Isatin Conjugates as Antibacterial Agents: A Brief Review

Page: [413 - 430] Pages: 18

  • * (Excluding Mailing and Handling)

Abstract

Pathogenic bacteria, with their innate resistance to drugs, pose a constant threat to human health and well-being and put a persistent strain on the health care system. Development of more effective and safer novel antibacterial drugs is warranted to counter the menace unleashed by pathogenic bacteria. Integration of privileged pharmacophores from various bioactive molecules into a single template is a promising strategy to obtain new leads with unique mechanisms of action to overcome drug resistance. In the past few years, numerous isatin-based hybrid molecules were screened and their pharmacological properties were explored in efforts to develop novel therapeutics. The results of screening show that isatin conjugates exhibit promising activity against a broad range of highly pathogenic gram-positive and gram-negative bacteria and can serve as important leads in the discovery of highly potent broad spectrum antibacterial drugs. Herein, we review the antibacterial bioactive profile of a variety of hybrid isatin derivatives, including isatin–azole, isatin-quinoline/ quinolone, isatin-furan/coumarin, isatin-hydrazone/(thio)semicarbazone, isatin dimers, and isatin– indole hybrids.

Keywords: Isatin, molecular hybridization, hybrid compounds, antibacterial agents, drug resistance, structure–activity relationship (SAR)

Graphical Abstract

[1]
Varriale, L.; Dipineto, L.; Russo, T.P.; Borrelli, L.; Romano, V.; D’orazio, S.; Pace, A.; Menna, L.F.; Fioretti, A.; Santaniello, A. Antimicrobial resistance of Escherichia coli and Pseudomonas aeruginosa from companion birds. Antibiot., 2020, 9, 780.
[http://dx.doi.org/10.3390/antibiotics9110780]
[2]
Pormohammad, A.; Turner, R.J. Silver antibacterial synergism activities with eight other metal(loid)-based antimicrobials against Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. Antibiot., 2020, 9, 853.
[http://dx.doi.org/10.3390/antibiotics9120853]
[3]
Rojas-Duran, R.; González-Aspajo, G.; Ruiz-Martel, C.; Bourdy, G.; Doroteo-Ortega, V.H.; Alban-Castillo, J.; Robert, G.; Auberger, P.; Deharo, E. Anti-inflammatory activity of Mitraphylline isolated from Uncaria tomentosa bark. J. Ethnopharmacol., 2012, 143(3), 801-804.
[http://dx.doi.org/10.1016/j.jep.2012.07.015] [PMID: 22846434]
[4]
Yang, J.; Liu, X.W.; Wang, D.D.; Tian, M.Y.; Han, S.N.; Feng, T.T.; Liu, X.L.; Mei, R.Q.; Zhou, Y. Diversity-oriented one-pot multicomponent synthesis of spirooxindole derivatives and their biological evaluation for anticancer activities. Tetrahedron, 2016, 72(52), 8523-8536.
[http://dx.doi.org/10.1016/j.tet.2016.10.050]
[5]
Ceyhun, İ.; Karaca, Ş.; Osmaniye, D.; Sağlık, B.N.; Levent, S.; Özkay, Y.; Kaplancıklı, Z.A. Design and synthesis of novel chalcone derivatives and evaluation of their inhibitory activities against acetylcholinesterase. Arch. Pharm. (Weinheim), 2022, 355(3), 2100372.
[http://dx.doi.org/10.1002/ardp.202100372] [PMID: 34893996]
[6]
Salleh, W.M.N.H.W.; Shakri, N.M.; Khamis, S.; Setzer, W.N.; Nadri, M.H. Chemical composition of three Malaysian Horsfieldia essential oils. Nat. Prod. Res., 2022, 36(7), 1909-1913.
[http://dx.doi.org/10.1080/14786419.2020.1819274] [PMID: 32927975]
[7]
Datta, P.; Gupta, V. Next-generation strategy for treating drug resistant bacteria: Antibiotic hybrids. Indian J. Med. Res., 2019, 149(2), 97-106.
[http://dx.doi.org/10.4103/ijmr.IJMR_755_18] [PMID: 31219074]
[8]
Nivetha, N.; Thangamani, A. Dispirooxindole-pyrrolothiazoles: Synthesis, anti-cancer activity, molecular docking and green chemistry metrics evaluation. J. Mol. Struct., 2021, 1242, 130716.
