Computational Studies of Allylpyrocatechol from Piper betle L. as Inhibitor Against Superoxide Dismutase, Catalase, and Glutathione peroxidase as Antioxidant Enzyme

Page: [559 - 567] Pages: 9

  • * (Excluding Mailing and Handling)

Abstract

Background: The most significant antioxidant enzymes are glutathione peroxidase (GSHPx), catalase (CAT), and superoxide dismutase (SOD) have a significant role in the scavenging of free radicals, but overexpressing of these enzymes can have deleterious effects. Therefore, compounds outside the body must suppress this enzyme's growth rate. Several previous studies have stated that Piper betle L. has high antioxidants and inhibits enzyme activity, including allypyrocatechol.

Objectives: The current study aimed to evaluate the molecular mechanism of allylpyrocatecachol with SOD, CAT, and GSHPx and determine the lead compounds' potential against some antioxidant enzymes by an in silico approach.

Methods: Allylpyrocatechol was docked to SOD, CAT, and GSHPx enzyme using Autodock4 tools. An evaluation of receptor-ligand interactions was conducted based on comparing binding affinity, the accuracy of involved amino acid residues, and gallic acid as a positive control ligand.

Results: By in silico analysis showed that the binding affinity between the ligand and the three receptors were -4.3, -6.8, and -4.5 kcal/mol for the SOD, CAT, and GHSPx receptors, respectively.

Conclusion: This finding indicates that Allylpyrocatechol has a promising candidate as a compound to inhibit antioxidant enzyme activity. It can be seen from the accuracy of the amino acids residue involved and the value of the binding affinity compared to the positive control ligand.

Graphical Abstract

[1]
Uddin, M.F.; Uddin, S.A.; Hossain, M.D.; Manchur, M.A. Antioxidant, cytotoxic and phytochemical properties of the ethanol extract of Piper betle Leaf. Int. J. Pharm. Sci. Res., 2015, 6(10), 4252-4258.
[2]
Nimse, S.B.; Pal, D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Advances, 2015, 5(35), 27986-28006.
[http://dx.doi.org/10.1039/C4RA13315C]
[3]
Firuzi, O.; Miri, R.; Tavakkoli, M.; Saso, L. Antioxidant therapy: Current status and future prospects. Curr. Med. Chem., 2011, 18(25), 3871-3888.
[http://dx.doi.org/10.2174/092986711803414368] [PMID: 21824100]
[4]
Wresdiyati, T.; Hartanta, A.B.; Astawan, M. The effect of seaweed Eucheuma cottonii on Superoxide Dismutase (SOD) liver of hypercholesterolemic rats. Hayati J. Biosci., 2008, 15(3), 105-110.
[http://dx.doi.org/10.4308/hjb.15.3.105]
[5]
Rossa, M.M.; de Oliveira, M.C.; Okamoto, O.K.; Lopes, P.F.; Colepicolo, P. Effect of visible light on Superoxide dismutase (SOD) activity in the red alga Gracilariopsis tenuifrons (Gracilariales, Rhodophyta). J. Appl. Phycol., 2002, 14(3), 151-157.
[http://dx.doi.org/10.1023/A:1019985722808]
[6]
El-Bahr, S.M. Biochemistry of free radicals and oxidative stress. Sci. Int. (Lahore), 2013, 1(5), 111-117.
[http://dx.doi.org/10.5567/sciintl.2013.111.117]
[7]
Poprac, P.; Jomova, K.; Simunkova, M.; Kollar, V.; Rhodes, C.J.; Valko, M. Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol. Sci., 2017, 38(7), 592-607.
[http://dx.doi.org/10.1016/j.tips.2017.04.005] [PMID: 28551354]
[8]
Moradi, H.; Vaziri, N.D. Molecular mechanisms of disorders of lipid metabolism in chronic kidney disease. Front. Bioscience-Landmark (FBL), 2021, 26(5), 146-161.
[9]
Hatai, B.; Banerjee, S.K. Molecular docking interaction between Superoxide dismutase (Receptor) and Phytochemicals (Ligand) From Heliotropium indicum linn for detection of potential phytoconstituents: New drug design for releasing oxidative stress condition/inflammation of osteoar. J. Pharmacogn. Phytochem., 2019, 8(2), 1700-1706. [Internet].
