Key Targets and Molecular Mechanisms of Active Volatile Components of Rabdosia rubescens in Gastric Cancer Cells

Page: [493 - 505] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Objective: To examine the effect and mechanism of volatile components of Rabdosia rubescens on gastric cancer.

Methods: Gas chromatography-mass spectrometry was used to detect and identify the volatile components of R. rubescens. The network pharmacology method was used to analyze the targets of volatile components of R. rubescens in gastric cancer and to reveal their molecular mechanisms. The effects of volatile components of R. rubescens on gastric cancer cells were verified by biological experiments.

Results: Thirteen volatile components of R. rubescens were selected as pharmacologically active components. The 13 active components had 83 targets in gastric cancer, and a Traditional Chinese Medicine-component-targets gastric cancer network was successfully constructed. Five core targets were obtained: TNF, IL1B, MMP9, PTGS2 and CECL8. The volatile components inhibited the proliferation of gastric cancer cells in a concentration-dependent manner and promoted the apoptosis of gastric cancer cells. The volatile components reduced the levels of TNF, IL1B, MPP9, and PTGS2 in a concentration-dependent manner.

Conclusion: Our study demonstrates the effects of volatile components in R. rubescens on gastric cancer and provides preliminary findings on their mechanisms of action.

Keywords: Rabdosia rubescens, Network pharmacology, Gastric cancer, Signaling pathway, Targets

