Combined Immunotherapy and Targeted Therapies for Cancer Treatment: Recent Advances and Future Perspectives

Page: [251 - 264] Pages: 14

  • * (Excluding Mailing and Handling)

Abstract

The previous year's worldview for cancer treatment has advanced from general to more precise therapeutic approaches. Chemotherapies were first distinguished as the most reliable and brief therapy with promising outcomes in cancer patients. However, patients could also suffer from severe toxicities resulting from chemotherapeutic drug usage. An improved comprehension of cancer pathogenesis has led to new treatment choices, including tumor-targeted therapy and immunotherapy. Subsequently, cancer immunotherapy and targeted therapy give more hope to patients since their combination has tremendous therapeutic efficacy. The immune system responses are also initiated and modulated by targeted therapies and cytotoxic agents, which create the principal basis that when targeted therapies are combined with immunotherapy, the clinical outcomes are of excellent efficacy, as presented in this review. This review focuses on how immunotherapy and targeted therapy are applicable in cancer management and treatment. Also, it depicts promising therapeutic results with more extensive immunotherapy applications with targeted therapy. Further elaborate that immune system responses are also initiated and modulated by targeted therapies and cytotoxic agents, which create the principal basis that this combination therapy with immunotherapy can be of great outcome clinically.

Graphical Abstract

[1]
Yu, L.; Lai, Q.; Gou, L.; Feng, J.; Yang, J. Opportunities and obstacles of targeted therapy and immunotherapy in small cell lung cancer. J. Drug Target., 2021, 29(1), 1-11.
[http://dx.doi.org/10.1080/1061186X.2020.1797050] [PMID: 32700566]
[2]
Myers, J.A.; Miller, J.S. Exploring the NK cell platform for cancer immunotherapy. Nat. Rev. Clin. Oncol., 2021, 18(2), 85-100.
[http://dx.doi.org/10.1038/s41571-020-0426-7] [PMID: 32934330]
[3]
Bedard, P.L.; Hyman, D.M.; Davids, M.S.; Siu, L.L. Small molecules, big impact: 20 years of targeted therapy in oncology. Lancet, 2020, 395(10229), 1078-1088.
[http://dx.doi.org/10.1016/S0140-6736(20)30164-1] [PMID: 32222192]
[4]
He, X.; Xu, C. Immune checkpoint signaling and cancer immunotherapy. Cell Res., 2020, 30(8), 660-669.
[http://dx.doi.org/10.1038/s41422-020-0343-4] [PMID: 32467592]
[5]
Kreple, C.J.; Schoch, K.M.; Miller, T.M. Is presymptomatic ALS perivascular? Nat. Med., 2021, 27(4), 585-586.
[http://dx.doi.org/10.1038/s41591-021-01311-y] [PMID: 33859434]
[6]
Qian, Y.; Gong, Y.; Fan, Z.; Luo, G.; Huang, Q.; Deng, S.; Cheng, H.; Jin, K.; Ni, Q.; Yu, X.; Liu, C. Molecular alterations and targeted therapy in pancreatic ductal adenocarcinoma. J. Hematol. Oncol., 2020, 13(1), 130.
[http://dx.doi.org/10.1186/s13045-020-00958-3] [PMID: 33008426]
[7]
Yu, C.; Liu, X.; Yang, J.; Zhang, M.; Jin, H.; Ma, X.; Shi, H. Combination of immunotherapy with targeted therapy: Theory and practice in metastatic melanoma. Front. Immunol., 2019, 10, 990.
[http://dx.doi.org/10.3389/fimmu.2019.00990] [PMID: 31134073]
[8]
Packer, R.J.; Kilburn, L. Molecular targeted therapy for childhood brain tumors: A moving target. J. Child Neurol., 2020, 35(12), 791-798.
[http://dx.doi.org/10.1177/0883073820931635] [PMID: 32552173]
[9]
Lev, S. Targeted therapy and drug resistance in triple-negative breast cancer: The EGFR axis. Biochem. Soc. Trans., 2020, 48(2), 657-665.
[http://dx.doi.org/10.1042/BST20191055] [PMID: 32311020]
[10]
Bader, J.E.; Voss, K.; Rathmell, J.C. Targeting metabolism to improve the tumor microenvironment for cancer immunotherapy. Mol. Cell, 2020, 78(6), 1019-1033.