[10]
Zámocký, M.; Koller, F. Understanding the structure and function of catalases: Clues from molecular evolution and in vitro mutagenesis. Prog. Biophys. Mol. Biol., 1999, 72(1), 19-66.
[http://dx.doi.org/10.1016/S0079-6107(98)00058-3] [PMID: 10446501]
[11]
Lei, X.G.; Cheng, W.H.; McClung, J.P. Metabolic regulation and function of glutathione peroxidase-1. Annu. Rev. Nutr., 2007, 27(1), 41-61.
[http://dx.doi.org/10.1146/annurev.nutr.27.061406.093716] [PMID: 17465855]
[12]
Hamid, A.A.; Aiyelaagbe, O.O.; Usman, L.A.; Ameen, O.M.; Lawal, A. Antioxidants: Its medicinal and pharmacological applications. African J Pure Appl Chem., 2010, 4(8), 142-151.
[13]
Kowald, A.; Lehrach, H.; Klipp, E. Alternative pathways as mechanism for the negative effects associated with overexpression of superoxide dismutase. J. Theor. Biol., 2006, 238(4), 828-840.
[http://dx.doi.org/10.1016/j.jtbi.2005.06.034] [PMID: 16085106]
[14]
Groner, Y.; Elroy-Stein, O.; Bernstein, Y.; Dafni, N.; Levanon, D.; Danciger, E.; Neer, A. Molecular genetics of Down’s syndrome: Overexpression of transfected human Cu/Zn-superoxide dismutase gene and the consequent physiological changes. Cold Spring Harb. Symp. Quant. Biol., 1986, 51(0), 381-393.
[http://dx.doi.org/10.1101/SQB.1986.051.01.046] [PMID: 2953545]
[15]
Brooksbank, B.W.L.; Balazs, R. Superoxide dismutase, glutathione peroxidase and lipoperoxidation in Oown’s syndrome fetal brain. Brain Res. Dev. Brain Res., 1984, 16(1), 37-44.
[http://dx.doi.org/10.1016/0165-3806(84)90060-9] [PMID: 6237715]
[16]
Keller, J.N.; Kindy, M.S.; Holtsberg, F.W.; St Clair, D.K.; Yen, H.C.; Germeyer, A.; Steiner, S.M.; Bruce-Keller, A.J.; Hutchins, J.B.; Mattson, M.P. Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: Suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J. Neurosci., 1998, 18(2), 687-697.
[http://dx.doi.org/10.1523/JNEUROSCI.18-02-00687.1998] [PMID: 9425011]
[17]
Bloch, C.A.; Ausubel, F.M. Paraquat-mediated selection for mutations in the manganese-superoxide dismutase gene sodA. J. Bacteriol., 1986, 168(2), 795-798.
[http://dx.doi.org/10.1128/jb.168.2.795-798.1986] [PMID: 3023287]
[18]
Suresh, A.; Guedez, L.; Moreb, J.; Zucali, J. Overexpression of manganese superoxide dismutase promotes survival in cell lines after doxorubicin treatment. Br. J. Haematol., 2003, 120(3), 457-463.
[http://dx.doi.org/10.1046/j.1365-2141.2003.04074.x] [PMID: 12580960]
[19]
Ahmadi-Motamayel, F.; Goodarzi, M.T.; Mahdavinezhad, A.; Jamshidi, Z.; Darvishi, M. Salivary and serum antioxidant and oxidative stress markers in dental caries. Caries Res., 2018, 52(6), 565-569.
[http://dx.doi.org/10.1159/000488213] [PMID: 29698949]
[20]
Nicoletti, M. Nutraceuticals and botanicals: Overview and perspectives. Int. J. Food Sci. Nutr., 2012, 63(sup1)(Suppl. 1), 2-6.
[http://dx.doi.org/10.3109/09637486.2011.628012] [PMID: 22360273]
[21]
Calland, N.; Dubuisson, J.; Rouillé, Y.; Séron, K.; Hepatitis, C. Hepatitis C virus and natural compounds: A new antiviral approach? Viruses, 2012, 4(10), 2197-2217.