[http://dx.doi.org/10.1016/j.molstruc.2021.130716]
[9]
Almansour, A.I.; Arumugam, N.; Kumar, R.S.; Raju, R.; Ponmurugan, K.; AlDhabi, N.; Premnath, D. Broad spectrum antimicrobial activity of dispirooxindolopyrrolidine fused acenaphthenone heterocyclic hybrid against Healthcare Associated Microbial Pathogens (HAMPs). J. Infect. Public Health, 2020, 13(12), 2001-2008.
[http://dx.doi.org/10.1016/j.jiph.2020.09.016] [PMID: 33109496]
[10]
Jadhav, C.K.; Nipate, A.S.; Chate, A.V.; Songire, V.D.; Patil, A.P.; Gill, C.H. Efficient rapid access to biginelli for the multicomponent synthesis of 1,2,3,4-tetrahydropyrimidines in room-temperature diisopropyl ethyl ammonium acetate. ACS Omega, 2019, 4(27), 22313-22324.
[http://dx.doi.org/10.1021/acsomega.9b02286] [PMID: 31909314]
[11]
Sumesh, R.V.; Muthu, M.; Almansour, A.I.; Suresh Kumar, R.; Arumugam, N.; Athimoolam, S.; Jeya Yasmi Prabha, E.A.; Kumar, R.R. Multicomponent dipolar cycloaddition strategy: Combinatorial synthesis of novel spiro-tethered pyrazolo[3,4- b]quinoline hybrid heterocycles. ACS Comb. Sci., 2016, 18(5), 262-270.
[http://dx.doi.org/10.1021/acscombsci.6b00003] [PMID: 27027478]
[12]
Mardjan, M.I.D.; Mayooufi, A.; Parrain, J.L.; Thibonnet, J.; Commeiras, L. Straightforward access to a great diversity of complex biorelevant γ-lactams thanks to a tunable cascade multicomponent process. Org. Process Res. Dev., 2020, 24(5), 606-614.
[http://dx.doi.org/10.1021/acs.oprd.9b00438]
[13]
Harborne, J.B. Common fragrance and flavor materials. Phytochemistry, 1998, 48(3), 585.
[http://dx.doi.org/10.1016/S0031-9422(98)00149-6]
[14]
Lopes, A.A.; Chioca, B.; Musquiari, B.; Crevelin, E.J.; De, C. França, S.; Das G. Fernandes da Silva, M.F.; Pereira, A.M.S. Unnatural spirocyclic oxindole alkaloids biosynthesis in Uncaria guianensis. Sci. Rep., 2019, 9(1), 11349.
[http://dx.doi.org/10.1038/s41598-019-47706-3]
[15]
Siridechakorn, I.; Yue, Z.; Mittraphab, Y.; Lei, X.; Pudhom, K. Identification of spirobisnaphthalene derivatives with anti-tumor activities from the endophytic fungus Rhytidhysteron rufulum AS21B. Bioorg. Med. Chem., 2017, 25(11), 2878-2882.
[http://dx.doi.org/10.1016/j.bmc.2017.02.054] [PMID: 28274675]
[16]
Palomba, M.; De Monte, E.; Mambrini, A.; Bagnoli, L.; Santi, C.; Marini, F. A three-component [3 + 2]-cycloaddition/elimination cascade for the synthesis of spirooxindole-pyrrolizines. Org. Biomol. Chem., 2021, 19(3), 667-676.
[http://dx.doi.org/10.1039/D0OB02321C] [PMID: 33399163]
[17]
Varun, V.; Sonam, S.; Kakkar, R. Isatin and its derivatives: A survey of recent syntheses, reactions, and applications. MedChemComm, 2019, 10(3), 351-368.
[http://dx.doi.org/10.1039/C8MD00585K] [PMID: 30996856]
[18]
Ferraz de Paiva, R.E.; Vieira, E.G.; Rodrigues da Silva, D.; Wegermann, C.A.; Costa Ferreira, A.M. Anticancer compounds based on isatin-derivatives: Strategies to ameliorate selectivity and efficiency. Front. Mol. Biosci., 2021, 7, 627272.