[http://dx.doi.org/10.1016/j.molcel.2020.05.034] [PMID: 32559423]
[11]
Song, Y.; He, L.; Wang, Y.; Wu, Q.; Huang, W. Molecularly targeted therapy and immunotherapy for hormone receptor positive/human epidermal growth factor receptor 2 negative advanced breast cancer. Oncol. Rep., 2020, 44(1), 3-13.
[http://dx.doi.org/10.3892/or.2012.2082] [PMID: 32319666]
[12]
Andrieu, N.; Bendriss-Vermare, N. Immunotherapy and targeted therapies, a combination of the future in the fight against cancer - Module of immunology, virology and cancer of the Master of oncology of Lyon. Med. Sci. (Paris), 2018, 34(10), 872-875.
[http://dx.doi.org/10.1051/medsci/2018217] [PMID: 30451657]
[13]
Namikawa, K.; Yamazaki, N. Targeted therapy and immunotherapy for melanoma in Japan. Curr. Treat. Options Oncol., 2019, 20(1), 7.
[http://dx.doi.org/10.1007/s11864-019-0607-8] [PMID: 30675668]
[14]
Gotwals, P.; Cameron, S.; Cipolletta, D.; Cremasco, V.; Crystal, A.; Hewes, B.; Mueller, B.; Quaratino, S.; Sabatos-Peyton, C.; Petruzzelli, L.; Engelman, J.A.; Dranoff, G. Prospects for combining targeted and conventional cancer therapy with immunotherapy. Nat. Rev. Cancer, 2017, 17(5), 286-301.
[http://dx.doi.org/10.1038/nrc.2017.17] [PMID: 28338065]
[15]
Yang, W.; Zhang, Y.; Yang, G.; Geng, Y.; Chen, D.; Wang, J.; Ye, Y.; Wang, H.; Xia, D.; Hu, F.; Jiang, J.; Xu, X. Anti-PD-1 immunotherapy and bee venom for relapsed and refractory liposarcoma: A case report. Front. Oncol., 2021, 11, 668992.
[http://dx.doi.org/10.3389/fonc.2021.668992] [PMID: 33996596]
[16]
Belgioia, L.; Desideri, I.; Errico, A.; Franzese, C.; Daidone, A.; Marino, L.; Fiore, M.; Borghetti, P.; Greto, D.; Fiorentino, A. Safety and efficacy of combined radiotherapy, immunotherapy and targeted agents in elderly patients: A literature review. Crit. Rev. Oncol. Hematol., 2019, 133, 163-170.
[http://dx.doi.org/10.1016/j.critrevonc.2018.11.009] [PMID: 30661652]
[17]
Zhu, G.; Chen, X. Aptamer-based targeted therapy. Adv. Drug Deliv. Rev., 2018, 134, 65-78.
[http://dx.doi.org/10.1016/j.addr.2018.08.005] [PMID: 30125604]
[18]
Parker, C.; Lewington, V.; Shore, N.; Kratochwil, C.; Levy, M.; Lindén, O.; Noordzij, W.; Park, J.; Saad, F. Targeted alpha therapy, an emerging class of cancer agents: A review. JAMA Oncol., 2018, 4(12), 1765-1772.
[http://dx.doi.org/10.1001/jamaoncol.2018.4044] [PMID: 30326033]
[19]
Adams, S.; Schmid, P.; Rugo, H.S.; Winer, E.P.; Loirat, D.; Awada, A.; Cescon, D.W.; Iwata, H.; Campone, M.; Nanda, R.; Hui, R.; Curigliano, G.; Toppmeyer, D.; O’Shaughnessy, J.; Loi, S.; Paluch-Shimon, S.; Tan, A.R.; Card, D.; Zhao, J.; Karantza, V.; Cortés, J. Pembrolizumab monotherapy for previously treated metastatic triple-negative breast cancer: cohort A of the phase II KEYNOTE-086 study. Ann. Oncol., 2019, 30(3), 397-404.
[http://dx.doi.org/10.1093/annonc/mdy517] [PMID: 30475950]
[20]
Lee, Y.T.; Tan, Y.J.; Oon, C.E. Molecular targeted therapy: Treating cancer with specificity. Eur. J. Pharmacol., 2018, 834, 188-196.
