya, R. A novel approach for multimodal medical image fusion using hybrid fusion algorithms for disease analysis. Int. J. Pure Appl. Math., 2017, 117(15), 599-619.
[26]
Deepa, B. Performance analysis of various image fusion techniques for detection of brain abnormality. Inter. J. Comput. Math. Sci., 2017, 6(9), 168-176.
[27]
Li, Y. An advanced MRI and MRSI data fusion scheme for enhancing
unsupervised brain tumor differentiation. 2017, 8(1), 121-129.
[31]
Mohideen, S.K.; Perumal, S.A.; Sathik, M.M. Image de-noising using discrete wavelet transform. IJCSNS Inter. J. Comp. Sci. Netw. Secur., 2018, 8(1), 213-214.
[32]
Pal, B.; Mahajan, S. A comparative study of traditional image fusion techniques with a novel hybrid method. International Conference on Computational Performance Evaluation (ComPE); North - Eastern Hill University, Shillong, Meghalaya, India, Jul 2-4. , 2020, pp. 820-825.
[33]
Bhardwaj, C.; Jain, S.; Sood, M. Automatic blood vessel extraction
of fundus images employing fuzzy approach. Ind. J. Electr. Eng. Inform. (IJEEI), 2019, 7(4), 757-771.
[38]
Sharma, S.; Jain, S.; Bhusri, S. Two class classification of breast lesions using statistical and transform domain features. J. Glob. Pharma Technol., 2017, 9(7), 18-24.
[39]
Bhusri, S.; Jain, S.; Virmani, J. Classification of breast lesions using the difference of statistical features. Res. J. Pharm. Biol. Chem. Sci., 2016, 1366.
[40]
Bhusri, S.; Jain, S.; Virmani, J. Breast lesions classification using the amalagation of morphological and texture features. Inter. J. Pharma Biosci(IJPBS), 2016, 7(2), 617-624.
[41]
Rana, S.; Jain, S.; Virmani, J. SVM-Based characterization of focal kidney lesions from B-Mode ultrasound images. Res. J. Pharm. Biol. Chem. Sci., 2016, 7(4), 837.
[45]
Dogra, J.; Jain, S.; Sood, M. Glioma classification of MR brain tumor employing machine learning. Int. J. Innov. Technol. Explor. Eng., 2019, 8(8), 2676-2682.
[47]
Li, R.; Zhang, W.; Suk, H.I.; Wang, L.; Li, J.; Shen, D.; Ji, S. Deep learning based imaging data completion for improved brain disease diagnosis. In: Proceedings of the Medical Image Computing and Computer-Assisted Intervention MICCAI-BRATS, , pp. 305-312.2014
[48]
Jain, S.; Paul, S. Recent trends in image and signal processing in computer vision; Springer Nature: Switzerland AG, 2020.