Combinatorial Application of Papain and CD66B for Isolating Glioma- Associated Neutrophils

Page: [400 - 411] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Background: Stromal cells in the tumor microenvironment play crucial roles in glioma development. Current methods for isolating tumor-associated stromal cells (such as neutrophils) are inefficient due to the conflict between tissue dissociation and cell surface protein protection, which hampers the research on patient-derived stromal cells. Our study aims to establish a novel method for isolating glioma-associated neutrophils (GANs).

Methods: To observe neutrophil-like polymorphonuclear cells, we performed Hematoxylin-Eosin staining on glioma tissues. For isolating single cells from glioma tissues, we evaluated the efficiency of tissue dissociation with FastPrep Grinder-mediated homogenization or proteases (trypsin or papain) digestion. To definite specific markers of GANs, fluorescence-activated cell sorting (FACS) and immunofluorescence staining were performed. FACS and Ficoll were performed for the separation of neutrophils from glioma tissue-derived single-cell or whole blood pool. To identify the isolated neutrophils, FACS and RT-PCR were carried out.

Results: Neutrophil-like cells were abundant in high-grade glioma tissues. Among the three tissue dissociation methods, papain digestion produced a 5.1-fold and 1.7-fold more living cells from glioma mass than physical trituration and trypsin digestion, respectively, and it preserved over 97% of neutrophil surface protein markers. CD66B could be adopted as a unique neutrophil surface protein marker for FACS sorting in glioma. Glioma-derived CD66B+ cells specifically expressed neutrophil marker genes.

Conclusion: A combination of papain-mediated tissue dissociation and CD66B-mediated FACS sorting is an effective novel method for the isolation of GANs from glioma tissues.

Graphical Abstract

[1]
Cheever, M.A.; Allison, J.P.; Ferris, A.S.; Finn, O.J.; Hastings, B.M.; Hecht, T.T.; Mellman, I.; Prindiville, S.A.; Viner, J.L.; Weiner, L.M.; Matrisian, L.M. The prioritization of cancer antigens: A national cancer institute pilot project for the acceleration of translational research. Clin. Cancer Res., 2009, 15(17), 5323-5337.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0737] [PMID: 19723653]
[2]
He, Q.; Jiang, X.; Zhou, X.; Weng, J. Targeting cancers through TCR-peptide/MHC interactions. J. Hematol. Oncol., 2019, 12(1), 139.
[http://dx.doi.org/10.1186/s13045-019-0812-8] [PMID: 31852498]
[3]
Tukaramrao, D.B.; Malla, S.; Saraiya, S.; Hanely, R.A.; Ray, A.; Kumari, S.; Raman, D.; Tiwari, A.K. A novel thienopyrimidine analog, tph104, mediates immunogenic cell death in triple-negative breast cancer cells. Cancers (Basel), 2021, 13(8), 1954.
[http://dx.doi.org/10.3390/cancers13081954] [PMID: 33919653]
[4]
Sato, A.; Nakashima, H.; Nakashima, M.; Ikarashi, M.; Nishiyama, K.; Kinoshita, M.; Seki, S. Involvement of the TNF and FasL produced by CD11b Kupffer cells/macrophages in CCl4-induced acute hepatic injury. PLoS One, 2014, 9(3), e92515.
[http://dx.doi.org/10.1371/journal.pone.0092515] [PMID: 24667392]
[5]
Miyazato, K.; Tahara, H.; Hayakawa, Y. Antimetastatic effects of thalidomide by inducing the functional maturation of peripheral natural killer cells. Cancer Sci., 2020, 111(8), 2770-2778.
[http://dx.doi.org/10.1111/cas.14538] [PMID: 32573072]
[6]
Chigbu, D.; Loonawat, R.; Sehgal, M.; Patel, D.; Jain, P.; Hepatitis, C. Hepatitis C virus infection: Host–virus interaction and mechanisms of viral persistence. Cells, 2019, 8(4), 376.
[http://dx.doi.org/10.3390/cells8040376]
[7]
Molloy, A.P.; Martin, F.T.; Dwyer, R.M.; Griffin, T.P.; Murphy, M.; Barry, F.P.; O’Brien, T.; Kerin, M.J. Mesenchymal stem cell secretion of chemokines during differentiation into osteoblasts, and their potential role in mediating interactions with breast cancer cells. Int. J. Cancer, 2009, 124(2), 326-332.
