Combinatorial Chemistry & High Throughput Screening

Author(s): Ersin Demir*, Hülya Silah, Cem Erkmen and Bengi Uslu*

DOI: 10.2174/1386207326666221124103102

Electrochemical Sensor Design Based on Silver Nanoparticles Modified Multiwalled Carbon Nanotubes Paste Electrode for the Sensitive Determination of Mepivacaine

Page: [2644 - 2655] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Mepivacaine, an amide-type local anesthetic drug widely used in regional anesthesia, was studied by some aspects such as electrochemical behavior, mechanism illumination, and analytical applications by cyclic voltammetry (CV) and different pulse voltammetry (DPV) methods. In this study, a novel, fast, simple, portable, and the inexpensive electrochemical sensor was developed for the determination of mepivacaine. This study was carried out by mepivacaine anodic direction detection for the first time. The modified sensor was fabricated with silver nanoparticles (AgNP) and multiwalled carbon nanotubes paste electrode (MWCNTPE) by using the drop-dry method. Different experimental parameters, such as pulse amplitude, step potential, and scanning rate in the DPV application module, were optimized. Under optimal operation conditions, the limit of detection (LOD) as low as 31 μg L-1 was found over the dynamic range (0.1–8.0 mg L-1). In contrast to its high response towards mepivacaine, the DPV exhibits negligible responses on modified AgNP/MWCNTPE when exposed to interfering species such as dopamine, uric acid, glucose, ascorbic acid, and some heavy metals. Exceptionally, the proposed DPV method on modified AgNP/MWCNTPE was successfully applied to pharmaceutical dosage form and synthetic human serum with a low relative standard deviation (RSD) of 1.35% and 2.02%, respectively.

