Combinatorial Chemistry & High Throughput Screening

Author(s): Chengyu Zang, Yanxin Liu and Huaxia Chen*

DOI: 10.2174/1386207326666221031114305

The Sphingolipids Metabolism Mechanism and Associated Molecular Biomarker Investigation in Keloid

Page: [2003 - 2012] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Sphingolipid metabolism plays important roles in maintaining cell growth and signal transduction. However, this pathway has not been investigated in keloid, a disease characterized by the excessive proliferation of fibroblasts.

Methods: Based on the expression profiles of three datasets, the differentially expressed genes (DEGs) were explored between keloid fibroblasts and normal fibroblasts. Metabolism-related genes were obtained from a previous study. Then, enrichment analysis and protein-protein interaction (PPI) network analysis were performed for genes. Differences in metabolism-related pathways between keloid fibroblasts and normal fibroblasts were analyzed by the gene set variation analysis (GSVA). Quantitative PCR was used to confirm the expression of key genes in keloid fibroblast.

Results: A total of 42 up-regulated co-DEGs and 77 down-regulated co-DEGs were revealed based on three datasets, and were involved in extracellular matrix structural constituent, collagencontaining extracellular matrix and sphingolipid metabolism pathway. A total of 15 metabolism- DEGs were screened, including serine palmitoyltransferase long chain base subunit (SPTLC) 3, UDP-glucose ceramide glucosyltransferase (UGCG) and sphingomyelin synthase 2 (SGMS2). All these three genes were enriched in the sphingolipid pathway. GSVA showed that the biosynthesis of glycosphingolipids (GSLs) in keloid fibroblasts was lower than that in normal fibroblasts. Quantitative PCR suggested SPTLC3, UGCG and SGMS2 were regulated in keloid fibroblasts.

Conclusion: Sphingolipids metabolism pathway might take part in the disease progression of keloid by regulating keloid fibroblasts. SPTLC3, UGCG and SGMS2 might be key targets to investigate the underlying mechanism.