[http://dx.doi.org/10.3390/v4102197] [PMID: 23202460]
[22]
Estevam, E.C.; Griffin, S.; Nasim, M.J. Zieliński, D.; Aszyk, J.; Osowicka, M.; Dawidowska, N.; Idroes, R.; Bartoszek, A.; Jacob, C. Inspired by nature: The use of plant-derived substrate/enzyme combinations to generate antimicrobial activity in situ. Nat. Prod. Commun., 2015, 10(10), 1934578X1501001.
[http://dx.doi.org/10.1177/1934578X1501001025] [PMID: 26669114]
[23]
Hu, Q.F.; Zhou, B.; Huang, J.M.; Gao, X.M.; Shu, L.D.; Yang, G.Y.; Che, C.T. Antiviral phenolic compounds from Arundina gramnifolia. J. Nat. Prod., 2013, 76(2), 292-296.
[http://dx.doi.org/10.1021/np300727f] [PMID: 23368966]
[24]
Nuraskin, C.A. Marlina; Idroes, R.; Soraya, C.; Djufri, Activities inhibition methanol extract laban leaf (Vitex pinnata) on growth of bacteria S. mutans Atcc 31987. In: 8th Annual International Conference (AIC) 2018 on Science and Engineering 12–14 September 2018; Aceh, Indonesia , 2019; p. 523.
[25]
Thomford, N.; Senthebane, D.; Rowe, A.; Munro, D.; Seele, P.; Maroyi, A.; Dzobo, K. Natural products for drug discovery in the 21st century: Innovations for novel drug discovery. Int. J. Mol. Sci., 2018, 19(6), 1578.
[http://dx.doi.org/10.3390/ijms19061578] [PMID: 29799486]
[26]
Alam, B.; Akter, F.; Parvin, N.; Sharmin Pia, R.; Akter, S.; Chowdhury, J. Sifath-E-Jahan, K.; Haque, E. Antioxidant, analgesic and anti-inflammatory activities of the methanolic extract of Piper betle leaves. Avicenna J. Phytomed., 2013, 3(2), 112-125.
[PMID: 25050265]
[27]
Arawwawala, L.D.A.M.; Arambewela, L.S.R.; Ratnasooriya, W.D. Gastroprotective effect of Piper betle Linn. leaves grown in Sri Lanka. J. Ayurveda Integr. Med., 2014, 5(1), 38-42.
[http://dx.doi.org/10.4103/0975-9476.128855] [PMID: 24812474]
[28]
Abrahim, N.N.; Kanthimathi, M.S.; Abdul-Aziz, A. Piper betle shows antioxidant activities, inhibits MCF-7 cell proliferation and increases activities of catalase and superoxide dismutase. BMC Complement. Altern. Med., 2012, 12(1), 220.
[http://dx.doi.org/10.1186/1472-6882-12-220] [PMID: 23153283]
[29]
Ariyani, F.; Amin, I.; Fardiaz, D. Ekstrak air daun sirih (Piper betle linn) sebagai antioksidan alami pada pengolahan ikan patin (pangasius hypophthalmus) asin kering. JPB Kelaut dan Perikan, 2015, 10(1), 45-49.
[30]
Mar Tin, S. Pharmacognostic study on the leaf of Piper betle L. Univ Res J., 2011, 4(1), 1-19.
[31]
Lammi, C.; Arnoldi, A. Food‐derived antioxidants and COVID‐19. J. Food Biochem., 2021, 45(1), e13557.
[http://dx.doi.org/10.1111/jfbc.13557] [PMID: 33171544]
[32]
Dayrit, F.M.; Guidote, A.M.; Gloriani, N.G.; De Paz-Silava, S.L.M.; Villaseñor, I.M.; Macahig, R.A.S. Philippine medicinal plants with potential immunomodulatory and anti-SARS-CoV-2 activities. Philipp. J. Sci., 2021, 150(5), 999-1015.
