Combinatorial Chemistry & High Throughput Screening

Author(s): Rui Yang, Mingguo Wang, Xiaoxia Ma and Qing Gao*

DOI: 10.2174/1386207326666221116101621

Development of Silver Nanoparticles Green-formulated by Matricaria Chamomilla as Novel Chemotherapeutic Nanoformulation for the Treatment of Oral Squamous Cell Carcinoma

Page: [2030 - 2038] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Aim: To develop modern chemotherapeutic nanoformulation from plant extract to treat oral squamous cell carcinoma.

Background: The use of biodegradable polymers to deliver drugs via nanoparticles solves a number of issues. AgNPs nanoparticle composites could be a promising material with applications in biological and pharmaceutical sciences. The biomolecules in the extract give the AgNPs additional stability against oxidation and corrosion. As a result, we are interested in reporting the synthesis, characterization, and uses of unique AgNPs decorated with Matricaria chamomilla extract.

Objective: We developed a natural chemotherapeutic nanoformulation containing M. chamomilla aqueous extract and silver nanoparticles (AgNPs) for treating oral squamous cell carcinoma.

Methods: UV–Visible Spectroscopy (UV-Vis), Fourier Transformed Infrared Spectroscopy (FTIR), Transmission Electron Microscopy (TEM), and Field Emission Scanning Electron Microscopy (FESEM) were used to characterize AgNPs. The antioxidant activities of AgNO3, M. chamomilla, and AgNPs were evaluated using the DPPH assay in the presence of Butylated Hydroxytoluene (BHT) as a positive control. The MTT assay was employed on the HSC-4, Ca9-22, and HSC-3 cell lines to assess the cytotoxicity and anti-oral squamous cell carcinoma effects.

Results: Silver nanoparticles demonstrated reduced cell viability and anti-oral squamous cell carcinoma capabilities in HSC-4, Ca9-22, and HSC-3 cell lines in a dose-dependent manner, with minimal damage to the normal cell line. The HSC-3 cell line showed the strongest anti-oral squamous cell carcinoma characteristics of AgNPs when tested against the above cell lines.

Conclusion: According to the findings, silver nanoparticles containing M. chamomilla aqueous extract may treat different forms of oral squamous cell carcinoma in people.