Graphical Abstract

[1]
Patti, M.G.; Herbella, F.A. Indocyanine green tracer-guided lymph node retrieval during radical dissection in gastric cancer surgery. JAMA Surg., 2020, 155(4), 312.
[http://dx.doi.org/10.1001/jamasurg.2019.6034] [PMID: 32101267]
[2]
Tan, S.H.; Swathi, Y.; Tan, S.; Goh, J.; Seishima, R.; Murakami, K.; Oshima, M.; Tsuji, T.; Phuah, P.; Tan, L.T.; Wong, E.; Fatehullah, A.; Sheng, T.; Ho, S.W.T.; Grabsch, H.I.; Srivastava, S.; Teh, M.; Denil, S.L.I.J.; Mustafah, S.; Tan, P.; Shabbir, A.; So, J.; Yeoh, K.G.; Barker, N. AQP5 enriches for stem cells and cancer origins in the distal stomach. Nature, 2020, 578(7795), 437-443.
[http://dx.doi.org/10.1038/s41586-020-1973-x] [PMID: 32025032]
[3]
Owona, B.A.; Schluesener, H.J. Molecular insight in the multifunctional effects of oridonin. Drugs R D., 2015, 15(3), 233-244.
[http://dx.doi.org/10.1007/s40268-015-0102-z] [PMID: 26290464]
[4]
Shi-yong, G.A.O.; Long, W.A.N.G. Review on chemistry and pharmacology of Rabdosia rubescens. J. Harbin Univ. Commerce, 2014, 30(1), 1-6. [Natural Sciences Edition].
[5]
Lei, X.I.; Wei-sheng, S.H.E.N. Effect of rabdosia rubescens combined with new assistant chemotherapy on serum CA199, CEA, CA15-3 and T lymphocyte subsets in patients with breast cancer. Hainan Yixueyuan Xuebao, 2017, 23(14), 1972-1975.
[6]
Hui, X. Study on modern pharmacological chemical constituents and clinical drug use of rubescens rubescens. Inner Mongolia J. Traditional. Chinese Med., 2014, 22, 96-97.
[7]
Silu, O.U.Y.A.N.G.; Zhu, Y.A.N.G.; Feng-xi, L.O.N.G. Activity components and mechanism of Rabdosia rubescens for anti-tumor based on network pharmacology. Zhonghua Zhongyiyao Xuekan, 2020. Epub ahead of print
[8]
Zhu, Y.A.N.G.; Dongxin, T.A.N.G.; Bin, G.U.O. Data mining analysis of medication experience of LIU Shangyi in treating cancer. J. Tradit. Chin. Med., 2016, 57(19), 1641-1645.
[9]
Yu, J.; Zhang, R.; Zhang, T.; Zhao, J.; Zhang, Y.; Wang, Q.; Liu, L.; Xu, Y.; Shi, L. Determination of toosendanin and trans-anethole in fructus meliae toosendan and fructus foeniculi by HPLC-MS/MS and GC-MS/MS in rat plasma and their potential herb-herb interactions. Biomed. Chromatogr., 2020, 34(7), e4837.
[http://dx.doi.org/10.1002/bmc.4837] [PMID: 32246844]
[10]
Feyaerts, A.F.; Luyten, W.; Van Dijck, P. Striking essential oil: Tapping into a largely unexplored source for drug discovery. Sci. Rep., 2020, 10(1), 2867.
[http://dx.doi.org/10.1038/s41598-020-59332-5] [PMID: 32071337]
[11]
Gao, S.; Tan, H.; Zhu, N.; Gao, H.; Lv, C.; Gang, J.; Ji, Y. Oridonin induces apoptosis through the mitochondrial pathway in human gastric cancer SGC-7901 cells. Int. J. Oncol., 2016, 48(6), 2453-2460.
[http://dx.doi.org/10.3892/ijo.2016.3479] [PMID: 27082253]
[12]
Ren, D.L.; Ghoorun, R.A.; Wu, X.H.; Chen, H.L.; Zhou, Q.; Wu, X.B. Oridonin induces apoptosis in HGC-27 cells by activating the JNK signaling pathway. Oncol. Lett., 2020, 19(1), 255-260.
[PMID: 31897137]
[13]
Ping, G.; Li, Y.; Guo, Y. Advances in studies on chemical constituents of Rabdosia rubescens and their pharmacological activities. Yaowu Pingjia Yanjiu, 2010, 33(2), 144-147.
[14]
Zhai, B.; Zhang, N.; Han, X.; Li, Q.; Zhang, M.; Chen, X.; Li, G.; Zhang, R.; Chen, P.; Wang, W.; Li, C.; Xiang, Y.; Liu, S.; Duan, T.; Lou, J.; Xie, T.; Sui, X. Molecular targets of β-elemene, a herbal extract used in traditional Chinese medicine, and its potential role in cancer therapy: A review. Biomed. Pharmacother., 2019, 114, 108812.
[http://dx.doi.org/10.1016/j.biopha.2019.108812] [PMID: 30965237]
[15]
Qiaojuan, H.U.A.N.G.; Zhigao, S.U.N.; Yong, L.O.N.G. Recent progress in research on anticancer mechanism of D-Limonene. Shipin Kexue, 2015, 36(7), 240-244.
[16]
Luting, CHEN; Mengyi, HU; Lei, PAN Effect of silencing beclin 1 gene on β-elemene inhibiting proliferation and inducing autophagy of human gastric cancer Sgc-7901 Cells. Zhejiang J. Integrated Traditional Chinese Western Med., 2020, 05, 364-368.
[17]
Yi, Y.; Yang, C.; Jin, B. Effect of β-elemene on growth of multidrugresis. gastric cancer cells xenografts in nude mice. Prog. Anato. Sci., 2019, 03, 229-231.
[18]