[http://dx.doi.org/10.1002/ijc.23939] [PMID: 19003962]
[8]
Chang, A.L.; Miska, J.; Wainwright, D.A.; Dey, M.; Rivetta, C.V.; Yu, D.; Kanojia, D.; Pituch, K.C.; Qiao, J.; Pytel, P.; Han, Y.; Wu, M.; Zhang, L.; Horbinski, C.M.; Ahmed, A.U.; Lesniak, M.S. CCL2 produced by the glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor cells. Cancer Res., 2016, 76(19), 5671-5682.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0144] [PMID: 27530322]
[9]
Chang, Y.; Xu, L.; An, H.; Fu, Q.; Chen, L.; Lin, Z.; Xu, J. Expression of IL-4 and IL-13 predicts recurrence and survival in localized clear-cell renal cell carcinoma. Int. J. Clin. Exp. Pathol., 2015, 8(2), 1594-1603.
[PMID: 25973044]
[10]
Michaudel, C.; Bataille, F.; Maillet, I.; Fauconnier, L.; Colas, C.; Sokol, H.; Straube, M.; Couturier-Maillard, A.; Dumoutier, L.; van Snick, J.; Quesniaux, V.F.; Togbe, D.; Ryffel, B. Ozone-induced aryl hydrocarbon receptor activation controls lung inflammation via Interleukin-22 Modulation. Front. Immunol., 2020, 11, 144.
[http://dx.doi.org/10.3389/fimmu.2020.00144] [PMID: 32161582]
[11]
Wolfsberger, J.; Sakil, H.A.M.; Zhou, L.; van Bree, N.; Baldisseri, E.; de Souza Ferreira, S.; Zubillaga, V.; Stantic, M.; Fritz, N.; Hartman, J.; Rolny, C.; Wilhelm, M.T. TAp73 represses NFkappaB-mediated recruitment of tumor-associated macrophages in breast cancer Proceedings of the National Academy of Sciences of the United States of America, 118, 2021.
[12]
Zhou, Z.; Wang, P.; Sun, R.; Li, J.; Hu, Z.; Xin, H.; Luo, C.; Zhou, J.; Fan, J.; Zhou, S. Tumor-associated neutrophils and macrophages interaction contributes to intrahepatic cholangiocarcinoma progression by activating STAT3. J. Immunother. Cancer, 2021, 9(3), e001946.
[http://dx.doi.org/10.1136/jitc-2020-001946] [PMID: 33692217]
[13]
Sanhueza, C.; Wehinger, S.; Castillo Bennett, J.; Valenzuela, M.; Owen, G.I.; Quest, A.F.G. The twisted survivin connection to angiogenesis. Mol. Cancer, 2015, 14(1), 198.
[http://dx.doi.org/10.1186/s12943-015-0467-1] [PMID: 26584646]
[14]
Albrengues, J.; Shields, M.A.; Ng, D.; Park, C.G.; Ambrico, A.; Poindexter, M.E.; Upadhyay, P.; Uyeminami, D.L.; Pommier, A.; Küttner, V.; Bružas, E.; Maiorino, L.; Bautista, C.; Carmona, E.M.; Gimotty, P.A.; Fearon, D.T.; Chang, K.; Lyons, S.K.; Pinkerton, K.E.; Trotman, L.C.; Goldberg, M.S.; Yeh, J.T.H.; Egeblad, M. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science, 2018, 361(6409), eaao4227.
[http://dx.doi.org/10.1126/science.aao4227] [PMID: 30262472]
[15]
Jeon, H.Y.; Ham, S.W.; Kim, J.K.; Jin, X.; Lee, S.Y.; Shin, Y.J.; Choi, C.Y.; Sa, J.K.; Kim, S.H.; Chun, T.; Jin, X.; Nam, D.H.; Kim, H. Ly6G+ inflammatory cells enable the conversion of cancer cells to cancer stem cells in an irradiated glioblastoma model. Cell Death Differ., 2019, 26(10), 2139-2156.
[http://dx.doi.org/10.1038/s41418-019-0282-0] [PMID: 30804471]
[16]
Yang, L.; Liu, Q.; Zhang, X.; Liu, X.; Zhou, B.; Chen, J.; Huang, D.; Li, J.; Li, H.; Chen, F.; Liu, J.; Xing, Y.; Chen, X.; Su, S.; Song, E. DNA of neutrophil extracellular traps promotes cancer metastasis via CCDC25. Nature, 2020, 583(7814), 133-138.
