Combinatorial Chemistry & High Throughput Screening

Author(s): Qingqing Chen, Dong Li, Feiya Wu, Xue He, Yifan Zhou, Chao Sun, Haoyun Wang* and Yujun Liu*

DOI: 10.2174/1386207326666221124093228

Berberine Regulates the Metabolism of Uric Acid and Modulates Intestinal Flora in Hyperuricemia Rats Model

Page: [2057 - 2066] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Intestinal microbiota is the primary target for the multifunctional nature of berberine. Berberine can reverse the structure and composition of gut microbiota under pathological conditions. This study aimed to investigate the effects of berberine on uric acid (UA) metabolism and gut microbiota in a hyperuricemia rat model established using potassium oxonate.

Methods: Sprague-Dawley (SD) male rats were divided into a normal control group (n= 10), a hyperuricemia group (n = 12) and a berberine-treated group (n = 11). The UA level in serum, urine and fecal, blood xanthine oxidase (XOD), and urate transports ABCG2 and Galectin-9 in the liver and colon, were evaluated using ELISA kits. The alterations in gut microbiota were investigated using 16S rRNA sequencing.

Results: The UA level in the hyperuricemia group was significantly elevated (p<0.001), suggesting that the model was successfully established. After treatment with berberine, levels of blood and fecal UA significantly decreased (p<0.001), but not uric UA. The blood XOD level decreased, urate transport ABCG2 in the colon increased, and urate transport Galectin-9 in the colon decreased after berberine treatment (p<0.05). Further 16S sequencing revealed that berberine affected the gut microbiota composition and diversity in hyperuricemia rats. Berberine treatment reduced the relative abundance of Bacteroidetes, and increased the relative abundance of Lactobacillus. The gut microbiota were predicted to be involved in multiple metabolic pathways, such as sphingolipid metabolism, starch and sucrose metabolism and N-glycans.

Conclusion: Berberine might be a possible therapeutic candidate in hyperuricemia, which could regulate UA metabolism by affecting XOD, and urate transports and partly by regulating gut microbiota.