[33]
Kursia, S.; Lebang, J.S.; Taebe, B.; Burhan, A.; Rahim, W.O. Uji aktivitas antibakteri ekstrak etilasetat daun sirih hijau (Piper betle L.) Terhadap bakteri Staphylococcus epidermidis. Ind. J. Pharm. Sci. Technol., 2016, 3(2), 72-77.
[34]
Prakash, B.; Shukla, R.; Singh, P.; Kumar, A.; Mishra, P.K.; Dubey, N.K. Efficacy of chemically characterized Piper betle L. essential oil against fungal and aflatoxin contamination of some edible commodities and its antioxidant activity. Int. J. Food Microbiol., 2010, 142(1-2), 114-119.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2010.06.011] [PMID: 20621374]
[35]
Mathur, S.; Hoskins, C. Drug development: Lessons from nature. Biomed. Rep., 2017, 6(6), 612-614.
[http://dx.doi.org/10.3892/br.2017.909] [PMID: 28584631]
[36]
Karak, P. Biological activities of flavonoids: An overview. Int. J. Pharm. Sci. Res., 2019, 10(4), 1567-1574.
[http://dx.doi.org/10.13040/IJPSR.0975-8232.10]
[37]
Vicente, O.; Boscaiu, M. Flavonoids: Antioxidant compounds for plant defence... and for a healthy human diet. Not. Bot. Horti Agrobot. Cluj-Napoca, 2018, 46(1), 14-21.
[http://dx.doi.org/10.15835/nbha46110992]
[38]
Jain, C.; Khatana, S.; Vijayvergia, R. Bioactivity of secondary metabolites of various plants: A review. Int. J. Pharm. Sci. Res., 2019, 10(2), 494-504.
[39]
Eltamany, E.E.; Elhady, S.S.; Goda, M.S.; Aly, O.M.; Habib, E.S.; Ibrahim, A.K.; Hassanean, H.A.; Abdelmohsen, U.R.; Safo, M.K.; Ahmed, S.A. Chemical composition of the red sea green algae Ulva lactuca: Isolation and in silico studies of new anti-covid-19 ceramides. Metabolites, 2021, 11(12), 816.
[http://dx.doi.org/10.3390/metabo11120816] [PMID: 34940574]
[40]
Chaudhary, K.K.; Mishra, N. A review on molecular docking: Novel tool for drug discovery. JSM Chem., 2016, 4(3), 1029.
[41]
Agarwal, S.; Mehrotra, R. An overview of molecular simulation. JSM Chem., 2016, 4(2), 1024-1028.
[42]
Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; Chen, H.D.; Chen, J.; Luo, Y.; Guo, H.; Jiang, R.D.; Liu, M.Q.; Chen, Y.; Shen, X.R.; Wang, X.; Zheng, X.S.; Zhao, K.; Chen, Q.J.; Deng, F.; Liu, L.L.; Yan, B.; Zhan, F.X.; Wang, Y.Y.; Xiao, G.F.; Shi, Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 2020, 579(7798), 270-273.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[43]
Ferreira, L.; dos Santos, R.; Oliva, G.; Andricopulo, A. Molecular docking and structure-based drug design strategies. Molecules, 2015, 20(7), 13384-13421.
[http://dx.doi.org/10.3390/molecules200713384] [PMID: 26205061]
[44]
Mihăşan, M. What in silico molecular docking can do for the ‘bench-working biologists’. J. Biosci., 2012, 37(S1), 1089-1095.
[http://dx.doi.org/10.1007/s12038-012-9273-8] [PMID: 23151798]
[45]
Zhang, L.; Lin, D.; Sun, X.; Curth, U.; Drosten, C.; Sauerhering, L. Crystal structure of sars-cov-2 main protease provides a basis for design of improved A-ketoamide inhibitors. Science (80- ), 2020, 368(6489)
[46]
Salmaso, V.; Moro, S. Bridging molecular docking to molecular dynamics in exploring ligand-protein recognition process: An overview. Front. Pharmacol., 2018, 9, 923.
[http://dx.doi.org/10.3389/fphar.2018.00923] [PMID: 30186166]
[47]
Verma, R.; Mitchell-Koch, K. In silico studies of small molecule interactions with enzymes reveal aspects of catalytic function. Catalysts, 2017, 7(7), 212.