Graphical Abstract

[1]
Kanapathipillai, M.; Brock, A.; Ingber, D.E. Nanoparticle targeting of anti-cancer drugs that alter intracellular signaling or influence the tumor microenvironment. Adv. Drug Deliv. Rev., 2014, 79-80, 107-118.
[http://dx.doi.org/10.1016/j.addr.2014.05.005] [PMID: 24819216]
[2]
Singh, R.K.; Kumar, S.; Prasad, D.N.; Bhardwaj, T.R. Therapeutic journery of nitrogen mustard as alkylating anticancer agents: Historic to future perspectives. Eur. J. Med. Chem., 2018, 151, 401-433.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.001] [PMID: 29649739]
[3]
Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein J. Nanotechnol., 2018, 9, 1050-1074.
[http://dx.doi.org/10.3762/bjnano.9.98] [PMID: 29719757]
[4]
Sanità, G.; Carrese, B.; Lamberti, A. Nanoparticle Surface Functionalization: How to improve biocompatibility and cellular internalization. Front. Mol. Biosci., 2020, 7, 587012.
[http://dx.doi.org/10.3389/fmolb.2020.587012] [PMID: 33324678]
[5]
Singh, R.K.; Prasad, D.N.; Bhardwaj, T.R. Hybrid pharmacophore-based drug design, synthesis, and antiproliferative activity of 1,4-dihydropyridines-linked alkylating anticancer agents. Med. Chem. Res., 2015, 24(4), 1534-1545.
[http://dx.doi.org/10.1007/s00044-014-1236-1]
[6]
Singh, R.K.; Prasad, D.N.; Bhardwaj, T.R. Synthesis, physicochemical and kinetic studies of redox derivative of bis(2-chloroethylamine) as alkylating cytotoxic agent for brain delivery. Arab. J. Chem., 2015, 8(3), 380-387.
[http://dx.doi.org/10.1016/j.arabjc.2012.11.005]
[7]
Yu, M.K.; Park, J.; Jon, S. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics, 2012, 2(1), 3-44.
[http://dx.doi.org/10.7150/thno.3463] [PMID: 22272217]
[8]
Panyam, J.; Labhasetwar, V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv. Drug Deliv. Rev., 2003, 55(3), 329-347.
[http://dx.doi.org/10.1016/S0169-409X(02)00228-4] [PMID: 12628320]
[9]
Kumar, S.; Singh, R.K.; Murthy, R.S.R.; Bhardwaj, T.R. Synthesis and evaluation of substituted Poly(organophosphazenes) as a novel nanocarrier system for combined antimalarial therapy of primaquine and dihydroartemisinin. Pharm. Res., 2015, 32(8), 2736-2752.
[http://dx.doi.org/10.1007/s11095-015-1659-5] [PMID: 25777611]
[10]
Mehta, S.; Sharma, A.K.; Singh, R.K. Therapeutic journey of Andrographis paniculata (burm.f.) nees from natural to synthetic and nanoformulations. Mini Rev. Med. Chem., 2021, 21(12), 1556-1577.
[http://dx.doi.org/10.2174/1389557521666210315162354] [PMID: 33719961]
[11]
Allen, T.M. Ligand-targeted therapeutics in anticancer therapy. Nat. Rev. Cancer, 2002, 2(10), 750-763.
[http://dx.doi.org/10.1038/nrc903] [PMID: 12360278]
[12]
Alexis, F.; Pridgen, E.M.; Langer, R.; Farokhzad, O.C. Nanoparticle technologies for cancer therapy. Handb. Exp. Pharmacol., 2010, 197(197), 55-86.
[http://dx.doi.org/10.1007/978-3-642-00477-3_2] [PMID: 20217526]
[13]
Nie, S.; Xing, Y.; Kim, G.J.; Simons, J.W. Nanotechnology applications in cancer. Annu. Rev. Biomed. Eng., 2007, 9(1), 257-288.
[http://dx.doi.org/10.1146/annurev.bioeng.9.060906.152025] [PMID: 17439359]
[14]
Ding, Y.; Li, S.; Nie, G. Nanotechnological strategies for therapeutic targeting of tumor vasculature. Nanomedicine (Lond.), 2013, 8(7), 1209-1222.
[http://dx.doi.org/10.2217/nnm.13.106] [PMID: 23837858]
[15]
Lowenthal, R.M.; Eaton, K. Toxicity of chemotherapy. Hematol. Oncol. Clin. North Am., 1996, 10(4), 967-990.
[http://dx.doi.org/10.1016/S0889-8588(05)70378-6] [PMID: 8811311]
[16]
Singh, R.K. Key Heterocyclic Cores for Smart Anticancer Drug-Design Part I; Bentham Science Publishers, 2022.
[http://dx.doi.org/10.2174/97898150400741220101]
[17]