Graphical Abstract

[1]
Tsai, C-H.; Ogawa, R. Keloid research: Current status and future directions. Scars, burns & healing, 2019, 5, 2059513119868659.
[2]
Shi, K.; Qiu, X.; Zheng, W.; Yan, D.; Peng, W. MiR-203 regulates keloid fibroblast proliferation, invasion, and extracellular matrix expression by targeting EGR1 and FGF2. Biomed. Pharmacother., 2018, 108, 1282-1288.
[3]
Li, C.; Bai, Y.; Liu, H.; Zuo, X.; Yao, H.; Xu, Y.; Cao, M. Comparative study of microRNA profiling in keloid fibroblast and annotation of differential expressed microRNAs. Acta Biochim. Biophys. Sin., 2013, 45(8), 692-699.
[http://dx.doi.org/10.1093/abbs/gmt057] [PMID: 23709205]
[4]
Huang, C.; Liu, L.; You, Z.; Wang, B.; Du, Y.; Ogawa, R. Keloid progression: A stiffness gap hypothesis. Int. Wound J., 2017, 14(5), 764-771.
[http://dx.doi.org/10.1111/iwj.12693] [PMID: 27995750]
[5]
Huang, C.; Ogawa, R. Roles of lipid metabolism in keloid development. Lipids Health Dis., 2013, 12(1), 60.
[http://dx.doi.org/10.1186/1476-511X-12-60] [PMID: 23634948]
[6]
Mari, W.; Alsabri, S.G.; Tabal, N.; Younes, S.; Sherif, A.; Simman, R. Novel insights on understanding of keloid scar: Article review. J. Am. Coll. Clin. Wound Spec., 2015, 7(1-3), 1-7.
[http://dx.doi.org/10.1016/j.jccw.2016.10.001] [PMID: 28053861]
[7]
Alaamery, M.; Albesher, N.; Aljawini, N.; Alsuwailm, M.; Massadeh, S.; Wheeler, M.A.; Chao, C.C.; Quintana, F.J. Role of sphingolipid metabolism in neurodegeneration. J. Neurochem., 2021, 158(1), 25-35.
[http://dx.doi.org/10.1111/jnc.15044] [PMID: 32402091]
[8]
Liu, N.J.; Hou, L.P.; Bao, J.J.; Wang, L.J.; Chen, X.Y. Sphingolipid metabolism, transport, and functions in plants: Recent progress and future perspectives. Plant Commun., 2021, 2(5), 100214.
[http://dx.doi.org/10.1016/j.xplc.2021.100214] [PMID: 34746760]
[9]
Dany, M.; Elston, D. Gene expression of sphingolipid metabolism pathways is altered in hidradenitis suppurativa. Journal of the American Academy of Dermatology, 2017, 77(2), 268-273.
[10]
Ruckhäberle, E.; Rody, A.; Engels, K.; Gaetje, R.; von Minckwitz, G.; Schiffmann, S.; Grösch, S.; Geisslinger, G.; Holtrich, U.; Karn, T.; Kaufmann, M. Microarray analysis of altered sphingolipid metabolism reveals prognostic significance of sphingosine kinase 1 in breast cancer. Breast Cancer Res. Treat., 2008, 112(1), 41-52.
[http://dx.doi.org/10.1007/s10549-007-9836-9] [PMID: 18058224]
[11]
Huang, K.; Creek, D.; Krum, H.; Wang, B. 194 VCP979 treatment attenuates cardiac fibroblasts collagen synthesis and sphingolipid metabolism regulated by TGFβ. Heart Lung Circ., 2020, 29, S122.
[12]
Moskot, M.; Jakóbkiewicz-Banecka, J. Smolińska, E.; Banecki, B.; Węgrzyn, G.; Gabig-Cimińska, M. Activities of genes controlling sphingolipid metabolism in human fibroblasts treated with flavonoids. Metab. Brain Dis., 2015, 30(5), 1257-1267.
[http://dx.doi.org/10.1007/s11011-015-9705-x] [PMID: 26209177]
[13]
Smith, J.C.; Boone, B.E.; Opalenik, S.R.; Williams, S.M.; Russell, S.B. Gene profiling of keloid fibroblasts shows altered expression in multiple fibrosis-associated pathways. J. Invest. Dermatol., 2008, 128(5), 1298-1310.
[http://dx.doi.org/10.1038/sj.jid.5701149] [PMID: 17989729]
[14]
Gautier, L.; Cope, L.; Bolstad, B.M.; Irizarry, R.A. Affy-analysis of Affymetrix GeneChip data at the probe level. Bioinformatics, 2004, 20(3), 307-315.
[http://dx.doi.org/10.1093/bioinformatics/btg405] [PMID: 14960456]
[15]
Smyth, G.K.; Ritchie, M.; Thorne, N.; Wettenhall, J. LIMMA: linear models for microarray data. In bioinformatics and computational biology solutions using r and bioconductor. In: Statistics for Biology and Health; 2005.
[http://dx.doi.org/10.1007/0-387-29362-0_23]
[16]
Wickham, H; Wickham, MH The ggplot package., 2007.
[17]
Bardou, P.; Mariette, J.; Escudié, F.; Djemiel, C.; Klopp, C. jvenn: an interactive Venn diagram viewer. BMC Bioinformatics, 2014, 15(1), 293.