[http://dx.doi.org/10.1016/j.ejphar.2018.07.034] [PMID: 30031797]
[21]
Guan, L.Y.; Lu, Y. New developments in molecular targeted therapy of ovarian cancer. Discov. Med., 2018, 26(144), 219-229.
[PMID: 30695681]
[22]
Fernández, A. Making targeted therapy compatible with checkpoint immunotherapy. Trends Biotechnol., 2017, 35(7), 582-584.
[http://dx.doi.org/10.1016/j.tibtech.2017.02.008] [PMID: 28283197]
[23]
Galon, J.; Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov., 2019, 18(3), 197-218.
[http://dx.doi.org/10.1038/s41573-018-0007-y] [PMID: 30610226]
[24]
Thoma, C. Kidney cancer: Combining targeted and immunotherapy. Nat. Rev. Urol., 2018, 15(5), 263.
[PMID: 29620060]
[25]
Colli, L.M.; Machiela, M.J.; Zhang, H.; Myers, T.A.; Jessop, L.; Delattre, O.; Yu, K.; Chanock, S.J. Landscape of combination immunotherapy and targeted therapy to improve cancer management. Cancer Res., 2017, 77(13), 3666-3671.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-3338] [PMID: 28446466]
[26]
Hughes, P.E.; Caenepeel, S.; Wu, L.C. Targeted therapy and checkpoint immunotherapy combinations for the treatment of cancer. Trends Immunol., 2016, 37(7), 462-476.
[http://dx.doi.org/10.1016/j.it.2016.04.010] [PMID: 27216414]
[27]
Wargo, J.A.; Cooper, Z.A.; Flaherty, K.T. Universes collide: Combining immunotherapy with targeted therapy for cancer. Cancer Discov., 2014, 4(12), 1377-1386.
[http://dx.doi.org/10.1158/2159-8290.CD-14-0477] [PMID: 25395294]
[28]
Gu, G.; Dustin, D.; Fuqua, S.A.W. Targeted therapy for breast cancer and molecular mechanisms of resistance to treatment. Curr. Opin. Pharmacol., 2016, 31, 97-103.
[http://dx.doi.org/10.1016/j.coph.2016.11.005] [PMID: 27883943]
[29]
Sharp, A.; Bhosle, J.; Abdelraouf, F.; Popat, S.; O’Brien, M.; Yap, T.A. Development of molecularly targeted agents and immunotherapies in small cell lung cancer. Eur. J. Cancer, 2016, 60, 26-39.
[http://dx.doi.org/10.1016/j.ejca.2016.03.004] [PMID: 27060747]
[30]
Zigler, M.; Shir, A.; Levitzki, A. Targeted cancer immunotherapy. Curr. Opin. Pharmacol., 2013, 13(4), 504-510.
[http://dx.doi.org/10.1016/j.coph.2013.04.003] [PMID: 23648271]
[31]
Akhave, N.S.; Biter, A.B.; Hong, D.S. Mechanisms of resistance to KRASG12C-targeted therapy. Cancer Discov., 2021, 11(6), 1345-1352.
[http://dx.doi.org/10.1158/2159-8290.CD-20-1616] [PMID: 33820777]
[32]
Passirani, C.; Vessières, A.; La Regina, G.; Link, W.; Silvestri, R. Modulating undruggable targets to overcome cancer therapy resistance. Drug Resist. Updat., 2022, 60, 100788.
[http://dx.doi.org/10.1016/j.drup.2021.100788] [PMID: 35168144]
[33]
Huang, W.; Chen, J.J.; Xing, R.; Zeng, Y.C. Combination therapy: Future directions of immunotherapy in small cell lung cancer. Transl. Oncol., 2021, 14(1), 100889.
[http://dx.doi.org/10.1016/j.tranon.2020.100889] [PMID: 33065386]
[34]
Zhang, W.; Shi, J.; Wang, Y.; Zhou, H.; Zhang, Z.; Han, Z.; Li, G.; Yang, B.; Cao, G.; Ke, Y.; Zhang, T.; Song, T. QiangLi, Next-generation sequencing-guided molecular-targeted therapy and immunotherapy for biliary tract cancers. Cancer Immunol. Immunother., 2021, 70(4), 1001-1014.