Graphical Abstract

[1]
Mumba, J.M.; Kabambi, F.K.; Ngaka, C.T. Pharmacology of local anaesthetics and commonly used recipes in clinical practice. In: Erbay RH. (eds). Current Topics in Anesthesiology, 2017.
[http://dx.doi.org/10.5772/67048]
[2]
Yu, S.; Wang, B.; Zhang, J.; Fang, K. The development of local anesthetics and their applications beyond anesthesia. Int. J. Clin. Exp. Med., 2019, 12(12), 13203-13220.
[3]
Tonooka, K.; Naruki, N.; Honma, K.; Agei, K.; Okutsu, M.; Hosono, T.; Kunisue, Y.; Terada, M.; Tomobe, K.; Shinozuka, T. Sensitive liquid chromatography/tandem mass spectrometry method for the simultaneous determination of nine local anesthetic drugs. Forensic Sci. Int., 2016, 265, 182-185.
[http://dx.doi.org/10.1016/j.forsciint.2016.02.044] [PMID: 26986505]
[4]
Almeida, P.C.; Raldi, F.V.; Sato, F.R.; Nascimento, R.D.; Moraes, M.B. Volume and effectiveness assessment of articain 4% versus mepivacaine 2% used in third molar surgery: Randomized, double-blind, split-mouth controlled clinical trial. Med. Oral Patol. Oral Cir. Bucal, 2020, 25(6), e762-e768.
[http://dx.doi.org/10.4317/medoral.23780] [PMID: 32701928]
[5]
Schwenk, E.S.; Kasper, V.P.; Smoker, J.D.; Mendelson, A.M.; Austin, M.S.; Brown, S.A.; Hozack, W.J.; Cohen, A.J.; Li, J.J.; Wahal, C.S.; Baratta, J.L.; Torjman, M.C.; Nemeth, A.C.; Czerwinski, E.E. Mepivacaine versus bupivacaine spinal anesthesia for early postoperative ambulation: A randomized controlled trial. Anesthesiology, 2020, 133(4), 801-811.
[http://dx.doi.org/10.1097/ALN.0000000000003480] [PMID: 32852904]
[6]
Pawlowski, J.; Orr, K.; Kim, K.; Pappas, A.L.; Sukhani, R.; Jellish, W.S. Anesthetic and recovery profiles of lidocaine versus mepivacaine for spinal anesthesia in patients undergoing outpatient orthopedic arthroscopic procedures. J. Clin. Anesth., 2012, 24(2), 109-115.
[http://dx.doi.org/10.1016/j.jclinane.2011.06.014] [PMID: 22342508]
[7]
Abdelwahab, N.S.; Fared, N.F.; Elagawany, M.; Abdelmomen, E.H. Different spectrophotometric and chromatographic methods for determination of mepivacaine and its toxic impurity. J. AOAC Int., 2017, 100(5), 1392-1399.
[http://dx.doi.org/10.5740/jaoacint.16-0322] [PMID: 28330526]
[8]
Plotycya, S.; Dubenska, L.; Blazheyevskiy, M.; Pysarevska, S.; Sarahman, O. Determination of local anesthetics of amide group in pharmaceutical preparations by cyclic voltammetry. Electroanalysis, 2016, 28(10), 2575-2581.
[http://dx.doi.org/10.1002/elan.201600134]
[9]
Demir, E.; Silah, H. Development of a new analytical method for determination of veterinary drug oxyclozanide by electrochemical sensor and its application to pharmaceutical formulation. Chemosensors, 2020, 8(2), 25.
[http://dx.doi.org/10.3390/chemosensors8020025]
[10]
Erkmen, C.; Kurbanoglu, S.; Uslu, B. Fabrication of poly(3,4-ethylenedioxythiophene)-iridium oxide nanocomposite based Tyrosinase biosensor for the dual detection of catechol and azinphos methyl. Sens. Actuators B Chem., 2020, 316, 128121.
[http://dx.doi.org/10.1016/j.snb.2020.128121]
[11]
Demir, E. İnam, O.; Silah, H.; Karimi-Maleh, H. Studies of mechanism, kinetic model and determination of bupivacaine and its application pharmaceutical forms. Microchem. J., 2020, 159(August), 105531.
[http://dx.doi.org/10.1016/j.microc.2020.105531]
[12]
Kokab, T.; Munir, A.; Shah, A.; Kurbanoglu, S.; Zia, M.A.; Ozkan, S.A. The effect of nanomaterials on the drug analysis performance of nanosensors.In: New Developments in Nanosensors for Pharmaceutical Analysis; Elsevier Inc, 2019, pp. 79-118.
[http://dx.doi.org/10.1016/B978-0-12-816144-9.00003-1]
[13]
Murtada, K.; Moreno, V. Nanomaterials-based electrochemical sensors for the detection of aroma compounds - towards analytical approach. J. Electroanal. Chem., 2020, 861, 113988.
[http://dx.doi.org/10.1016/j.jelechem.2020.113988]
[14]
Si, Y.; Lee, H.J. Carbon nanomaterials and metallic nanoparticles-incorporated electrochemical sensors for small metabolites: Detection methodologies and applications. Curr. Opin. Electrochem., 2020, 22, 234-243.
[http://dx.doi.org/10.1016/j.coelec.2020.08.007]
[15]
Rivas, G.A.; Rodríguez, M.C.; Rubianes, M.D.; Gutierrez, F.A.; Eguílaz, M.; Dalmasso, P.R.; Primo, E.N.; Tettamanti, C.; Ramírez, M.L.; Montemerlo, A.; Gallay, P.; Parrado, C. Carbon nanotubes-based electrochemical (bio)sensors for biomarkers. Appl. Mater. Today, 2017, 9, 566-588.
[http://dx.doi.org/10.1016/j.apmt.2017.10.005]
[16]
Filik, H.; Avan, A.A. Review on applications of carbon nanomaterials for simultaneous electrochemical sensing of environmental contaminant dihydroxybenzene isomers. Arab. J. Chem., 2020, 13(7), 6092-6105.
[http://dx.doi.org/10.1016/j.arabjc.2020.05.009]
[17]
Kanti Das, T.; Ganguly, S.; Remanan, S.; Das, N.C. Temperature-dependent study of catalytic Ag nanoparticles entrapped resin nanocomposite towards reduction of 4-nitrophenol. ChemistrySelect, 2019, 4(13), 3665-3671.
[http://dx.doi.org/10.1002/slct.201900470]
[18]