[http://dx.doi.org/10.1186/1471-2105-15-293] [PMID: 25176396]
[18]
Wu, T.; Hu, E.; Xu, S.; Chen, M.; Guo, P.; Dai, Z.; Feng, T.; Zhou, L.; Tang, W.; Zhan, L.; Fu, X.; Liu, S.; Bo, X.; Yu, G. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation, 2021, 2(3), 100141.
[http://dx.doi.org/10.1016/j.xinn.2021.100141] [PMID: 34557778]
[19]
Possemato, R.; Marks, K.M.; Shaul, Y.D.; Pacold, M.E.; Kim, D.; Birsoy, K.; Sethumadhavan, S.; Woo, H.K.; Jang, H.G.; Jha, A.K.; Chen, W.W.; Barrett, F.G.; Stransky, N.; Tsun, Z.Y.; Cowley, G.S.; Barretina, J.; Kalaany, N.Y.; Hsu, P.P.; Ottina, K.; Chan, A.M.; Yuan, B.; Garraway, L.A.; Root, D.E.; Mino-Kenudson, M.; Brachtel, E.F.; Driggers, E.M.; Sabatini, D.M. Functional genomics reveal that the serine synthesis pathway is essential in breast cancer. Nature, 2011, 476(7360), 346-350.
[http://dx.doi.org/10.1038/nature10350] [PMID: 21760589]
[20]
Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun., 2019, 10(1), 1523.
[http://dx.doi.org/10.1038/s41467-019-09234-6] [PMID: 30944313]
[21]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[22]
Désert, R.; Rohart, F.; Canal, F.; Sicard, M.; Desille, M.; Renaud, S.; Turlin, B.; Bellaud, P.; Perret, C.; Clément, B.; Lê Cao, K.A.; Musso, O. Human hepatocellular carcinomas with a periportal phenotype have the lowest potential for early recurrence after curative resection. Hepatology, 2017, 66(5), 1502-1518.
[http://dx.doi.org/10.1002/hep.29254] [PMID: 28498607]
[23]
Rosario, S.R.; Long, M.D.; Affronti, H.C.; Rowsam, A.M.; Eng, K.H.; Smiraglia, D.J. Pan-cancer analysis of transcriptional metabolic dysregulation using the cancer genome atlas. Nat. Commun., 2018, 9(1), 5330.
[http://dx.doi.org/10.1038/s41467-018-07232-8] [PMID: 30552315]
[24]
Livak, K.J. ST Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T))method. Methods, 2001, 25(4), 402-408.
[25]
Green, C.D.; Maceyka, M.; Cowart, L.A.; Spiegel, S. Sphingolipids in metabolic disease: The good, the bad, and the unknown. Cell Metab., 2021, 33(7), 1293-1306.
[http://dx.doi.org/10.1016/j.cmet.2021.06.006] [PMID: 34233172]
[26]
Hannun, Y.A.; Obeid, L.M. Sphingolipids and their metabolism in physiology and disease. Nat. Rev. Mol. Cell Biol., 2018, 19(3), 175-191.
[http://dx.doi.org/10.1038/nrm.2017.107] [PMID: 29165427]
[27]
Merrill, Jr. Alfred, H., Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chem. Rev., 2011, 111(10), 6387-6422.
[http://dx.doi.org/10.1021/cr2002917] [PMID: 21942574]
[28]
Zhang, T.; de Waard, A.A.; Wuhrer, M.; Spaapen, R.M. The role of glycosphingolipids in immune cell functions. Front. Immunol., 2019, 10(90)
[29]
Schömel, N.; Geisslinger, G.; Wegner, M-S. Influence of glycosphingolipids on cancer cell energy metabolism. Prog. Lipid Res., 2020, 79, 101050.
[30]
Frisz, J.F.; Lou, K.; Klitzing, H.A.; Hanafin, W.P.; Lizunov, V.; Wilson, R.L.; Carpenter, K.J.; Kim, R.; Hutcheon, I.D.; Zimmerberg, J.; Weber, P.K.; Kraft, M.L. Direct chemical evidence for sphingolipid domains in the plasma membranes of fibroblasts. Proc. Natl. Acad. Sci. USA, 2013, 110(8), E613-E622.
[http://dx.doi.org/10.1073/pnas.1216585110] [PMID: 23359681]
[31]
Calvano, C.D.; Ventura, G.; Sardanelli, A.M.; Losito, I.; Palmisano, F.; Cataldi, T.R. Identification of neutral and acidic glycosphingolipids in the human dermal fibroblasts. Analytical biochemistry, 2019, 581, 113348.
[32]
Fujiwara, Y.; Hama, K.; Shimozawa, N.; Yokoyama, K. Glycosphingolipids with very long-chain fatty acids accumulate in fibroblasts from adrenoleukodystrophy patients. Int. J. Mol. Sci., 2021, 22(16), 8645.
[http://dx.doi.org/10.3390/ijms22168645] [PMID: 34445349]
[33]
Shahin, M.H.; Gong, Y.; Frye, R.F.; Rotroff, D.M.; Beitelshees, A.L.; Baillie, R.A.; Chapman, A.B.; Gums, J.G.; Turner, S.T.; Boerwinkle, E.; Motsinger-Reif, A.; Fiehn, O.; Cooper-DeHoff, R.M.; Han, X.; Kaddurah-Daouk, R.; Johnson, J.A. Sphingolipid metabolic pathway impacts thiazide diuretics blood pressure response: Insights from genomics, metabolomics, and lipidomics. J. Am. Heart Assoc., 2018, 7(1), e006656.