[http://dx.doi.org/10.1007/s00262-020-02745-y] [PMID: 33095329]
[35]
Upadhya, A.; Yadav, K.S.; Misra, A. Targeted drug therapy in non-small cell lung cancer: Clinical significance and possible solutions-Part I. Expert Opin. Drug Deliv., 2021, 18(1), 73-102.
[http://dx.doi.org/10.1080/17425247.2021.1825377] [PMID: 32954834]
[36]
Przybylski, D.J.; Bergsbaken, J.J.; Piccolo, J.K. Unleashing the power of immunotherapy and targeted therapy combinations: Advancing cancer care or discovering unknown toxicities? J. Oncol. Pharm. Pract., 2021, 27(4), 930-938.
[http://dx.doi.org/10.1177/1078155220984235] [PMID: 33406979]
[37]
Ma, J.; Ge, Z. Recent advances of targeted therapy in relapsed/refractory acute myeloid leukemia. Bosn. J. Basic Med. Sci., 2021, 21(4), 409-421.
[http://dx.doi.org/10.17305/bjbms.2020.5485] [PMID: 33577442]
[38]
Lee, P.; Yim, R.; Yung, Y.; Chu, H.T.; Yip, P.K.; Gill, H. Molecular targeted therapy and immunotherapy for myelodysplastic syndrome. Int. J. Mol. Sci., 2021, 22(19), 10232.
[http://dx.doi.org/10.3390/ijms221910232] [PMID: 34638574]
[39]
Patil, V.M.; Noronha, V.; Joshi, A.; Abhyankar, A.; Menon, N.; Dhumal, S.; Prabhash, K. Beyond conventional chemotherapy, targeted therapy and immunotherapy in squamous cell cancer of the oral cavity. Oral Oncol., 2020, 105, 104673.
[http://dx.doi.org/10.1016/j.oraloncology.2020.104673] [PMID: 32272385]
[40]
Ntanasis-Stathopoulos, I.; Tsilimigras, D.I.; Gavriatopoulou, M.; Schizas, D.; Pawlik, T.M. Cholangiocarcinoma: Investigations into pathway-targeted therapies. Expert Rev. Anticancer Ther., 2020, 20(9), 765-773.
[http://dx.doi.org/10.1080/14737140.2020.1807333] [PMID: 32757962]
[41]
Martin, J.D.; Cabral, H.; Stylianopoulos, T.; Jain, R.K. Improving cancer immunotherapy using nanomedicines: Progress, opportunities and challenges. Nat. Rev. Clin. Oncol., 2020, 17(4), 251-266.
[http://dx.doi.org/10.1038/s41571-019-0308-z] [PMID: 32034288]
[42]
Kennedy, L.B.; Salama, A.K.S. A review of cancer immunotherapy toxicity. CA Cancer J. Clin., 2020, 70(2), 86-104.
[http://dx.doi.org/10.3322/caac.21596] [PMID: 31944278]
[43]
Irvine, D.J.; Dane, E.L. Enhancing cancer immunotherapy with nanomedicine. Nat. Rev. Immunol., 2020, 20(5), 321-334.
[http://dx.doi.org/10.1038/s41577-019-0269-6] [PMID: 32005979]
[44]
Qi, J.; Jin, F.; Xu, X.; Du, Y. Combination cancer immunotherapy of nanoparticle-based immunogenic cell death inducers and immune checkpoint inhibitors. Int. J. Nanomedicine, 2021, 16, 1435-1456.
[http://dx.doi.org/10.2147/IJN.S285999] [PMID: 33654395]
[45]
Panchal, K.; Sahoo, R.K.; Gupta, U.; Chaurasiya, A. Role of targeted immunotherapy for pancreatic ductal adenocarcinoma (PDAC) treatment: An overview. Int. Immunopharmacol., 2021, 95, 107508.
[http://dx.doi.org/10.1016/j.intimp.2021.107508] [PMID: 33725635]
[46]
Meric-Bernstam, F.; Larkin, J.; Tabernero, J.; Bonini, C. Enhancing anti-tumour efficacy with immunotherapy combinations. Lancet, 2021, 397(10278), 1010-1022.