[http://dx.doi.org/10.1038/s41586-020-2394-6] [PMID: 32528174]
[17]
Yee, P.P.; Wei, Y.; Kim, S.Y.; Lu, T.; Chih, S.Y.; Lawson, C.; Tang, M.; Liu, Z.; Anderson, B.; Thamburaj, K.; Young, M.M.; Aregawi, D.G.; Glantz, M.J.; Zacharia, B.E.; Specht, C.S.; Wang, H.G.; Li, W. Neutrophil-induced ferroptosis promotes tumor necrosis in glioblastoma progression. Nat. Commun., 2020, 11(1), 5424.
[http://dx.doi.org/10.1038/s41467-020-19193-y] [PMID: 33110073]
[18]
Kanayama, M.; Inoue, M.; Danzaki, K.; Hammer, G.; He, Y.W.; Shinohara, M.L. Autophagy enhances NFκB activity in specific tissue macrophages by sequestering A20 to boost antifungal immunity. Nat. Commun., 2015, 6(1), 5779.
[http://dx.doi.org/10.1038/ncomms6779] [PMID: 25609235]
[19]
Lawrence, S.M.; Corriden, R.; Nizet, V. How neutrophils meet their end. Trends Immunol., 2020, 41(6), 531-544.
[http://dx.doi.org/10.1016/j.it.2020.03.008] [PMID: 32303452]
[20]
Leite Pereira, A.; Bitoun, S.; Paoletti, A.; Nocturne, G.; Marcos Lopez, E.; Cosma, A.; Le Grand, R.; Mariette, X.; Tchitchek, N. Characterization of phenotypes and functional activities of leukocytes from rheumatoid arthritis patients by mass cytometry. Front. Immunol., 2019, 10, 2384.
[http://dx.doi.org/10.3389/fimmu.2019.02384] [PMID: 31681279]
[21]
Li, W.; Deng, C.; Yang, H.; Lu, X.; Li, S.; Liu, X.; Chen, F.; Chen, L.; Shu, X.; Zhang, L.; Liu, Q.; Wang, G.; Peng, Q. Expansion of circulating peripheral TIGIT+CD226+ CD4 T cells with enhanced effector functions in dermatomyositis. Arthritis Res. Ther., 2021, 23(1), 15.
[http://dx.doi.org/10.1186/s13075-020-02397-4] [PMID: 33413573]
[22]
O’Flanagan, C.H.; Campbell, K.R.; Zhang, A.W.; Kabeer, F.; Lim, J.L.P.; Biele, J.; Eirew, P.; Lai, D.; McPherson, A.; Kong, E.; Bates, C.; Borkowski, K.; Wiens, M.; Hewitson, B.; Hopkins, J.; Pham, J.; Ceglia, N.; Moore, R.; Mungall, A.J.; McAlpine, J.N.; Shah, S.P.; Aparicio, S.; Aparicio, S. Dissociation of solid tumor tissues with cold active protease for single-cell RNA-seq minimizes conserved collagenase-associated stress responses. Genome Biol., 2019, 20(1), 210.
[http://dx.doi.org/10.1186/s13059-019-1830-0] [PMID: 31623682]
[23]
Abdalla, A.; Murali, C.; Amin, A. Safranal inhibits angiogenesis via targeting HIF-1α/VEGF machinery: In vitro and ex vivo insights. Front. Oncol., 2022, 11, 789172.
[http://dx.doi.org/10.3389/fonc.2021.789172] [PMID: 35211395]
[24]
Al Shamsi, M.S.; Amin, A.; Adeghate, E. Beneficial effect of vitamin E on the metabolic parameters of diabetic rats. Mol. Cell. Biochem., 2004, 261(1), 35-42.
[http://dx.doi.org/10.1023/B:MCBI.0000028735.79172.9b] [PMID: 15362483]
[25]
Hamza, A.A.; Heeba, G.H.; Hamza, S.; Abdalla, A.; Amin, A. Standardized extract of ginger ameliorates liver cancer by reducing proliferation and inducing apoptosis through inhibition oxidative stress/ inflammation pathway. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2021, 134(2021), 111102.
[26]
Lubec, G.; Förster, O.; Coradello, H.; Maxa, E.; Pollak, A. Proteolytic degradation of the glomerular basement membrane and immunochemical characterization of split products. Ren. Physiol., 1980, 3(1-6), 126-132.