Calvert, H.; Jodrell, D.I.; Cassidy, J.; Harris, A.L. Efficacy, safety, and cost of new anticancer drugs. BMJ, 2002, 325(7375), 1302a-1302.
[http://dx.doi.org/10.1136/bmj.325.7375.1302/a] [PMID: 12458261]
[18]
Praetorius, N.; Mandal, T. Engineered nanoparticles in cancer therapy. Recent Pat. Drug Deliv. Formul., 2007, 1(1), 37-51.
[http://dx.doi.org/10.2174/187221107779814104] [PMID: 19075873]
[19]
Shi, J.; Kantoff, P.W.; Wooster, R.; Farokhzad, O.C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer, 2017, 17(1), 20-37.
[http://dx.doi.org/10.1038/nrc.2016.108] [PMID: 27834398]
[20]
Kumar, S.; Singh, R.K.; Prasad, D.N.; Bhardwaj, T.R. Synthesis and in vitro degradation studies of substituted poly(organophos phazenes) for drug delivery applications. J. Drug Deliv. Sci. Technol., 2017, 38, 135-142.
[http://dx.doi.org/10.1016/j.jddst.2017.01.010]
[21]
Kumar, S.; Sharma, B.; Thakur, K.; Bhardwaj, T.R.; Prasad, D.N.; Singh, R.K. Recent advances in the development of polymeric nanocarrier formulations for the treatment of colon cancer. Drug Deliv. Lett., 2019, 9(1), 2-14.
[http://dx.doi.org/10.2174/2210303108666181109120710]
[22]
Kumar, S.; Sharma, B.; Bhardwaj, T.R.; Singh, R.K. Design, synthesis and studies on novel polymeric prodrugs of erlotinib for colon drug delivery. Anticancer. Agents Med. Chem., 2021, 21(3), 383-392.
[http://dx.doi.org/10.2174/1871520620666200811124013] [PMID: 32781967]
[23]
Rizzo, L.Y.; Theek, B.; Storm, G.; Kiessling, F.; Lammers, T. Recent progress in nanomedicine: Therapeutic, diagnostic and theranostic applications. Curr. Opin. Biotechnol., 2013, 24(6), 1159-1166.
[http://dx.doi.org/10.1016/j.copbio.2013.02.020] [PMID: 23578464]
[24]
Vasir, J.K.; Labhasetwar, V. Targeted drug delivery in cancer therapy. Technol. Cancer Res. Treat., 2005, 4(4), 363-374.
[http://dx.doi.org/10.1177/153303460500400405] [PMID: 16029056]
[25]
Joudeh, N.; Linke, D. Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists. J. Nanobiotechnology, 2022, 20(1), 262.
[http://dx.doi.org/10.1186/s12951-022-01477-8] [PMID: 35672712]
[26]
Sinha, R.; Kim, G.J.; Nie, S.; Shin, D.M. Nanotechnology in cancer therapeutics: Bioconjugated nanoparticles for drug delivery. Mol. Cancer Ther., 2006, S, 1909-1917.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0141]
[27]
Bazak, R.; Houri, M.; Achy, S.E.; Hussein, W.; Refaat, T. Passive targeting of nanoparticles to cancer: A comprehensive review of the literature. Mol. Clin. Oncol., 2014, 2(6), 904-908.
[http://dx.doi.org/10.3892/mco.2014.356] [PMID: 25279172]
[28]
Hofheinz, R.D.; Gnad-Vogt, S.U.; Beyer, U.; Hochhaus, A. Liposomal encapsulated anti-cancer drugs. Anticancer Drugs, 2005, 16(7), 691-707.
[http://dx.doi.org/10.1097/01.cad.0000167902.53039.5a] [PMID: 16027517]
[29]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[30]
Zhang, Y.; Zhang, X.; Zhang, L.; Alarfaj, A.A.; Hirad, A.H.; Alsabri, A.E. Green formulation, chemical characterization, and antioxidant, cytotoxicity, and anti-human cervical cancer effects of vanadium nanoparticles: A pre-clinical study. Arab. J. Chem., 2021, 14(6), 103147.
[http://dx.doi.org/10.1016/j.arabjc.2021.103147]
[31]
Ashraf, M.A.; Peng, W.; Zare, Y.; Rhee, K.Y. Effects of size and aggregation/agglomeration of nanoparticles on the interfacial/interphase properties and tensile strength of polymer nanocomposites. Nanoscale Res. Lett., 2018, 13(1), 214.
[http://dx.doi.org/10.1186/s11671-018-2624-0] [PMID: 30019092]
[32]
Singh, R.; Lillard, J.W. Jr Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol., 2009, 86(3), 215-223.
[http://dx.doi.org/10.1016/j.yexmp.2008.12.004] [PMID: 19186176]
[33]
Delia Mandracchia and Giuseppe Tripodo, CHAPTER 1:Micro and Nano-drug Delivery Systems, in Silk-based Drug Delivery Systems, 2020, pp. 1-24.