[http://dx.doi.org/10.1016/S0140-6736(20)32598-8] [PMID: 33285141]
[47]
Hashemzadeh, N.; Dolatkhah, M.; Adibkia, K.; Aghanejad, A.; Barzegar-Jalali, M.; Omidi, Y.; Barar, J. Recent advances in breast cancer immunotherapy: The promising impact of nanomedicines. Life Sci., 2021, 271, 119110.
[http://dx.doi.org/10.1016/j.lfs.2021.119110] [PMID: 33513401]
[48]
Xu, J.; Brosseau, J.P.; Shi, H. Targeted degradation of immune checkpoint proteins: Emerging strategies for cancer immunotherapy. Oncogene, 2020, 39(48), 7106-7113.
[http://dx.doi.org/10.1038/s41388-020-01491-w] [PMID: 33024277]
[49]
Wang, L.; Ma, Q.; Yao, R.; Liu, J. Current status and development of anti-PD-1/PD-L1 immunotherapy for lung cancer. Int. Immunopharmacol., 2020, 79, 106088.
[http://dx.doi.org/10.1016/j.intimp.2019.106088] [PMID: 31896512]
[50]
Qu, Q.; Zhai, Z.; Xu, J.; Li, S.; Chen, C.; Lu, B. IL36 Cooperates With Anti-CTLA-4 mAbs to facilitate antitumor immune responses. Front. Immunol., 2020, 11, 634.
[http://dx.doi.org/10.3389/fimmu.2020.00634] [PMID: 32351508]
[51]
Naderi-Azad, S.; Sullivan, R. The potential of BRAF-targeted therapy combined with immunotherapy in melanoma. Expert Rev. Anticancer Ther., 2020, 20(2), 131-136.
[http://dx.doi.org/10.1080/14737140.2020.1724097] [PMID: 32003263]
[52]
Kaboli, P.J.; Zhang, L.; Xiang, S.; Shen, J.; Li, M.; Zhao, Y.; Wu, X.; Zhao, Q.; Zhang, H.; Lin, L.; Yin, J.; Wu, Y.; Wan, L.; Yi, T.; Li, X.; Cho, C.H.; Li, J.; Xiao, Z.; Wen, Q. Molecular markers of regulatory T Cells in cancer immunotherapy with special focus on Acute Myeloid Leukemia (AML)-a systematic review. Curr. Med. Chem., 2020, 27(28), 4673-4698.
[http://dx.doi.org/10.2174/0929867326666191004164041] [PMID: 31584362]
[53]
Jia, T.; Ming, S.X.; Cao, Q.Q.; Xu, F.L. Combined treatment with acetazolamide and cisplatin enhances the chemosensitivity of human head and neck squamous cell carcinoma TU868 cells. Arch. Oral Biol., 2020, 119, 104905.
[http://dx.doi.org/10.1016/j.archoralbio.2020.104905] [PMID: 32947166]
[54]
Shimasaki, N.; Jain, A.; Campana, D. NK cells for cancer immunotherapy. Nat. Rev. Drug Discov., 2020, 19(3), 200-218.
[http://dx.doi.org/10.1038/s41573-019-0052-1] [PMID: 31907401]
[55]
Salles, G.; Duell, J.; González Barca, E.; Tournilhac, O.; Jurczak, W.; Liberati, A.M.; Nagy, Z.; Obr, A.; Gaidano, G.; André, M.; Kalakonda, N.; Dreyling, M.; Weirather, J.; Dirnberger-Hertweck, M.; Ambarkhane, S.; Fingerle-Rowson, G.; Maddocks, K. Tafasitamab plus lenalidomide in relapsed or refractory diffuse large B-cell lymphoma (L-MIND): A multicentre, prospective, single-arm, phase 2 study. Lancet Oncol., 2020, 21(7), 978-988.
[http://dx.doi.org/10.1016/S1470-2045(20)30225-4] [PMID: 32511983]
[56]
Martínez-Reyes, I.; Chandel, N.S. Cancer metabolism: Looking forward. Nat. Rev. Cancer, 2021, 21(10), 669-680.