[http://dx.doi.org/10.3389/fmolb.2020.627272] [PMID: 33614708]
[19]
Aneja, B.; Khan, N.S.; Khan, P.; Queen, A.; Hussain, A.; Rehman, M.T.; Alajmi, M.F.; El-Seedi, H.R.; Ali, S.; Hassan, M.I.; Abid, M. Design and development of Isatin-triazole hydrazones as potential inhibitors of microtubule affinity-regulating kinase 4 for the therapeutic management of cell proliferation and metastasis. Eur. J. Med. Chem., 2019, 163, 840-852.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.026] [PMID: 30579124]
[20]
Xu, Z.; Zhao, S.J.; Lv, Z.S.; Gao, F.; Wang, Y.; Zhang, F.; Bai, L.; Deng, J.L. Fluoroquinolone-isatin hybrids and their biological activities. Eur. J. Med. Chem., 2019, 162, 396-406.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.032] [PMID: 30453247]
[21]
Xu, Z.; Zhao, S.; Lv, Z.; Feng, L.; Wang, Y.; Zhang, F.; Bai, L.; Deng, J. Benzofuran derivatives and their anti-tubercular, anti-bacterial activities. Eur. J. Med. Chem., 2019, 162, 266-276.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.025] [PMID: 30448416]
[22]
Meleddu, R.; Distinto, S.; Corona, A.; Tramontano, E.; Bianco, G.; Melis, C.; Cottiglia, F.; Maccioni, E. Isatin thiazoline hybrids as dual inhibitors of HIV-1 reverse transcriptase. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 130-136.
[http://dx.doi.org/10.1080/14756366.2016.1238366] [PMID: 27766892]
[23]
Mathew, B.; Parambi, D.G.T.; Sivasankarapillai, V.S.; Uddin, M.S.; Suresh, J.; Mathew, G.E.; Joy, M.; Marathakam, A.; Gupta, S.V. Perspective design of chalcones for the management of CNS disorders: A mini-review. CNS Neurol. Disord. Drug Targets, 2019, 18(6), 432-445.
[http://dx.doi.org/10.2174/1871527318666190610111246] [PMID: 31187716]
[24]
Kandanur, S.G.S.; Tamang, N.; Golakoti, N.R.; Nanduri, S. Andrographolide: A natural product template for the generation of structurally and biologically diverse diterpenes. Eur. J. Med. Chem., 2019, 176, 513-533.
[http://dx.doi.org/10.1016/j.ejmech.2019.05.022] [PMID: 31151068]
[25]
Mohammadi Ziarani, G.; Moradi, R.; Lashgari, N. Asymmetric synthesis of chiral oxindoles using isatin as starting material. Tetrahedron, 2018, 74(13), 1323-1353.
[http://dx.doi.org/10.1016/j.tet.2018.01.025]
[26]
Attia, M.I.; Eldehna, W.M.; Afifi, S.A.; Keeton, A.B.; Piazza, G.A.; Abdel-Aziz, H.A. New hydrazonoindolin-2-ones: Synthesis, exploration of the possible anti-proliferative mechanism of action and encapsulation into PLGA microspheres. PLoS One, 2017, 12(7), e0181241.
[http://dx.doi.org/10.1371/journal.pone.0181241] [PMID: 28742842]
[27]
Yang, M.C.; Peng, C.; Huang, H.; Yang, L.; He, X.H.; Huang, W.; Cui, H.L.; He, G.; Han, B. Organocatalytic asymmetric synthesis of spiro-oxindole piperidine derivatives that reduce cancer cell proliferation by inhibiting MDM2–p53 interaction. Org. Lett., 2017, 19(24), 6752-6755.
[http://dx.doi.org/10.1021/acs.orglett.7b03516] [PMID: 29210587]
[28]
Gray, D.A.; Wenzel, M. Multitarget approaches against multiresistant superbugs. ACS Infect. Dis., 2020, 6(6), 1346-1365.
[http://dx.doi.org/10.1021/acsinfecdis.0c00001] [PMID: 32156116]
[29]
Neochoritis, C.G.; Zhao, T.; Dömling, A. Tetrazoles via multicomponent reactions. Chem. Rev., 2019, 119(3), 1970-2042.
[http://dx.doi.org/10.1021/acs.chemrev.8b00564] [PMID: 30707567]
[30]
Mali, P.R.; Shirsat, P.K.; Khomane, N.; Nayak, L.; Nanubolu, J.B.; Meshram, H.M. 1,3-Dipolar cycloaddition reactions for the synthesis of novel oxindole derivatives and their cytotoxic properties. ACS Comb. Sci., 2017, 19(10), 633-639.
[http://dx.doi.org/10.1021/acscombsci.7b00044] [PMID: 28816439]
[31]
Dong, L.N.; Zhang, S.Z.; Zhang, W.L.; Dong, Y.; Mo, L.P.; Zhang, Z.H. Synthesis, characterization and application of magnetic biochar sulfonic acid as a highly efficient recyclable catalyst for preparation of spiro-pyrazolo[3,4-b]pyridines. Res. Chem. Intermed., 2022, 48(3), 1249-1272.