Graphical Abstract

[1]
Zhang, S.; Wang, Y.; Cheng, J.; Huangfu, N.; Zhao, R.; Xu, Z.; Zhang, F.; Zheng, W.; Zhang, D. Hyperuricemia and cardiovascular disease. Curr. Pharm. Des., 2019, 25(6), 700-709.
[http://dx.doi.org/10.2174/1381612825666190408122557] [PMID: 30961478]
[2]
Su, H.Y.; Yang, C.; Liang, D.; Liu, H.F. Research advances in the mechanisms of hyperuricemia-induced renal injury. BioMed research international, 20202020, 5817348.
[http://dx.doi.org/10.1155/2020/5817348] [PMID: 32685502]
[3]
Johnson, R.J.; Bakris, G.L.; Borghi, C.; Chonchol, M.B.; Feldman, D.; Lanaspa, M.A.; Merriman, T.R.; Moe, O.W.; Mount, D.B.; Sanchez Lozada, L.G.; Stahl, E.; Weiner, D.E.; Chertow, G.M. Hyperuricemia, acute and chronic kidney disease, hypertension, and cardiovascular disease: Report of a scientific workshop organized by the national kidney foundation. Am. J. Kidney Dis., 2018, 71(6), 851-865.
[http://dx.doi.org/10.1053/j.ajkd.2017.12.009] [PMID: 29496260]
[4]
Borghi, C.; Agabiti-Rosei, E.; Johnson, R.J.; Kielstein, J.T.; Lurbe, E.; Mancia, G.; Redon, J.; Stack, A.G.; Tsioufis, K.P. Hyperuricaemia and gout in cardiovascular, metabolic and kidney disease. Eur. J. Intern. Med., 2020, 80, 1-11.
[http://dx.doi.org/10.1016/j.ejim.2020.07.006] [PMID: 32739239]
[5]
Liu, J.; Tao, L.; Zhao, Z.; Mu, Y.; Zou, D.; Zhang, J.; Guo, X. Two-year changes in hyperuricemia and risk of diabetes: A five-year prospective cohort study. J. Diabetes Res., 2018, 2018, 6905720.
[http://dx.doi.org/10.1155/2018/6905720] [PMID: 30693289]
[6]
Borghi, C. Domienik-Karłowicz, J.; Tykarski, A.; Widecka, K.; Filipiak, K.J.; Jaguszewski, M.J.; Narkiewicz, K.; Mancia, G. Expert consensus for the diagnosis and treatment of patient with hyperuricemia and high cardiovascular risk: 2021 update. Cardiol. J., 2021, 28(1), 1-14.
[http://dx.doi.org/10.5603/CJ.a2021.0001] [PMID: 33438180]
[7]
Lu, X.; Shi, X.; Li, Y.; Chi, H.; Liao, E.; Liu, C.; Liu, L.; Li, Y.; Teng, D.; Teng, X.; Ba, J.; Chen, B.; Du, J.; He, L.; Lai, X.; Qin, G.; Qin, Y.; Quan, H.; Shi, B.; Sun, H.; Tang, X.; Tong, N.; Wang, G.; Zhang, J.; Wang, Y.; Xue, Y.; Yan, L.; Yang, J.; Yang, L.; Yao, Y.; Ye, Z.; Zhang, Q.; Zhang, L.; Zhu, J.; Zhu, M.; Shan, Z.; Teng, W. A negative association between urinary iodine concentration and the prevalence of hyperuricemia and gout: A cross-sectional and population-based study in Mainland China. Eur. J. Nutr., 2020, 59(8), 3659-3668.
[http://dx.doi.org/10.1007/s00394-020-02199-z] [PMID: 32078063]
[8]
Sorensen, L.B.; Levinson, D.J. Origin and extrarenal elimination of uric acid in man. Nephron, 1975, 14(1), 7-20.
[http://dx.doi.org/10.1159/000180432] [PMID: 1124137]
[9]
Yanai, H.; Adachi, H.; Hakoshima, M.; Katsuyama, H. Molecular biological and clinical understanding of the pathophysiology and treatments of hyperuricemia and its association with metabolic syndrome, cardiovascular diseases and chronic kidney disease. Int. J. Mol. Sci., 2021, 22(17), 9221.
[http://dx.doi.org/10.3390/ijms22179221] [PMID: 34502127]
[10]
Fathallah-Shaykh, S.A.; Cramer, M.T. Uric acid and the kidney. Pediatr. Nephrol., 2014, 29(6), 999-1008.
[http://dx.doi.org/10.1007/s00467-013-2549-x] [PMID: 23824181]
[11]
Andrade Sierra, J. Flores Fonseca, MM Renal handling of uric acid. Contrib. Nephrol., 2018, 192, 1-7.
[http://dx.doi.org/10.1159/000484271] [PMID: 29393102]