[http://dx.doi.org/10.1038/s41568-021-00378-6] [PMID: 34272515]
[57]
Shi, T.; Ma, Y.; Yu, L.; Jiang, J.; Shen, S.; Hou, Y.; Wang, T. Cancer immunotherapy: A focus on the regulation of immune checkpoints. Int. J. Mol. Sci., 2018, 19(5), 1389.
[http://dx.doi.org/10.3390/ijms19051389] [PMID: 29735917]
[58]
van den Bulk, J.; Verdegaal, E.M.E.; de Miranda, N.F.C.C. Cancer immunotherapy: Broadening the scope of targetable tumours. Open Biol., 2018, 8(6), 180037.
[http://dx.doi.org/10.1098/rsob.180037] [PMID: 29875199]
[59]
Bergman, P. J. Cancer immunotherapies. Vet. Clin. North Am. Small Anim. Pract., 2019, 49(5), 881-902.
[http://dx.doi.org/10.1016/j.cvsm.2019.04.010] [PMID: 31186125]
[60]
Wculek, S.K.; Cueto, F.J.; Mujal, A.M.; Melero, I.; Krummel, M.F.; Sancho, D. Dendritic cells in cancer immunology and immunotherapy. Nat. Rev. Immunol., 2020, 20(1), 7-24.
[http://dx.doi.org/10.1038/s41577-019-0210-z] [PMID: 31467405]
[61]
O’Donnell, J.S.; Teng, M.W.L.; Smyth, M.J. Cancer immunoediting and resistance to T cell-based immunotherapy. Nat. Rev. Clin. Oncol., 2019, 16(3), 151-167.
[http://dx.doi.org/10.1038/s41571-018-0142-8] [PMID: 30523282]
[62]
van der Meel, R.; Sulheim, E.; Shi, Y.; Kiessling, F.; Mulder, W.J.M.; Lammers, T. Smart cancer nanomedicine. Nat. Nanotechnol., 2019, 14(11), 1007-1017.
[http://dx.doi.org/10.1038/s41565-019-0567-y] [PMID: 31695150]
[63]
Kepp, O.; Marabelle, A.; Zitvogel, L.; Kroemer, G. Oncolysis without viruses-inducing systemic anticancer immune responses with local therapies. Nat. Rev. Clin. Oncol., 2020, 17(1), 49-64.
[http://dx.doi.org/10.1038/s41571-019-0272-7] [PMID: 31595049]
[64]
Mulder, W.J.M.; Ochando, J.; Joosten, L.A.B.; Fayad, Z.A.; Netea, M.G. Therapeutic targeting of trained immunity. Nat. Rev. Drug Discov., 2019, 18(7), 553-566.
[http://dx.doi.org/10.1038/s41573-019-0025-4] [PMID: 30967658]
[65]
Nam, J.; Son, S.; Park, K.S.; Zou, W.; Shea, L.D.; Moon, J.J. Cancer nanomedicine for combination cancer immunotherapy. Nat. Rev. Mater., 2019, 4(6), 398-414.
[http://dx.doi.org/10.1038/s41578-019-0108-1]
[66]
Riley, R.S.; June, C.H.; Langer, R.; Mitchell, M.J. Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discov., 2019, 18(3), 175-196.
[http://dx.doi.org/10.1038/s41573-018-0006-z] [PMID: 30622344]
[67]
Lizotte, P.H.; Wen, A.M.; Sheen, M.R.; Fields, J.; Rojanasopondist, P.; Steinmetz, N.F.; Fiering, S. In situ vaccination with cowpea mosaic virus nanoparticles suppresses metastatic cancer. Nat. Nanotechnol., 2016, 11(3), 295-303.
[http://dx.doi.org/10.1038/nnano.2015.292] [PMID: 26689376]
[68]
Ma, H.; Wang, H.; Sové, R.J.; Wang, J.; Giragossian, C.; Popel, A.S. Combination therapy with T cell engager and PD-L1 blockade enhances the antitumor potency of T cells as predicted by a QSP model. J. Immunother. Cancer, 2020, 8(2), e001141.