[PMID: 7034090]
[27]
Kaiser, O.; Aliuos, P.; Wissel, K.; Lenarz, T.; Werner, D.; Reuter, G.; Kral, A.; Warnecke, A. Dissociated neurons and glial cells derived from rat inferior colliculi after digestion with papain. PLoS One, 2013, 8(12), e80490.
[http://dx.doi.org/10.1371/journal.pone.0080490] [PMID: 24349001]
[28]
Stone, G.P.; Lin, K.S.; Haselton, F.R. Adaptive virus detection using filament-coupled antibodies. J. Biomed. Opt., 2006, 11(3), 034012.
[http://dx.doi.org/10.1117/1.2209907] [PMID: 16822062]
[29]
Quante, M.; Tu, S.P.; Tomita, H.; Gonda, T.; Wang, S.S.W.; Takashi, S.; Baik, G.H.; Shibata, W.; DiPrete, B.; Betz, K.S.; Friedman, R.; Varro, A.; Tycko, B.; Wang, T.C. Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell, 2011, 19(2), 257-272.
[http://dx.doi.org/10.1016/j.ccr.2011.01.020] [PMID: 21316604]
[30]
Fujiyama, S.; Nakahashi-Oda, C.; Abe, F.; Wang, Y.; Sato, K.; Shibuya, A. Identification and isolation of splenic tissue-resident macrophage sub-populations by flow cytometry. Int. Immunol., 2019, 31(1), 51-56.
[http://dx.doi.org/10.1093/intimm/dxy064] [PMID: 30256964]
[31]
Chan, J.Y.; Lim, J.Q.; Yeong, J.; Ravi, V.; Guan, P.; Boot, A.; Tay, T.K.Y.; Selvarajan, S.; Md Nasir, N.D.; Loh, J.H.; Ong, C.K.; Huang, D.; Tan, J.; Li, Z.; Ng, C.C.Y.; Tan, T.T.; Masuzawa, M.; Sung, K.W.K.; Farid, M.; Quek, R.H.H.; Tan, N.C.; Teo, M.C.C.; Rozen, S.G.; Tan, P.; Futreal, A.; Teh, B.T.; Soo, K.C. Multiomic analysis and immunoprofiling reveal distinct subtypes of human angiosarcoma. J. Clin. Invest., 2020, 130(11), 5833-5846.
[http://dx.doi.org/10.1172/JCI139080] [PMID: 33016928]
[32]
Kubick, N.; Henckell Flournoy, P.C.; Klimovich, P.; Manda, G.; Mickael, M.E. What has single‐cell RNA sequencing revealed about microglial neuroimmunology? Immun. Inflamm. Dis., 2020, 8(4), 825-839.
[http://dx.doi.org/10.1002/iid3.362] [PMID: 33085226]
[33]
Hassani, M.; Leijte, G.; Bruse, N.; Kox, M.; Pickkers, P.; Vrisekoop, N.; Koenderman, L. Differentiation and activation of eosinophils in the human bone marrow during experimental human endotoxemia. J. Leukoc. Biol., 2020, 108(5), 1665-1671.
[http://dx.doi.org/10.1002/JLB.1AB1219-493R] [PMID: 31922294]
[34]
Jensen, H.K.; Donskov, F.; Marcussen, N.; Nordsmark, M.; Lundbeck, F.; von der Maase, H. Presence of intratumoral neutrophils is an independent prognostic factor in localized renal cell carcinoma. J. Clin. Oncol., 2009, 27(28), 4709-4717.
[http://dx.doi.org/10.1200/JCO.2008.18.9498] [PMID: 19720929]
[35]
Koh, V.; Chakrabarti, J.; Torvund, M.; Steele, N.; Hawkins, J.A.; Ito, Y.; Wang, J.; Helmrath, M.A.; Merchant, J.L.; Ahmed, S.A.; Shabbir, A.; Yan So, J.B.; Yong, W.P.; Zavros, Y. Hedgehog transcriptional effector GLI mediates mTOR-Induced PD-L1 expression in gastric cancer organoids. Cancer Lett., 2021, 518, 59-71.
[http://dx.doi.org/10.1016/j.canlet.2021.06.007] [PMID: 34126195]
[36]
Hamada, S.; Miyamoto, J.; Oshiro, T.; Yagi, T.; Kiyuna, S.; Uehara, T.; Matsuda, T.; Higa, T.; Hyakuna, N.; Nakanishi, K. Possible involvement of IL-6-producing tissue-resident macrophages in early-onset pericardial effusion pathogenesis after hematopoietic stem cell transplantation. Pediatr. Blood Cancer, 2018, 65(6), e26982.