[http://dx.doi.org/10.1161/JAHA.117.006656] [PMID: 29288159]
[34]
Mullen, T. Ceramide and apoptosis: Exploring the enigmatic connections between sphingolipid metabolism and programmed cell death. Anti-Cancer Agents in Medicinal Chemistry, 2012, 12(4), 340-363.
[35]
Xu, Y.; Ku, X.; Wu, C.; Cai, C.; Tang, J.; Yan, W. Exosomal proteome analysis of human plasma to monitor sepsis progression. Biochem. Biophys. Res. Commun., 2018, 499(4), 856-861.
[http://dx.doi.org/10.1016/j.bbrc.2018.04.006] [PMID: 29625113]
[36]
Wegner, M.S.; Schömel, N.; Gruber, L.; Örtel, S.B.; Kjellberg, M.A.; Mattjus, P.; Kurz, J.; Trautmann, S.; Peng, B.; Wegner, M.; Kaulich, M.; Ahrends, R.; Geisslinger, G.; Grösch, S. UDP-glucose ceramide glucosyltransferase activates AKT, promoted proliferation, and doxorubicin resistance in breast cancer cells. Cell. Mol. Life Sci., 2018, 75(18), 3393-3410.
[http://dx.doi.org/10.1007/s00018-018-2799-7] [PMID: 29549423]
[37]
Monies, D.; Anabrees, J.; Ibrahim, N.; Elbardisy, H.; Abouelhoda, M.; Meyer, B.F.; Alkuraya, F.S. Identification of a novel lethal form of autosomal recessive ichthyosis caused by UDP-glucose ceramide glucosyltransferase deficiency. Clin. Genet., 2018, 93(6), 1252-1253.
[http://dx.doi.org/10.1111/cge.13180] [PMID: 29417556]
[38]
Gunt, H.; Levy, S.B. 27439 Expression of skin barrier-related genes and long-lasting moisturization by a natural hydration complex. J. Am. Acad. Dermatol., 2021, 85(3), AB144.
[http://dx.doi.org/10.1016/j.jaad.2021.06.591]
[39]
Sugimoto, M.; Shimizu, Y.; Zhao, S.; Ukon, N.; Nishijima, K.; Wakabayashi, M.; Yoshioka, T.; Higashino, K.; Numata, Y.; Okuda, T.; Tamaki, N.; Hanamatsu, H.; Igarashi, Y.; Kuge, Y. Characterization of the role of sphingomyelin synthase 2 in glucose metabolism in whole-body and peripheral tissues in mice. Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2016, 1861(8), 688-702.
[http://dx.doi.org/10.1016/j.bbalip.2016.04.019] [PMID: 27151272]
[40]
Lee, D.K.; Long, N.P.; Jung, J.; Kim, T.J.; Na, E.; Kang, Y.P.; Kwon, S.W.; Jang, J. Integrative lipidomic and transcriptomic analysis of X-linked adrenoleukodystrophy reveals distinct lipidome signatures between adrenomyeloneuropathy and childhood cerebral adrenoleukodystrophy. Biochem. Biophys. Res. Commun., 2019, 508(2), 563-569.
[http://dx.doi.org/10.1016/j.bbrc.2018.11.123] [PMID: 30509496]
[41]
Grabowski, G.; Pacana, M.J.; Chen, E. Keloid and hypertrophic scar formation, prevention, and management. J. Am. Acad. Orthop. Surg., 2020, 28(10), e408-e414.
[http://dx.doi.org/10.5435/JAAOS-D-19-00690] [PMID: 32109921]
[42]
Macarak, E.J.; Wermuth, P.J.; Rosenbloom, J.; Uitto, J. Keloid disorder: Fibroblast differentiation and gene expression profile in fibrotic skin diseases. Exp. Dermatol., 2021, 30(1), 132-145.
[http://dx.doi.org/10.1111/exd.14243] [PMID: 33211348]
[43]
Capolupo, L; Khven, I; Lederer, A; Mazzeo, L; Glousker, G; Ho, S; Russo, F; Montoya, J; Bhandari, D; Bowman, A; Ellis, S; Guiet, R; Burri, O; Detzner, J; Muthing, J; Homicsko, K; Kuonen, F; Gilliet, M; Spengler, B; Heeren, R; Dotto, G; La Manno, G; D'Angelo, G. Sphingolipids control dermal fibroblast heterogeneity. Science, 2022, 376(6590), eabh1623.
[44]
Zeng, J.; Jiang, B.; Xiao, X.; Zhang, R. Inhibition of sphingosine kinase 2 attenuates hypertrophic scar formation via upregulation of Smad7 in human hypertrophic scar fibroblasts. Mol. Med. Rep., 2020, 22(3), 2573-2582.
[http://dx.doi.org/10.3892/mmr.2020.11313]
[45]
Jung, S.H.; Song, Y.K.; Chung, H.; Ko, H.M.; Kim, S.H. Association between sphingosine-1-phosphate-induced signal transduction via mitogen-activated protein kinase pathways and keloid formation. Archives for Dermatological Research, 2019, 311(9), 711-719.