[http://dx.doi.org/10.3390/catal7070212] [PMID: 30464857]
[48]
Ma, D.L.; Chan, D.S.H.; Leung, C.H. Molecular docking for virtual screening of natural product databases. Chem. Sci. (Camb.), 2011, 2(9), 1656-1665.
[http://dx.doi.org/10.1039/C1SC00152C]
[49]
Pagadala, N.S.; Syed, K.; Tuszynski, J. Software for molecular docking: A review. Biophys. Rev., 2017, 9(2), 91-102.
[http://dx.doi.org/10.1007/s12551-016-0247-1] [PMID: 28510083]
[50]
Kazmi, S.R.; Jun, R.; Yu, M.S.; Jung, C.; Na, D. in silico approaches and tools for the prediction of drug metabolism and fate: A review. Comput. Biol. Med., 2019, 106, 54-64.
[http://dx.doi.org/10.1016/j.compbiomed.2019.01.008] [PMID: 30682640]
[51]
Kurnia, D.; Hutabarat, G.S.; Windaryanti, D.; Herlina, T.; Herdiyati, Y.; Satari, M.H. Potential allylpyrocatechol derivatives as antibacterial agent against oral pathogen of S. sanguinis ATCC 10,556 and as inhibitor of mura enzymes: In vitro and in silico study. Drug Des. Devel. Ther., 2020, 14, 2977-2985.
[http://dx.doi.org/10.2147/DDDT.S255269] [PMID: 32801638]
[52]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform., 2011, 3(1), 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[53]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[54]
Tallei, T.E.; Tumilaar, S.G.; Niode, N.J.; Fatimawali, F.; Kepel, B.J.; Idroes, R.; Effendi, Y.; Sakib, S.A.; Emran, T.B. Potential of plant bioactive compounds as sars-cov-2 main protease (Mpro) and Spike (S) glycoprotein inhibitors: A molecular docking study. Scientifica (Cairo), 2020, 2020, 1-18.
[http://dx.doi.org/10.1155/2020/6307457] [PMID: 33425427]
[55]
Tian, W.; Chen, C.; Lei, X.; Zhao, J.; Liang, J. CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Res., 2018, 46(W1), W363-W367.
[http://dx.doi.org/10.1093/nar/gky473] [PMID: 29860391]
[56]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[57]
Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res., 2018, 46(W1), W257-W263.
[http://dx.doi.org/10.1093/nar/gky318] [PMID: 29718510]
[58]
Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. PkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem., 2015, 58(9), 4066-4072.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00104] [PMID: 25860834]
[59]
Yung-Chi, C.; Prusoff, W.H. Relationship between the inhibition constant (KI) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem. Pharmacol., 1973, 22(23), 3099-3108.
[http://dx.doi.org/10.1016/0006-2952(73)90196-2] [PMID: 4202581]
[60]
Talevi, A. Computer-aided drug design: An overview. Methods Mol. Biol., 2018, 1762, 1-19.
[http://dx.doi.org/10.1007/978-1-4939-7756-7_1] [PMID: 29594764]
[61]
Brogi, S. Computational approaches for drug discovery. Molecules, 2019, 24(17), 3061.
[http://dx.doi.org/10.3390/molecules24173061] [PMID: 31443558]
[62]
Hung, C.L.; Chen, C.C. Computational approaches for drug discovery. Drug Dev. Res., 2014, 75(6), 412-418.
[http://dx.doi.org/10.1002/ddr.21222] [PMID: 25195585]
[63]
Gao, J.; Hu, J.; Hu, D.; Yang, X. A role of gallic acid in oxidative damage diseases: A comprehensive review. Nat. Prod. Commun., 2019, 14(8), 1934578X1987417.
[http://dx.doi.org/10.1177/1934578X19874174]
[64]
Padma, V.V.; Poornima, P.; Prakash, C.; Bhavani, R. Oral treatment with gallic acid and quercetin alleviates lindane-induced cardiotoxicity in rats. Can. J. Physiol. Pharmacol., 2013, 91(2), 134-140.