[http://dx.doi.org/10.1002/pbc.26982] [PMID: 29384263]
[37]
Perez, C.; Botta, C.; Zabaleta, A.; Puig, N.; Cedena, M.T.; Goicoechea, I.; Alameda, D.; San José-Eneriz, E.; Merino, J.; Rodríguez-Otero, P.; Maia, C.; Alignani, D.; Maiso, P.; Manrique, I.; Lara-Astiaso, D.; Vilas-Zornoza, A.; Sarvide, S.; Riillo, C.; Rossi, M.; Rosiñol, L.; Oriol, A.; Blanchard, M.J.; Rios, R.; Sureda, A.; Martin, J.; Martinez, R.; Bargay, J.; de la Rubia, J.; Hernandez, M.T.; Martinez-Lopez, J.; Orfao, A.; Agirre, X.; Prosper, F.; Mateos, M.V.; Lahuerta, J.J.; Blade, J.; San-Miguel, J.F.; Paiva, B. Immunogenomic identification and characterization of granulocytic myeloid-derived suppressor cells in multiple myeloma. Blood, 2020, 136(2), 199-209.
[http://dx.doi.org/10.1182/blood.2019004537] [PMID: 32325491]
[38]
Alhussien, M.N.; Panda, B.S.K.; Kamboj, A.; Dang, A.K. Peripartum changes in the activity and expression of neutrophils may predispose to the postpartum occurrence of metritis in dairy cows. Res. Vet. Sci., 2021, 135, 456-468.
[http://dx.doi.org/10.1016/j.rvsc.2020.11.003] [PMID: 33229058]
[39]
Ko, J.S.; Jeong, D.; Koh, J.; Jung, H.; Jung, K.C.; Jeon, Y.K.; Kim, H.Y.; Yi, E.C.; Lee, H.; Lee, C.W.; Chung, D.H. Ssu72 phosphatase directly binds to ZAP-70, thereby providing fine-tuning of TCR signaling and preventing spontaneous inflammation Proceedings of the National Academy of Sciences of the United States of America, 1182021,
[http://dx.doi.org/10.1073/pnas.2102374118]
[40]
Perez-Lucendo, I.; Gomez Torrijos, E.; Donado, P.; Melero, R.; Feo-Brito, F.; Urra, J.M. Low expression of ICAM-1 in blood eosinophils in patients with active eosinophilic esophagitis. J. Investig. Allergol. Clin. Immunol., 2021, 31(4), 316-321.
[http://dx.doi.org/10.18176/jiaci.0489] [PMID: 31983676]
[41]
Dellon, E.S.; Peterson, K.A.; Murray, J.A.; Falk, G.W.; Gonsalves, N.; Chehade, M.; Genta, R.M.; Leung, J.; Khoury, P.; Klion, A.D.; Hazan, S.; Vaezi, M.; Bledsoe, A.C.; Durrani, S.R.; Wang, C.; Shaw, C.; Chang, A.T.; Singh, B.; Kamboj, A.P.; Rasmussen, H.S.; Rothenberg, M.E.; Hirano, I. Anti–Siglec-8 antibody for eosinophilic gastritis and duodenitis. N. Engl. J. Med., 2020, 383(17), 1624-1634.
[http://dx.doi.org/10.1056/NEJMoa2012047] [PMID: 33085861]
[42]
Holgate, S.T. New strategies with anti-IgE in allergic diseases. World Allergy Organ. J., 2014, 7(1), 17.
[http://dx.doi.org/10.1186/1939-4551-7-17] [PMID: 25097719]
[43]
Konczalla, L.; Ghadban, T.; Effenberger, K.E.; Wöstemeier, A.; Riethdorf, S.; Uzunoglu, F.G.; Izbicki, J.R.; Pantel, K.; Bockhorn, M.; Reeh, M. Prospective comparison of the prognostic relevance of circulating tumor cells in blood and disseminated tumor cells in bone marrow of a single patient’s cohort with esophageal cancer. Ann. Surg., 2021, 273(2), 299-305.
[http://dx.doi.org/10.1097/SLA.0000000000003406] [PMID: 31188197]
[44]
Xie, R.; Kessler, T.; Grosch, J.; Hai, L.; Venkataramani, V.; Huang, L.; Hoffmann, D.C.; Solecki, G.; Ratliff, M.; Schlesner, M.; Wick, W.; Winkler, F. Tumor cell network integration in glioma represents a stemness feature. Neuro-oncol., 2020.