[http://dx.doi.org/10.1007/s11164-022-04660-6]
[32]
Nath, R.; Pathania, S.; Grover, G.; Akhtar, M.J. Isatin containing heterocycles for different biological activities: Analysis of structure activity relationship. J. Mol. Struct., 2020, 1222, 128900.
[http://dx.doi.org/10.1016/j.molstruc.2020.128900]
[33]
Zhang, J.; Song, M.; Ao, Y.L.; Li, Y.; Zou, X.Y.; Xu, J.; Wang, Y.; Zhang, D.M.; Zhang, X.Q.; Ye, W.C.; Alstolarines, A. Alstolarines A and B, two unusual monoterpenoid indole alkaloids with an acetal moiety from Alstonia scholaris. Org. Chem. Front., 2020, 7(21), 3468-3473.
[http://dx.doi.org/10.1039/D0QO00751J]
[34]
Wibowo, J.T.; Ahmadi, P.; Rahmawati, S.I.; Bayu, A.; Putra, M.Y.; Kijjoa, A. Marine-derived indole alkaloids and their biological and pharmacological activities. Mar. Drugs, 2021, 20(1), 3.
[http://dx.doi.org/10.3390/md20010003] [PMID: 35049859]
[35]
Naglah, A.; Ahmed, A.; Wen, Z.H.; Al-Omar, M.; Amr, A.; Kalmouch, A. New inducible nitric oxide synthase and cyclooxygenase-2 inhibitors, nalidixic acid linked to isatin schiff bases via certain l-amino acid bridges. Molecules, 2016, 21(4), 498.
[http://dx.doi.org/10.3390/molecules21040498] [PMID: 27092477]
[36]
Sagnou, M.; Mavroidi, B.; Kaminari, A.; Boukos, N.; Pelecanou, M. Novel isatin thiosemicarbazone derivatives as potent inhibitors of β-amyloid peptide aggregation and toxicity. ACS Chem. Neurosci., 2020, 11(15), 2266-2276.
[http://dx.doi.org/10.1021/acschemneuro.0c00208] [PMID: 32598129]
[37]
Lahari, K.; Sundararajan, R. Design and synthesis of novel isatin derivatives as potent analgesic, anti-inflammatory and antimicrobial agents. J. Chem. Sci., 2020, 132(1), 94.
[http://dx.doi.org/10.1007/s12039-020-01795-0]
[38]
Al-Wabli, R.I.; Zakaria, A.S.; Attia, M.I. Synthesis, spectroscopic characterization and antimicrobial potential of certain new isatin-indole molecular hybrids. Mol., 2017, 22, 1958.
[http://dx.doi.org/10.3390/molecules22111958]
[39]
Meleddu, R.; Petrikaite, V.; Distinto, S.; Arridu, A.; Angius, R.; Serusi, L.; Skarnulyte, L.; Endriulaityte, U.; Paskeviciute, M.; Cottiglia, F.; Gaspari, M.; Taverna, D.; Deplano, S.; Fois, B.; Maccioni, E. Investigating the anticancer activity of isatin/dihydropyrazole hybrids. ACS Med. Chem. Lett., 2019, 10(4), 571-576.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00596] [PMID: 30996798]
[40]
Bogdanov, A.V.; Kadomtseva, M.E.; Bukharov, S.V.; Voloshina, A.D.; Mironov, V.F. Effect of the cationic moiety on the antimicrobial activity of sterically hindered isatin 3-hydrazone derivatives. Russ. J. Org. Chem., 2020, 56(3), 555-558.
[http://dx.doi.org/10.1134/S107042802003032X]
[41]
Emami, L.; Moezi, L.; Amiri-Zirtol, L.; Pirsalami, F.; Divar, M.; Solhjoo, A.; Khabnadideh, S. Anticonvulsant activity, molecular modeling and synthesis of spirooxindole-4H-pyran derivatives using a novel reusable organocatalyst. Mol. Divers., 2022, 1, 1-13.
[http://dx.doi.org/10.1007/s11030-021-10372-7] [PMID: 35079947]
[42]
Al-Wabli, R.I.; Alsulami, M.A.; Bukhari, S.I.; Moubayed, N.M.S.; Al-Mutairi, M.S.; Attia, M.I. Design, synthesis, and antimicrobial activity of certain new indole-1,2,4 triazole conjugates. Molecules, 2021, 26(8), 2292.