[12]
Wang, J.; Chen, Y.; Zhong, H.; Chen, F.; Regenstein, J.; Hu, X.; Cai, L.; Feng, F. The gut microbiota as a target to control hyperuricemia pathogenesis: Potential mechanisms and therapeutic strategies. Crit. Rev. Food Sci. Nutr., 2022, 62(14), 3979-3989.
[http://dx.doi.org/10.1080/10408398.2021.1874287] [PMID: 33480266]
[13]
Guo, Z.; Zhang, J.; Wang, Z.; Ang, K.Y.; Huang, S.; Hou, Q.; Su, X.; Qiao, J.; Zheng, Y.; Wang, L.; Koh, E.; Danliang, H.; Xu, J.; Lee, Y.K.; Zhang, H. Intestinal microbiota distinguish gout patients from healthy humans. Sci. Rep., 2016, 6, 20602.
[http://dx.doi.org/10.1038/srep20602] [PMID: 26852926]
[14]
Xu, D.; Lv, Q.; Wang, X.; Cui, X.; Zhao, P.; Yang, X.; Liu, X.; Yang, W.; Yang, G.; Wang, G.; Wang, P.; Wang, Z.; Li, Z.; Xing, S. Hyperuricemia is associated with impaired intestinal permeability in mice. Am. J. Physiol. Gastrointest. Liver Physiol., 2019, 317(4), G484-G492.
[http://dx.doi.org/10.1152/ajpgi.00151.2019] [PMID: 31369290]
[15]
Lu, C.; Tang, S.; Han, J.; Fan, S.; Huang, Y.; Zhang, Z.; Zhou, J.; Ming, T.; Li, Y.; Su, X. Apostichopus japonicus oligopeptide Induced heterogeneity in the gastrointestinal tract microbiota and alleviated hyperuricemia in a microbiota‐dependent manner. Mol. Nutr. Food Res., 2021, 65(14), 2100147.
[http://dx.doi.org/10.1002/mnfr.202100147] [PMID: 34018696]
[16]
Hou, Q.; He, W.J.; Wu, Y.S.; Hao, H.J.; Xie, X.Y.; Fu, X.B. Berberine: A traditional natural product with novel biological activities. Altern. Ther. Health Med., 2020, 26(S2), 20-27.
[PMID: 31634873]
[17]
Habtemariam, S. Berberine pharmacology and the gut microbiota: A hidden therapeutic link. Pharmacol. Res., 2020, 155, 104722.
[http://dx.doi.org/10.1016/j.phrs.2020.104722] [PMID: 32105754]
[18]
Zhang, Y.; Gu, Y.; Ren, H.; Wang, S.; Zhong, H.; Zhao, X.; Ma, J.; Gu, X.; Xue, Y.; Huang, S.; Yang, J.; Chen, L.; Chen, G.; Qu, S.; Liang, J.; Qin, L.; Huang, Q.; Peng, Y.; Li, Q.; Wang, X.; Kong, P.; Hou, G.; Gao, M.; Shi, Z.; Li, X.; Qiu, Y.; Zou, Y.; Yang, H.; Wang, J.; Xu, G.; Lai, S.; Li, J.; Ning, G.; Wang, W. Gut microbiome-related effects of berberine and probiotics on type 2 diabetes (the PREMOTE study). Nat. Commun., 2020, 11(1), 5015.
[http://dx.doi.org/10.1038/s41467-020-18414-8] [PMID: 33024120]
[19]
Yang, F.; Shi, W.; Wang, L.; Qin, N.; Wang, C.; Guo, Y.; Xu, G.; Fang, J.; Yu, X.; Ma, Q. Lipidomics study of the therapeutic mechanism of Plantaginis Semen in potassium oxonate-induced hyperuricemia rat. BMC Complementary Med. Ther., 2021, 21(1), 175.
[http://dx.doi.org/10.1186/s12906-021-03350-x] [PMID: 34172058]
[20]
Chen, L.; Yang, J.; Qiu, X.; Tan, K.; Wei, Q.; Yuan, E.; Ning, Z. Effect of Smilax glabra formulated preparation on the hyperuricemia induced by potassium oxonate. Xiandai Shipin Keji, 2013, 29(11), 2649-2652.
[21]
Wang, F.; Zhao, X.; Su, X.; Song, D.; Zou, F.; Fang, L. Isorhamnetin, the xanthine oxidase inhibitor from Sophora japonica, ameliorates uric acid levels and renal function in hyperuricemic mice. Food Funct., 2021, 12(24), 12503-12512.
[http://dx.doi.org/10.1039/D1FO02719K] [PMID: 34806108]
[22]
Sun, H.L.; Wu, Y.W.; Bian, H.G.; Yang, H.; Wang, H.; Meng, X.M.; Jin, J. Function of uric acid transporters and their inhibitors in hyperuricaemia. Front. Pharmacol., 2021, 12, 667753.