[http://dx.doi.org/10.1139/cjpp-2012-0279] [PMID: 23458197]
[65]
Abdullah, N.F.; Mohamad Hussain, R. Isolation of allylpyrocatechol from Piper betle L. Leaves by using high-performance liquid chromatography. J. Liq. Chromatogr. Relat. Technol., 2015, 38(2), 289-293.
[http://dx.doi.org/10.1080/10826076.2014.908782]
[66]
Tripathi, A.; Bankaitis, V.A. Molecular docking: From lock and key to combination lock. J. Mol. Med. Clin. Appl., 2017, 2(1), 1-19.
[PMID: 29333532]
[67]
Evangelina, I.A.; Herdiyati, Y.; Laviana, A.; Rikmasari, R.; Zubaedah, C. Bio-mechanism inhibitory prediction of β-sitosterol from kemangi (Ocimum basilicum l.) as an inhibitor of mura enzyme of oral bacteria: In vitro and in silico study. Adv. Appl. Bioinforma. Chem., 2021, 14, 103-115.
[68]
Tumilaar, S.G.; Fatimawali, F.; Niode, N.J.; Effendi, Y.; Idroes, R.; Adam, A.A. The potential of leaf extract of Pangium edule reinw as HIV-1 protease inhibitor: A computational biology approach. J. Appl. Pharm. Sci., 2021, 11(01), 101-110.
[69]
Wu, M.Y.; Dai, D.Q.; Yan, H. PRL-dock: Protein-ligand docking based on hydrogen bond matching and probabilistic relaxation labeling. Proteins, 2012, 80(9), 2137-2153.
[http://dx.doi.org/10.1002/prot.24104] [PMID: 22544808]
[70]
Chella Perumal, P.; Sowmya, S.; Pratibha, P.; Vidya, B.; Anusooriya, P.; Starlin, T. Identification of novel PPARγ agonist from GC-MS analysis of ethanolic extract of Cayratia trifolia (l.): A computational molecular simulation studies. J. Appl. Pharm. Sci., 2014, 4(9), 6-11.
[71]
Yunta, M. Docking and ligand binding affinity: Uses and pitfalls. Am J Model Optim., 2016, 4, 74-114.
[72]
Rakib, A.; Paul, A.; Chy, M.N.U.; Sami, S.A.; Baral, S.K.; Majumder, M.; Tareq, A.M.; Amin, M.N.; Shahriar, A.; Uddin, M.Z.; Dutta, M.; Tallei, T.E.; Emran, T.B.; Simal-Gandara, J. Biochemical and computational approach of selected phytocompounds from Tinospora crispa in the management of COVID-19. Molecules, 2020, 25(17), 3936.
[http://dx.doi.org/10.3390/molecules25173936] [PMID: 32872217]
[73]
Shah, T.R.; Misra, A. Proteomics: Challenges. Delivery of Therapeutic Genomics and Proteomics, 1st ed; Elsevier: Amsterdam, Netherlands, 2011.
[http://dx.doi.org/10.1016/B978-0-12-384964-9.00008-6]
[74]
Patil, R.; Das, S.; Stanley, A.; Yadav, L.; Sudhakar, A.; Varma, A.K. Optimized hydrophobic interactions and hydrogen bonding at the target-ligand interface leads the pathways of drug-designing. PLoS One, 2010, 5(8), e12029.
[http://dx.doi.org/10.1371/journal.pone.0012029] [PMID: 20808434]
[75]
Głowacki, E.D.; Irimia-Vladu, M.; Bauer, S.; Sariciftci, N.S. Hydrogen-bonds in molecular solids – from biological systems to organic electronics. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(31), 3742-3753.
[http://dx.doi.org/10.1039/c3tb20193g] [PMID: 32261127]
[76]
Lins, L.; Brasseur, R. The hydrophobic effect in protein folding. FASEB J., 1995, 9(7), 535-540.
[http://dx.doi.org/10.1096/fasebj.9.7.7737462] [PMID: 7737462]
[77]
Zubair, M.S.; Maulana, S.; Mukaddas, A. Penambatan molekuler dan simulasi dinamika molekuler senyawa dari genus nigella terhadap penghambatan aktivitas enzim protease HIV-1. Galenika J Pharm, 2020, 6(1), 132-140.