[http://dx.doi.org/10.3390/molecules26082292] [PMID: 33920952]
[43]
Cheke, R.S.; Patil, V.M.; Firke, S.D.; Ambhore, J.P.; Ansari, I.A.; Patel, H.M.; Shinde, S.D.; Pasupuleti, V.R.; Hassan, M.I.; Adnan, M.; Kadri, A.; Snoussi, M. Therapeutic outcomes of isatin and its derivatives against multiple diseases: Recent developments in drug discovery. Pharm., 2022, 15, 272.
[http://dx.doi.org/10.3390/ph15030272]
[44]
Akhtar, J.; Khan, A.A.; Ali, Z.; Haider, R.; Shahar Yar, M. Structure-Activity Relationship (SAR) study and design strategies of nitrogen-containing heterocyclic moieties for their anticancer activities. Eur. J. Med. Chem., 2017, 125, 143-189.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.023] [PMID: 27662031]
[45]
Guo, H. Isatin derivatives and their anti-bacterial activities. Eur. J. Med. Chem., 2019, 164, 678-688.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.017] [PMID: 30654239]
[46]
Ding, Z.; Zhou, M.; Zeng, C. Recent advances in isatin hybrids as potential anticancer agents. Arch. Pharm. (Weinheim), 2020, 353(3), 1900367.
[http://dx.doi.org/10.1002/ardp.201900367] [PMID: 31960987]
[47]
Eldehna, W.M.; El Hassab, M.A.; Abo-Ashour, M.F.; Al-Warhi, T.; Elaasser, M.M.; Safwat, N.A.; Suliman, H.; Ahmed, M.F.; Al-Rashood, S.T.; Abdel-Aziz, H.A.; El-Haggar, R. Development of isatin-thiazolo[3,2-a]benzimidazole hybrids as novel CDK2 inhibitors with potent in vitro apoptotic anti-proliferative activity: Synthesis, biological and molecular dynamics investigations. Bioorg. Chem., 2021, 110, 104748.
[http://dx.doi.org/10.1016/j.bioorg.2021.104748] [PMID: 33684714]
[48]
Gupta, O.; Pradhan, T.; Bhatia, R.; Monga, V. Recent advancements in anti-leishmanial research: Synthetic strategies and structural activity relationships. Eur. J. Med. Chem., 2021, 223, 113606.
[http://dx.doi.org/10.1016/j.ejmech.2021.113606] [PMID: 34171661]
[49]
Rečnik, L.M.; Kandioller, W.; Mindt, T.L. 1,4-Disubstituted 1,2,3-triazoles as amide bond surrogates for the stabilisation of linear peptides with biological activity. Mol., 2020, 25, 3576.
[http://dx.doi.org/10.3390/molecules25163576]
[50]
Neha, A.R.; Dwivedi, A.R.; Kumar, R.; Kumar, V. Recent synthetic strategies for monocyclic azole nucleus and its role in drug discovery and development. Curr. Org. Synth., 2018, 15(3), 321-340.
[http://dx.doi.org/10.2174/1570179414666171013154337]
[51]
Liang, X.Y.; Battini, N.; Sui, Y.F.; Ansari, M.F.; Gan, L.L.; Zhou, C.H. Aloe-emodin derived azoles as a new structural type of potential antibacterial agents: Design, synthesis, and evaluation of the action on membrane, DNA, and MRSA DNA isomerase. RSC Med. Chem., 2021, 12(4), 602-608.
[http://dx.doi.org/10.1039/D0MD00429D] [PMID: 34046631]
[52]
Tangadanchu, V.K.R.; Sui, Y.F.; Zhou, C.H. Isatin-derived azoles as new potential antimicrobial agents: Design, synthesis and biological evaluation. Bioorg. Med. Chem. Lett., 2021, 41, 128030.
[http://dx.doi.org/10.1016/j.bmcl.2021.128030] [PMID: 33839249]
[53]
Burdet, C.; Loubet, P.; Le Moing, V.; Vindrios, W.; Esposito-Farèse, M.; Linard, M.; Ferry, T.; Massias, L.; Tattevin, P.; Wolff, M.; Vandenesch, F.; Grall, N.; Quintin, C.; Mentré, F.; Duval, X.; Lescure, F.X. Efficacy of cloxacillin versus cefazolin for methicillin-susceptible Staphylococcus aureus bacteraemia (CloCeBa): Study protocol for a randomised, controlled, non-inferiority trial. BMJ Open, 2018, 8(8), e023151.