[http://dx.doi.org/10.3389/fphar.2021.667753] [PMID: 34335246]
[23]
Lipkowitz, M.S.; Leal-Pinto, E.; Cohen, B.E.; Abramson, R.G. Galectin 9 is the sugar-regulated urate transporter/channel UAT. Glycoconj. J., 2002, 19(7-9), 491-498.
[http://dx.doi.org/10.1023/B:GLYC.0000014078.65610.2f] [PMID: 14758072]
[24]
Li, Q.; Huang, Z.; Liu, D.; Zheng, J.; Xie, J.; Chen, J.; Zeng, H.; Su, Z.; Li, Y. Effect of berberine on hyperuricemia and kidney injury: a network pharmacology analysis and experimental validation in a mouse model. Drug Des. Devel. Ther., 2021, 15, 3241-3254.
[http://dx.doi.org/10.2147/DDDT.S317776] [PMID: 34349501]
[25]
Naz, H.; Naz, S.; Miraj, R.; Zaheer, A.; Azam, N.; Mughal, I.S.; Khan, A.W.; Ishaq, M.; Sundas, F.N.U.; Hanif, M. The effect of berberine, a drug from chinese folk medicine, on serum and urinary uric acid levels in rats with hyperuricemia. Cureus, 2021, 13(2), e13186.
[http://dx.doi.org/10.7759/cureus.13186] [PMID: 33717730]
[26]
Zhang, L.; Wu, X.; Yang, R.; Chen, F.; Liao, Y.; Zhu, Z.; Wu, Z.; Sun, X.; Wang, L. Effects of berberine on the gastrointestinal microbiota. Front. Cell. Infect. Microbiol., 2020, 10, 588517.
[http://dx.doi.org/10.3389/fcimb.2020.588517] [PMID: 33680978]
[27]
Kong, W.J.; Vernieri, C.; Foiani, M.; Jiang, J.D. Berberine in the treatment of metabolism-related chronic diseases: A drug cloud (dCloud) effect to target multifactorial disorders. Pharmacol. Ther., 2020, 209, 107496.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107496] [PMID: 32001311]
[28]
Zhao, J.D.; Li, Y.; Sun, M.; Yu, C.J.; Li, J.Y.; Wang, S.H.; Yang, D.; Guo, C.L.; Du, X.; Zhang, W.J.; Cheng, R.D.; Diao, X.C.; Fang, Z.H. Effect of berberine on hyperglycaemia and gut microbiota composition in type 2 diabetic Goto-Kakizaki rats. World J. Gastroenterol., 2021, 27(8), 708-724.
[http://dx.doi.org/10.3748/wjg.v27.i8.708] [PMID: 33716449]
[29]
Son, C.N.; Bang, S.Y.; Kim, S.H.; Sung, Y.K.; Bae, S.C.; Jun, J.B. ABCG2 polymorphism is associated with hyperuricemia in a study of a community-based korean cohort. J. Korean Med. Sci., 2017, 32(9), 1451-1459.
[http://dx.doi.org/10.3346/jkms.2017.32.9.1451] [PMID: 28776340]
[30]
Morimoto, C.; Tamura, Y.; Asakawa, S.; Kuribayashi-Okuma, E.; Nemoto, Y.; Li, J.; Murase, T.; Nakamura, T.; Hosoyamada, M.; Uchida, S.; Shibata, S. ABCG2 expression and uric acid metabolism of the intestine in hyperuricemia model rat. Nucleosides Nucleotides Nucleic Acids, 2020, 39(5), 744-759.
[http://dx.doi.org/10.1080/15257770.2019.1694684] [PMID: 31983315]
[31]
Chen, M.; Lu, X.; Lu, C.; Shen, N.; Jiang, Y.; Chen, M.; Wu, H. Soluble uric acid increases PDZK1 and ABCG2 expression in human intestinal cell lines via the TLR4-NLRP3 inflammasome and PI3K/Akt signaling pathway. Arthritis Res. Ther., 2018, 20(1), 20.
[http://dx.doi.org/10.1186/s13075-018-1512-4] [PMID: 29415757]
[32]
Wang, Y.; Lin, Z.; Zhang, B.; Nie, A.; Bian, M. Cichorium intybus L. promotes intestinal uric acid excretion by modulating ABCG2 in experimental hyperuricemia. Nutr. Metab. (Lond.), 2017, 14, 38.
[http://dx.doi.org/10.1186/s12986-017-0190-6] [PMID: 28630638]
[33]
Chen, C.J.; Tseng, C.C.; Yen, J.H.; Chang, J.G.; Chou, W.C.; Chu, H.W.; Chang, S.J.; Liao, W.T. ABCG2 contributes to the development of gout and hyperuricemia in a genome-wide association study. Sci. Rep., 2018, 8(1), 3137.