[http://dx.doi.org/10.1136/jitc-2020-001141] [PMID: 32859743]
[69]
Bergholz, J.S.; Wang, Q.; Kabraji, S.; Zhao, J.J. Integrating immunotherapy and targeted therapy in cancer treatment: Mechanistic insights and clinical implications. Clin. Cancer Res., 2020, 26(21), 5557-5566.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-2300] [PMID: 32576627]
[70]
Shin, M.H.; Kim, J.; Lim, S.A.; Kim, J.; Lee, K.M. Current insights into combination therapies with mapk inhibitors and immune checkpoint blockade. Int. J. Mol. Sci., 2020, 21(7), 2531.
[http://dx.doi.org/10.3390/ijms21072531] [PMID: 32260561]
[71]
O’Donnell, J.S.; Massi, D.; Teng, M.W.L.; Mandala, M. PI3K-AKT-mTOR inhibition in cancer immunotherapy, redux. Semin. Cancer Biol., 2018, 48, 91-103.
[http://dx.doi.org/10.1016/j.semcancer.2017.04.015] [PMID: 28467889]
[72]
Pópulo, H.; Lopes, J.M.; Soares, P. The mTOR signalling pathway in human cancer. Int. J. Mol. Sci., 2012, 13(2), 1886-1918.
[http://dx.doi.org/10.3390/ijms13021886] [PMID: 22408430]
[73]
Wang, Z.; Goto, Y.; Allevato, M.M.; Wu, V.H.; Saddawi-Konefka, R.; Gilardi, M.; Alvarado, D.; Yung, B.S.; O’Farrell, A.; Molinolo, A.A.; Duvvuri, U.; Grandis, J.R.; Califano, J.A.; Cohen, E.E.W.; Gutkind, J.S. Disruption of the HER3-PI3K-mTOR oncogenic signaling axis and PD-1 blockade as a multimodal precision immunotherapy in head and neck cancer. Nat. Commun., 2021, 12(1), 2383.
[http://dx.doi.org/10.1038/s41467-021-22619-w] [PMID: 33888713]
[74]
Hao, Y.; Cook, M.C. Inborn errors of immunity and their phenocopies: CTLA4 and PD-1. Front. Immunol., 2022, 12, 806043.
[http://dx.doi.org/10.3389/fimmu.2021.806043] [PMID: 35154081]
[75]
Bloise, N.; Okkeh, M.; Restivo, E.; Della Pina, C.; Visai, L. Targeting the “Sweet Side” of Tumor with glycan-binding molecules conjugated-nanoparticles: implications in cancer therapy and diagnosis. Nanomaterials (Basel), 2021, 11(2), 289.
[http://dx.doi.org/10.3390/nano11020289] [PMID: 33499388]
[76]
Bagchi, S.; Yuan, R.; Engleman, E.G. Immune checkpoint inhibitors for the treatment of cancer: Clinical impact and mechanisms of response and resistance. Annu. Rev. Pathol., 2021, 16(1), 223-249.
[http://dx.doi.org/10.1146/annurev-pathol-042020-042741] [PMID: 33197221]
[77]
Zhang, W.; Ge, H.; Jiang, Y.; Huang, R.; Wu, Y.; Wang, D.; Guo, S.; Li, S.; Wang, Y.; Jiang, H.; Cheng, J. Combinational therapeutic targeting of BRD4 and CDK7 synergistically induces anticancer effects in head and neck squamous cell carcinoma. Cancer Lett., 2020, 469, 510-523.
[http://dx.doi.org/10.1016/j.canlet.2019.11.027] [PMID: 31765738]
[78]
Qiao, X.W.; Jiang, J.; Pang, X.; Huang, M.C.; Tang, Y.J.; Liang, X.H.; Tang, Y.L. The evolving landscape of PD-1/PD-L1 pathway in head and neck cancer. Front. Immunol., 2020, 11, 1721.
[http://dx.doi.org/10.3389/fimmu.2020.01721] [PMID: 33072064]
[79]
Hayashi, H.; Nakagawa, K. Combination therapy with PD-1 or PD-L1 inhibitors for cancer. Int. J. Clin. Oncol., 2020, 25(5), 818-830.