[http://dx.doi.org/10.1039/9781839162664-00001]
[34]
Zauner, W.; Farrow, N.A.; Haines, A.M.R. In vitro uptake of polystyrene microspheres: effect of particle size, cell line and cell density. J. Control. Release, 2001, 71(1), 39-51.
[http://dx.doi.org/10.1016/S0168-3659(00)00358-8] [PMID: 11245907]
[35]
Kreuter, J.; Ramge, P.; Petrov, V.; Hamm, S.; Gelperina, S.E.; Engelhardt, B.; Alyautdin, R.; von Briesen, H.; Begley, D.J. Direct evidence that polysorbate-80-coated poly(butylcyanoacrylate) nanoparticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles. Pharm. Res., 2003, 20(3), 409-416.
[http://dx.doi.org/10.1023/A:1022604120952] [PMID: 12669961]
[36]
Kroll, R.A.; Pagel, M.A.; Muldoon, L.L.; Muldoon, L.L.; Roman-Goldstein, S.; Fiamengo, S.A.; Neuwelt, E.A.; Neuwelt, E.A.; Neuwelt, E.A. Improving drug delivery to intracerebral tumor and surrounding brain in a rodent model: A comparison of osmotic versus bradykinin modification of the blood-brain and/or blood-tumor barriers. Neurosurgery, 1998, 43(4), 879-886.
[http://dx.doi.org/10.1097/00006123-199810000-00090] [PMID: 9766316]
[37]
Desai, M.P.; Labhasetwar, V.; Walter, E.; Levy, R.J.; Amidon, G.L. The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm. Res., 1997, 14(11), 1568-1573.
[http://dx.doi.org/10.1023/A:1012126301290] [PMID: 9434276]
[38]
Redhead, H.M.; Davis, S.S.; Illum, L. Drug delivery in poly(lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908: in vitro characterisation and in vivo evaluation. J. Control. Release, 2001, 70(3), 353-363.
[http://dx.doi.org/10.1016/S0168-3659(00)00367-9] [PMID: 11182205]
[39]
Dunne, M.; Corrigan, O.I.; Ramtoola, Z. Influence of particle size and dissolution conditions on the degradation properties of polylactide-co-glycolide particles. Biomaterials, 2000, 21(16), 1659-1668.
[http://dx.doi.org/10.1016/S0142-9612(00)00040-5] [PMID: 10905407]
[40]
Sharma, V.K.; Sayes, C.M.; Guo, B.; Pillai, S.; Parsons, J.G.; Wang, C.; Yan, B.; Ma, X. Interactions between silver nanoparticles and other metal nanoparticles under environmentally relevant conditions: A review. Sci. Total Environ., 2019, 653, 1042-1051.
[http://dx.doi.org/10.1016/j.scitotenv.2018.10.411] [PMID: 30759545]
[41]
Świdwińska-Gajewska, AM; Czerczak, S. Nanosilver - harmful effects of biological activity. Med Pr., 2014, 65(6), 831-45.
[42]
Akter, M.; Sikder, M.T.; Rahman, M.M.; Ullah, A.K.M.A.; Hossain, K.F.B.; Banik, S.; Hosokawa, T.; Saito, T.; Kurasaki, M. A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. J. Adv. Res., 2018, 9, 1-16.
[http://dx.doi.org/10.1016/j.jare.2017.10.008] [PMID: 30046482]
[43]
Gupta, R.; Xie, H. Nanoparticles in daily life: Applications, toxicity and regulations. J. Environ. Pathol. Toxicol. Oncol., 2018, 37(3), 209-230.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.2018026009] [PMID: 30317972]
[44]
Pham-Huy, L.A.; He, H.; Pham-Huy, C. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci., 2008, 4(2), 89-96.
[PMID: 23675073]
[45]
Aruoma, O.I. Free radicals, oxidative stress, and antioxidants in human health and disease. J. Am. Oil Chem. Soc., 1998, 75(2), 199-212.
[http://dx.doi.org/10.1007/s11746-998-0032-9] [PMID: 32287334]
[46]
Singh, K.; Bhori, M.; Kasu, Y.A.; Bhat, G.; Marar, T. Antioxidants as precision weapons in war against cancer chemotherapy induced toxicity-Exploring the armoury of obscurity. Saudi Pharm. J., 2018, 26(2), 177-190.
[http://dx.doi.org/10.1016/j.jsps.2017.12.013] [PMID: 30166914]
[47]
Ge, X.; Cao, Z.; Chu, L. The antioxidant effect of the metal and metal-oxide nanoparticles. Antioxidants, 2022, 11(4), 791.
[http://dx.doi.org/10.3390/antiox11040791] [PMID: 35453476]