Zhai, B.; Zeng, Y.; Zeng, Z.; Zhang, N.; Li, C.; Zeng, Y.; You, Y.; Wang, S.; Chen, X.; Sui, X.; Xie, T. Drug delivery systems for elemene, its main active ingredient β-elemene, and its derivatives in cancer therapy. Int. J. Nanomedicine, 2018, 13, 6279-6296.
[http://dx.doi.org/10.2147/IJN.S174527] [PMID: 30349250]
[19]
Zhang, Y.; Xin, C.; Qiu, J.; Wang, Z. Essential oil from pinus koraiensis pinecones inhibits gastric cancer cells via the HIPPO/YAP signaling pathway. Molecules, 2019, 24(21), 3851.
[http://dx.doi.org/10.3390/molecules24213851] [PMID: 31731517]
[20]
Khan, M.S.A.; Khundmiri, S.U.K.; Khundmiri, S.R.; Al-Sanea, M.M.; Mok, P.L. Fruit-derived polysaccharides and terpenoids: Recent update on the gastroprotective effects and mechanisms. Front. Pharmacol., 2018, 9, 569.
[http://dx.doi.org/10.3389/fphar.2018.00569] [PMID: 29988459]
[21]
Dong, Y.; Wang, Q.; Fei, W. Relationship between TNF-a gene polymorphism and haplotype and gastric cancer in uygur and han ethnic groups in Xinjiang. Carcinogenesis. Teratogenesis Mutagenesis, 2012, 24(04), 261-265.
[22]
Liu, C.Z.L.J.Z. A Meta analysis on the correlation between TNF-β gene +252 A/G polymorphism and susceptibility of gastric cancer. Chongqing Yike Daxue Xuebao, 2014, 39(03), 284-289.
[23]
Lin, G. Relationship between IL-1B and TNFα gene polymorphisms and susceptibility to gastric cancer[A] Compilation of data from the 7th National Conference on Laboratory Medicine of Chinese Medical Association[C] Chinese Medical Association Laboratory Branch: Chinese Medical Association, 2008, p. 1.
[24]
Hui, L.I.A.N.G.; Jianmin, D.I.N.G.; Xiaoyu, L.I.U. Influences of TNF-α and IL-1β on peritoneal mesothelial cell adhesion molecule mRNA expression in gastric cancer. Chin. J. Gastroenterol. Hepatol., 2014, 23(03), 252-255.
[25]
Wang, P.B.; Chen, Y.; Ding, G.R.; Du, H.W.; Fan, H.Y. Keratin 18 induces proliferation, migration, and invasion in gastric cancer via the MAPK signalling pathway. Clin. Exp. Pharmacol. Physiol., 2021, 48(1), 147-156.
[PMID: 32860257]
[26]
Sheng, Y.N.; Luo, Y.H.; Liu, S.B.; Xu, W.T.; Zhang, Y.; Zhang, T.; Xue, H.; Zuo, W.B.; Li, Y.N.; Wang, C.Y.; Jin, C.H. Zeaxanthin induces apoptosis via ROS-regulated MAPK and AKT signaling pathway in human gastric cancer cells. OncoTargets Ther., 2020, 13, 10995-11006.
[http://dx.doi.org/10.2147/OTT.S272514] [PMID: 33149614]
[27]
Hong-bing, LIU lian, QING Research progress on the relationship between MAPK signal pathway system and gastric cancer Chinese J. Curr. Adv. General Surg., 2019, 22(12), 995-997.
[28]
Yajun, M.I.A.O.; Li, Y.A.N.G. Effect of paclitaxel combined with cisplatin on MAPK/NF-κB signal in the treatment of helicobacter pylori gastric cancer. J. Southwest Univ., 2018, 37(04), 706-710. [Medical Science Edition].
[29]
Jian-yun, B.A.I.; Feng, H.E.; Zhen, X.U. Propofol induces cycle arrest of gastric cancer cells via EGFR/p38 signaling pathway and related mechanisms. J. Clin. Exp. Med., 2020, 19(23), 2501-2504.
[30]
Shang, H.; Cao, Z.; Zhao, J.; Guan, J.; Liu, J.; Peng, J.; Chen, Y.; Joseph Sferra, T.; Sankararaman, S.; Lin, J. Babao Dan induces gastric cancer cell apoptosis via regulating MAPK and NF-κB signaling pathways. J. Int. Med. Res., 2019, 47(10), 5106-5119.
[http://dx.doi.org/10.1177/0300060519867502] [PMID: 31456462]
[31]
Deng, M.; Liu, B.; Song, H.; Yu, R.; Zou, D.; Chen, Y.; Ma, Y.; Lv, F.; Xu, L.; Zhang, Z.; Lv, Q.; Yang, X.; Che, X.; Qu, X.; Liu, Y.; Zhang, Y.; Hu, X. β-Elemene inhibits the metastasis of multidrug-resistant gastric cancer cells through miR-1323/Cbl-b/EGFR pathway. Phytomedicine, 2020, 69, 153184.
[http://dx.doi.org/10.1016/j.phymed.2020.153184] [PMID: 32199253]
[32]
Ma, R.F.; Chen, G.; Li, H.Z.; Zhang, Y.; Liu, Y.M.; He, H.Q.; Liu, C.Y.; Xie, Z.C.; Zhang, Z.P.; Wang, J. Panax notoginseng saponins inhibits ventricular remodeling after myocardial infarction in rats through regulating ATF3/MAP2K3/p38 MAPK and NF κ B pathway. Chin. J. Integr. Med., 2020, 26(12), 897-904.
[http://dx.doi.org/10.1007/s11655-020-2856-6] [PMID: 33259022]
[33]
Guolan, D.; Lingli, W.; Wenyi, H.; Wei, Z.; Baowei, C.; Sen, B. Anti-inflammatory effects of neferine on LPS-induced human endothelium via MAPK, and NF-κβ pathways. Pharmazie, 2018, 73(9), 541-544.
[PMID: 30223939]