[http://dx.doi.org/10.1038/s41598-018-21425-7] [PMID: 29453348]
[34]
Bhatnagar, V.; Richard, E.L.; Wu, W.; Nievergelt, C.M.; Lipkowitz, M.S.; Jeff, J.; Maihofer, A.X.; Nigam, S.K. Analysis of ABCG2 and other urate transporters in uric acid homeostasis in chronic kidney disease: Potential role of remote sensing and signaling. Clin. Kidney J., 2016, 9(3), 444-453.
[http://dx.doi.org/10.1093/ckj/sfw010] [PMID: 27274832]
[35]
Yano, H.; Tamura, Y.; Kobayashi, K.; Tanemoto, M.; Uchida, S. Uric acid transporter ABCG2 is increased in the intestine of the 5/6 nephrectomy rat model of chronic kidney disease. Clin. Exp. Nephrol., 2014, 18(1), 50-55.
[http://dx.doi.org/10.1007/s10157-013-0806-8] [PMID: 23584883]
[36]
Guo, Y.; Yu, Y.; Li, H.; Ding, X.; Li, X.; Jing, X.; Chen, J.; Liu, G.; Lin, Y.; Jiang, C.; Liu, Z.; He, Y.; Li, C.; Tian, Z. Inulin supplementation ameliorates hyperuricemia and modulates gut microbiota in Uox-knockout mice. Eur. J. Nutr., 2021, 60(4), 2217-2230.
[http://dx.doi.org/10.1007/s00394-020-02414-x] [PMID: 33104864]
[37]
Kuo, Y.W.; Hsieh, S.H.; Chen, J.F.; Liu, C.R.; Chen, C.W.; Huang, Y.F. Ho, HH Lactobacillus reuteri TSR332 and Lactobacillus fermentum TSF331 stabilize serum uric acid levels and prevent hyperuricemia in rats. PeerJ, 2021, 9, e11209.
[http://dx.doi.org/10.7717/peerj.11209] [PMID: 33986988]
[38]
Qin, N.; Jiang, Y.; Shi, W.; Wang, L.; Kong, L.; Wang, C.; Guo, Y.; Zhang, J.; Ma, Q. High-throughput untargeted serum metabolomics analysis of hyperuricemia patients by UPLC-Q-TOF/MS. Evid. Based Complement. Alternat. Med., 2021, 2021, 5524772.
[http://dx.doi.org/10.1155/2021/5524772] [PMID: 34234835]
[39]
Zhao, H.; Zhang, Y.; Liu, B.; Zhang, L.; Bao, M.; Li, L.; Zhao, N.; Hussain, M.; Wang, Y.; Yi, J.; Chen, P.; Lu, C. A pilot study to identify the longitudinal serum metabolite profiles to predict the development of hyperuricemia in essential hypertension. Clin. Chim. Acta, 2020, 510, 466-474.
[http://dx.doi.org/10.1016/j.cca.2020.08.002] [PMID: 32771482]
[40]
Wang, Y. Klarić L.; Yu, X.; Thaqi, K.; Dong, J.; Novokmet, M.; Wilson, J.; Polasek, O.; Liu, Y.; Krištić J.; Ge, S.; Pučić-Baković M.; Wu, L.; Zhou, Y.; Ugrina, I.; Song, M.; Zhang, J.; Guo, X.; Zeng, Q.; Rudan, I.; Campbell, H.; Aulchenko, Y.; Lauc, G.; Wang, W. The association between glycosylation of immunoglobulin G and hypertension. Medicine (Baltimore), 2016, 95(17), e3379.
[http://dx.doi.org/10.1097/MD.0000000000003379] [PMID: 27124023]
[41]
Bermingham, M.L.; Colombo, M.; McGurnaghan, S.J.; Blackbourn, L.A.K. Vučković F.; Pučić Baković M.; Trbojević-Akmačić I.; Lauc, G.; Agakov, F.; Agakova, A.S.; Hayward, C.; Klarić L.; Palmer, C.N.A.; Petrie, J.R.; Chalmers, J.; Collier, A.; Green, F.; Lindsay, R.S.; Macrury, S.; McKnight, J.A.; Patrick, A.W.; Thekkepat, S.; Gornik, O.; McKeigue, P.M.; Colhoun, H.M. N-glycan profile and kidney disease in type 1 diabetes. Diabetes Care, 2018, 41(1), 79-87.
[http://dx.doi.org/10.2337/dc17-1042] [PMID: 29146600]
[42]
Hou, H.; Xu, X.; Sun, F.; Zhang, X.; Dong, H.; Wang, L.; Ge, S.; An, K.; Sun, Q.; Li, Y.; Cao, W.; Song, M.; Hu, S.; Xing, W.; Wang, W.; Li, D.; Wang, Y. Hyperuricemia is associated with immunoglobulin G N -glycosylation: A community-based study of glycan biomarkers. OMICS, 2019, 23(12), 660-667.
[http://dx.doi.org/10.1089/omi.2019.0004] [PMID: 30835642]