[PMID: 33320195]
[45]
Roth, H.; Samereier, M.; Begandt, D.; Pick, R.; Salvermoser, M.; Brechtefeld, D.; Schleicher, M.; Walzog, B.; Müller-Taubenberger, A. Filamin A promotes efficient migration and phagocytosis of neutrophil-like HL-60 cells. Eur. J. Cell Biol., 2017, 96(6), 553-566.
[http://dx.doi.org/10.1016/j.ejcb.2017.05.004] [PMID: 28595776]
[46]
Yago, T.; Liu, Z.; Ahamed, J.; McEver, R.P. Cooperative PSGL-1 and CXCR2 signaling in neutrophils promotes deep vein thrombosis in mice. Blood, 2018, 132(13), 1426-1437.
[http://dx.doi.org/10.1182/blood-2018-05-850859] [PMID: 30068506]
[47]
Matkawala, F.; Nighojkar, S.; Kumar, A.; Nighojkar, A. Microbial alkaline serine proteases: Production, properties and applications. World J. Microbiol. Biotechnol., 2021, 37(4), 63.
[http://dx.doi.org/10.1007/s11274-021-03036-z] [PMID: 33730214]
[48]
Razzaq, A.; Shamsi, S.; Ali, A.; Ali, Q.; Sajjad, M.; Malik, A.; Ashraf, M. Microbial proteases applications. Front. Bioeng. Biotechnol., 2019, 7, 110.
[http://dx.doi.org/10.3389/fbioe.2019.00110] [PMID: 31263696]
[49]
Ktari, N.; Khaled, H.B.; Younes, I.; Bkhairia, I.; Mhamdi, S.; Hamza, I.; Nasri, M. Zebra blenny (Salaria basilisca) viscera as a source of solvent-stable proteases: characteristics, potential application in the deproteinization of shrimp wastes and evaluation in liquid laundry commercial detergents. J. Food Sci. Technol., 2014, 51(11), 3094-3103.
[http://dx.doi.org/10.1007/s13197-012-0817-6] [PMID: 26396301]
[50]
Zubčić, Ž.; Mendeš, T.; Včeva, A.; Mihalj, H.; Bogović, V.; Milanković, S.G. Presence of pepsin in laryngeal tissue and saliva in benign and malignant neoplasms. Biosci. Rep., 2020, 40(11), BSR20200216.
[http://dx.doi.org/10.1042/BSR20200216] [PMID: 33103719]
[51]
Hu, R.; Chen, G.; Li, Y. Production and characterization of antioxidative hydrolysates and peptides from corn gluten meal using papain, ficin, and bromelain. Molecules, 2020, 25(18), 4091.
[http://dx.doi.org/10.3390/molecules25184091] [PMID: 32906778]
[52]
Bhushan, S.; Theas, M.S.; Guazzone, V.A.; Jacobo, P.; Wang, M.; Fijak, M.; Meinhardt, A.; Lustig, L. Immune cell subtypes and their function in the testis. Front. Immunol., 2020, 11, 583304.
[http://dx.doi.org/10.3389/fimmu.2020.583304] [PMID: 33101311]
[53]
McMenamin, P.G.; Saban, D.R.; Dando, S.J. Immune cells in the retina and choroid: Two different tissue environments that require different defenses and surveillance. Prog. Retin. Eye Res., 2019, 70, 85-98.
[http://dx.doi.org/10.1016/j.preteyeres.2018.12.002] [PMID: 30552975]
[54]
Sweeney, M.D.; Sagare, A.P.; Zlokovic, B.V. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol., 2018, 14(3), 133-150.
[http://dx.doi.org/10.1038/nrneurol.2017.188] [PMID: 29377008]
[55]
Gao, Y.; Zhang, H.; Zhou, N.; Xu, P.; Wang, J.; Gao, Y.; Jin, X.; Liang, X.; Lv, J.; Zhang, Y.; Tang, K.; Ma, J.; Zhang, H.; Xie, J.; Yao, F.; Tong, W.; Liu, Y.; Wang, X.; Huang, B. Methotrexate-loaded tumour-cell-derived microvesicles can relieve biliary obstruction in patients with extrahepatic cholangiocarcinoma. Nat. Biomed. Eng., 2020, 4(7), 743-753.
[http://dx.doi.org/10.1038/s41551-020-0583-0] [PMID: 32632227]