Das, T.K.; Ganguly, S.; Remanan, S.; Ghosh, S.; Das, N.C. Mussel-inspired Ag/poly(norepinephrine)/MnO2 heterogeneous nanocatalyst for efficient reduction of 4-nitrophenol and 4-nitroaniline: an alternative approach. Res. Chem. Intermed., 2020, 46(7), 3629-3650.
[http://dx.doi.org/10.1007/s11164-020-04165-0]
[19]
Fekry, A.M.; Abdel-Gawad, S.A.; Tammam, R.H.; Zayed, M.A. An electrochemical sensor for creatinine based on carbon nanotubes/folic acid/silver nanoparticles modified electrode. Measurement, 2020, 163, 107958.
[http://dx.doi.org/10.1016/j.measurement.2020.107958]
[20]
Baniceru, M.; Croitoru, O.; Popescu, S.M.; Popescu, A. Analysis of mepivacaine in human serum by gas chromatography after solid-phase extraction. Chromatographia, 2004, 59(5–6), 351-354.
[21]
Koster, E.H.M.; Wemes, C.; Morsink, J.B.; De Jong, G.J. Determination of lidocaine in plasma by direct solid-phase microextraction combined with gas chromatography. J. Chromatogr. B Biomed. Appl., 2000, 739(1), 175-182.
[http://dx.doi.org/10.1016/S0378-4347(99)00344-8]
[22]
Nieddu, M.; Boatto, G.; Serra, D.; Soro, A.; Lorenzoni, S.; Lubinu, F. HPLC-DAD determination of mepivacaine in cerebrospinal fluid from a fatal case. J. Forensic Sci., 2007, 52(5), 1223-1224.
[http://dx.doi.org/10.1111/j.1556-4029.2007.00526.x] [PMID: 17767665]
[23]
Tanaka, E.; Nakamura, T.; Inomata, S.; Honda, K. Simultaneous determination of three local anesthetic drugs from the pipecoloxylidide group in human serum by high-performance liquid chromatography. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2006, 834(1-2), 213-216.
[http://dx.doi.org/10.1016/j.jchromb.2006.02.034] [PMID: 16530026]
[24]
Murtaza, R.; Jackman, H.L.; Alexander, B.; Lleshi-Tali, A.; Winnie, A.P.; Igic, R. Simultaneous determination of mepivacaine, tetracaine, and p-butylaminobenzoic acid by high-performance liquid chromatography. J. Pharmacol. Toxicol. Methods, 2001, 46(3), 131-136.
[http://dx.doi.org/10.1016/S1056-8719(02)00171-5] [PMID: 12183188]
[25]
Duan, R.W.; Song, J.; Li, Y.P.; Xing, C.G. A novel LC-MS/MS method for mepivacaine determination and pharmacokinetic study in a single-dose two-period crossover in healthy subjects. Artif. Cells Nanomed. Biotechnol., 2017, 45(8), 1605-1611.
[http://dx.doi.org/10.1080/21691401.2016.1267013] [PMID: 27976931]
[26]
Bertol, E.; Argo, A.; Capretti, C.; Ciolini, A.; Umani Ronchi, F.; Zerbo, S.; Mari, F.; Vaiano, F. A novel LC–MS/MS analytical method for detection of articaine and mepivacaine in blood and its application to a preliminary pharmacokinetic study. J. Pharm. Biomed. Anal., 2020, 187, 113335.
[http://dx.doi.org/10.1016/j.jpba.2020.113335] [PMID: 32408062]
[27]
Mokhtari, A. Chemiluminescence determination of local anaesthetic mepivacaine in human plasma and pharmaceuticals. Acta Chim. Slov., 2016, 63(4), 920-928.
[http://dx.doi.org/10.17344/acsi.2015.2161] [PMID: 28004094]
[28]
Mailu, S.N.; Waryo, T.T.; Ndangili, P.M.; Ngece, F.R.; Baleg, A.A.; Baker, P.G.; Iwuoha, E.I. Determination of anthracene on Ag-Au alloy nanoparticles/overoxidized-polypyrrole composite modified glassy carbon electrodes. Sensors, 2010, 10(10), 9449-9465.
[http://dx.doi.org/10.3390/s101009449] [PMID: 22163419]
[29]
Randles, J.E.B. A cathode ray polarograph. Part II.-The current-voltage curves. Trans. Faraday Soc., 1948, 44(0), 327-338.
[http://dx.doi.org/10.1039/TF9484400327]
[30]
Ševčík, A. Oscillographic polarography with periodical triangular voltage. Collect. Czech. Chem. Commun., 1948, 13, 349-377.
[31]
Hoshyar, S.A.; Barzani, H.A.H. Yardım, Y.; Şentürk, Z. The effect of CTAB, a cationic surfactant, on the adsorption ability of the boron-doped diamond electrode: Application for voltammetric sensing of Bisphenol A and Hydroquinone in water samples. Colloids Surf. A Physicochem. Eng. Asp., 2021, 610, 125916.
[http://dx.doi.org/10.1016/j.colsurfa.2020.125916]
[32]
Allahverdiyeva, S. Yunusoğlu, O.; Yardım, Y.; Şentürk, Z. First electrochemical evaluation of favipiravir used as an antiviral option in the treatment of COVID-19: A study of its enhanced voltammetric determination in cationic surfactant media using a boron-doped diamond electrode. Anal. Chim. Acta, 2021, 1159, 338418.
[http://dx.doi.org/10.1016/j.aca.2021.338418] [PMID: 33867032]
[33]
Munir, A.; Bozal-Palabiyik, B.; Khan, A.; Shah, A.; Uslu, B. A novel electrochemical method for the detection of oxymetazoline drug based on MWCNTs and TiO2 nanoparticles. J. Electroanal. Chem., 2019, 844(May), 58-65.
[http://dx.doi.org/10.1016/j.jelechem.2019.05.017]
[34]
Tempestini Horliana, A.C.R.; de Brito, M.A.D.; Perez, F.E.G.; Simonetti, M.P.B.; Rocha, R.G.; Borsatti, M.A. Hyaluronidase increases the duration of mepivacaine in inferior alveolar nerve blocks. J. Oral Maxillofac. Surg., 2008, 66(2), 286-290.
[http://dx.doi.org/10.1016/j.joms.2007.06.628] [PMID: 18201610]
[35]
Kurbanoglu, S.; Uslu, B.; Ozkan, S.A. Validation of analytical methods for the assessment of hazards in food. In: Food Safety and Preservation, 2018, pp. 59-90.
[http://dx.doi.org/10.1016/B978-0-12-814956-0.00004-4]