Aim: Abnormal glycosylation often occurs in tumor cells. T-synthase (core 1 beta 1,3- galactosyltransferase, C1GALT1, or T-synthase) is a key enzyme involved in O-glycosylation. Although T-synthase is known to be important in human tumors, the effects of T-synthase and T-antigen on human tumor responses remain poorly defined.
Methods: In this study, a T-synthase-specific short hairpin RNA (shRNA) or T-synthase-specific eukaryotic expression vector(pcDNA3.1(+)) was transfected into murine Osteosarcoma LM8 cells to assess the effects of T-synthase on T cells and cytokines.
Results: The up-regulation of T-synthase promoted the proliferation of osteosarcoma cells in vitro, but it promoted the proliferation of tumor initially up to 2-3 weeks but showed significant growth inhibitory effect after 3 weeks post-implantation in vivo. Osteosarcoma cells with high T-synthase expression in vitro promoted the proliferation and inhibited the apoptosis of CD8+ T cells. Further, T-synthase upregulation promoted CD8+ T-cell proliferation and the increased production of CD4+ T cell-derived IFN-γ cytokines to induce the increased tumor lethality of CTLs.
Conclusion: Our data suggest that high T-synthase expression inhibits tumor growth by improving the body's anti-tumor immunity. Therefore, using this characteristic to prepare tumor cell vaccines with high immunogenicity provides a new idea for clinical immunotherapy of osteosarcoma.