[http://dx.doi.org/10.1007/s10147-019-01548-1] [PMID: 31549270]
[80]
Gang, M.; Marin, N.D.; Wong, P.; Neal, C.C.; Marsala, L.; Foster, M.; Schappe, T.; Meng, W.; Tran, J.; Schaettler, M.; Davila, M.; Gao, F.; Cashen, A.F.; Bartlett, N.L.; Mehta-Shah, N.; Kahl, B.S.; Kim, M.Y.; Cooper, M.L.; DiPersio, J.F.; Berrien-Elliott, M.M.; Fehniger, T.A. CAR-modified memory-like NK cells exhibit potent responses to NK-resistant lymphomas. Blood, 2020, 136(20), 2308-2318.
[http://dx.doi.org/10.1182/blood.2020006619] [PMID: 32614951]
[81]
Deng, X.; Li, Y.; Gu, S.; Chen, Y.; Yu, B.; Su, J.; Sun, L.; Liu, Y. p53 Affects PGC1α Stability Through AKT/GSK-3β to enhance cisplatin sensitivity in non-small cell lung cancer. Front. Oncol., 2020, 10, 1252.
[http://dx.doi.org/10.3389/fonc.2020.01252] [PMID: 32974127]
[82]
Barbari, C.; Fontaine, T.; Parajuli, P.; Lamichhane, N.; Jakubski, S.; Lamichhane, P.; Deshmukh, R.R. Immunotherapies and combination strategies for immuno-oncology. Int. J. Mol. Sci., 2020, 21(14), 5009.
[http://dx.doi.org/10.3390/ijms21145009] [PMID: 32679922]
[83]
Albiges, L.; Tannir, N.M.; Burotto, M.; McDermott, D.; Plimack, E.R.; Barthélémy, P.; Porta, C.; Powles, T.; Donskov, F.; George, S.; Kollmannsberger, C.K.; Gurney, H.; Grimm, M.O.; Tomita, Y.; Castellano, D.; Rini, B.I.; Choueiri, T.K.; Saggi, S.S.; McHenry, M.B.; Motzer, R.J. Nivolumab plus ipilimumab versus sunitinib for first-line treatment of advanced renal cell carcinoma: Extended 4-year follow-up of the phase III CheckMate 214 trial. ESMO Open, 2020, 5(6), e001079.
[http://dx.doi.org/10.1136/esmoopen-2020-001079] [PMID: 33246931]
[84]
Wang, M.; Liu, Y.; Cheng, Y.; Wei, Y.; Wei, X. Immune checkpoint blockade and its combination therapy with small-molecule inhibitors for cancer treatment. Biochim. Biophys. Acta Rev. Cancer, 2019, 1871(2), 199-224.
[http://dx.doi.org/10.1016/j.bbcan.2018.12.002] [PMID: 30605718]
[85]
Wang, X.; Guo, G.; Guan, H.; Yu, Y.; Lu, J.; Yu, J. Challenges and potential of PD-1/PD-L1 checkpoint blockade immunotherapy for glioblastoma. J. Exp. Clin. Cancer Res., 2019, 38(1), 87.
[http://dx.doi.org/10.1186/s13046-019-1085-3] [PMID: 30777100]
[86]
Shafique, M.; Tanvetyanon, T. Immunotherapy alone or chemo-immunotherapy as front-line treatment for advanced non-small cell lung cancer. Expert Opin. Biol. Ther., 2019, 19(3), 225-232.
[http://dx.doi.org/10.1080/14712598.2019.1571036] [PMID: 30657338]
[87]
Salmaninejad, A.; Valilou, S.F.; Shabgah, A.G.; Aslani, S.; Alimardani, M.; Pasdar, A.; Sahebkar, A. PD-1/PD-L1 pathway: Basic biology and role in cancer immunotherapy. J. Cell. Physiol., 2019, 234(10), 16824-16837.
[http://dx.doi.org/10.1002/jcp.28358] [PMID: 30784085]
[88]
Oliveira, A.F.; Bretes, L.; Furtado, I. Review of PD-1/PD-L1 inhibitors in metastatic dMMR/MSI-H colorectal cancer. Front. Oncol., 2019, 9, 396.
[http://dx.doi.org/10.3389/fonc.2019.00396] [PMID: 31139574]
[89]
Rotte, A. Combination of CTLA-4 and PD-1 blockers for treatment of cancer. J. Exp. Clin. Cancer Res., 2019, 38(1), 255.
[http://dx.doi.org/10.1186/s13046-019-1259-z] [PMID: 31196207]