[http://dx.doi.org/10.22487/j24428744.2020.v6.i1.14982]
[78]
Singh, T.; Biswas, D.; Jayaram, B. AADS--an automated active site identification, docking, and scoring protocol for protein targets based on physicochemical descriptors. J. Chem. Inf. Model., 2011, 51(10), 2515-2527.
[http://dx.doi.org/10.1021/ci200193z] [PMID: 21877713]
[79]
Prasanth, D.S.N.B.K.; Murahari, M.; Chandramohan, V.; Panda, S.P.; Atmakuri, L.R.; Guntupalli, C. in silico identification of potential inhibitors from cinnamon against main protease and spike glycoprotein of sars coV-2. J. Biomol. Struct. Dyn., 2020, 0(0), 1-15.
[http://dx.doi.org/10.1080/07391102.2020.1779129] [PMID: 32567989]
[80]
Shaji, D. Molecular docking studies of human MCT8 protein with soy isoflavones in Allan-Herndon-Dudley syndrome (AHDS). J. Pharm. Anal., 2018, 8(5), 318-323.
[http://dx.doi.org/10.1016/j.jpha.2018.07.001] [PMID: 30345146]
[81]
Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today. Technol., 2004, 1(4), 337-341.
[http://dx.doi.org/10.1016/j.ddtec.2004.11.007] [PMID: 24981612]
[82]
Singh, S.; Gupta, A.K.; Verma, A. Molecular properties and bioactivity score of the aloe vera antioxidant compounds - in order to lead fnding. Res. J. Pharm. Biol. Chem. Sci., 2013, 4(2), 876-881.
[83]
Guttman, Y.; Kerem, Z. Computer-Aided (in silico) Modeling of Cytochrome P450-Mediated Food–Drug Interactions (FDI). Int. J. Mol. Sci., 2022, 23(15), 8498.
[http://dx.doi.org/10.3390/ijms23158498] [PMID: 35955630]
[84]
Hwang, J.; Youn, K.; Ji, Y.; Lee, S.; Lim, G.; Lee, J.; Ho, C.T.; Leem, S.H.; Jun, M. Biological and computational studies for dual cholinesterases inhibitory effect of zerumbone. Nutrients, 2020, 12(5), 1215.
[http://dx.doi.org/10.3390/nu12051215] [PMID: 32344943]
[85]
El-Din, H.M.A.; Loutfy, S.A.; Fathy, N.; Elberry, M.H.; Mayla, A.M.; Kassem, S.; Naqvi, A. Molecular docking based screening of compounds against VP40 from Ebola virus. Bioinformation, 2016, 12(3), 192-196.
[http://dx.doi.org/10.6026/97320630012192] [PMID: 28149054]
[86]
Drwal, M.N.; Banerjee, P.; Dunkel, M.; Wettig, M.R.; Preissner, R. ProTox: A web server for the in silico prediction of rodent oral toxicity. Nucleic Acids Res., 2014, 42(W1), W53-W58.
[http://dx.doi.org/10.1093/nar/gku401] [PMID: 24838562]
[87]
Mahmud, S.; Mita, M.A.; Biswas, S.; Paul, G.K.; Promi, M.M.; Afrose, S.; Hasan, R.; Shimu, S.S.; Zaman, S.; Uddin, S.; Tallei, T.E.; Emran, T.B.; Saleh, A. Molecular docking and dynamics study to explore phytochemical ligand molecules against the main protease of SARS-CoV-2 from extensive phytochemical datasets. Expert Rev. Clin. Pharmacol., 2021, 14(10), 1305-1315.
[http://dx.doi.org/10.1080/17512433.2021.1959318] [PMID: 34301158]
[88]
Mousavi, S.S.; Karami, A.; Haghighi, T.M.; Tumilaar, S.G. Fatimawali; Idroes, R. in silico evaluation of Iranian medicinal plant phytoconstituents as inhibitors against main protease and the receptor-binding domain of sars-cov-2. Molecules, 2021, 26(5724), 1-23.