[http://dx.doi.org/10.1136/bmjopen-2018-023151] [PMID: 30173161]
[54]
Song, F.; Li, Z.; Bian, Y.; Huo, X.; Fang, J.; Shao, L.; Zhou, M. Indole/isatin‐containing hybrids as potential antibacterial agents. Arch. Pharm. (Weinheim), 2020, 353(10), 2000143.
[http://dx.doi.org/10.1002/ardp.202000143] [PMID: 32667714]
[55]
Qin, H.L.; Zhang, Z.W.; Ravindar, L.; Rakesh, K.P. Antibacterial activities with the structure-activity relationship of coumarin derivatives. Eur. J. Med. Chem., 2020, 207, 112832.
[http://dx.doi.org/10.1016/j.ejmech.2020.112832] [PMID: 32971428]
[56]
Chen, R.; Zhang, H.; Ma, T.; Xue, H.; Miao, Z.; Chen, L.; Shi, X. Ciprofloxacin-1,2,3-triazole-isatin hybrids tethered via amide: Design, synthesis, and in vitro anti-mycobacterial activity evaluation. Bioorg. Med. Chem. Lett., 2019, 29(18), 2635-2637.
[http://dx.doi.org/10.1016/j.bmcl.2019.07.041] [PMID: 31358466]
[57]
Yadav, P.; Lal, K.; Kumar, L.; Kumar, A.; Kumar, A.; Paul, A.K.; Kumar, R. Synthesis, crystal structure and antimicrobial potential of some fluorinated chalcone-1,2,3-triazole conjugates. Eur. J. Med. Chem., 2018, 155, 263-274.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.055] [PMID: 29890388]
[58]
Hou, Y.; Shang, C.; Wang, H.; Yun, J. Isatin–azole hybrids and their anticancer activities. Arch. Pharm. (Weinheim), 2020, 353(1), 1900272.
[http://dx.doi.org/10.1002/ardp.201900272] [PMID: 31691360]
[59]
Chaudhry, F.; Shahid, W.; al-Rashida, M.; Ashraf, M.; Ali Munawar, M.; Ain Khan, M. Synthesis of imidazole-pyrazole conjugates bearing aryl spacer and exploring their enzyme inhibition potentials. Bioorg. Chem., 2021, 108, 104686.
[http://dx.doi.org/10.1016/j.bioorg.2021.104686] [PMID: 33581666]
[60]
Cascioferro, S.; Parrino, B.; Carbone, D.; Schillaci, D.; Giovannetti, E.; Cirrincione, G.; Diana, P. Thiazoles, their benzofused systems, and thiazolidinone derivatives: Versatile and promising tools to combat antibiotic resistance. J. Med. Chem., 2020, 63(15), 7923-7956.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01245] [PMID: 32208685]
[61]
Liaras, K.; Fesatidou, M.; Geronikaki, A. Thiazoles and thiazolidinones as COX/LOX inhibitors. Molecules, 2018, 23(3), 685.
[http://dx.doi.org/10.3390/molecules23030685] [PMID: 29562646]
[62]
Kryshchyshyn, A.; Kaminskyy, D.; Grellier, P.; Lesyk, R. Thiazolidinone-related heterocyclic compounds as potential antitrypanosomal agents.In: Kuznetsov, A. Ed. Azoles - Synthesis, Properties, Applications and Perspectives; IntechOpen: London, UK, 2020.
[http://dx.doi.org/10.5772/intechopen.91861]
[63]
Melis, C.; Meleddu, R.; Angeli, A.; Distinto, S.; Bianco, G.; Capasso, C.; Cottiglia, F.; Angius, R.; Supuran, C.T.; Maccioni, E. Isatin: A privileged scaffold for the design of carbonic anhydrase inhibitors. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 68-73.
[http://dx.doi.org/10.1080/14756366.2016.1235042] [PMID: 27775452]
[64]
Sherifat, K.O.; Itohan, A.M.; Adeola, S.O.; Adeola, K.M.; Aderemi, O.L. Anti-fungal activity of Acalypha wilkesiana: A preliminary study of fungal isolates of clinical significance. Afr. J. Infect. Dis., 2021, 16(1), 21-30.
[http://dx.doi.org/10.21010/Ajid.v16i1.4] [PMID: 35047727]
[65]
Futuro, D.O.; Ferreira, P.G.; Nicoletti, C.D.; Borba-Santos, L.P.; Silva, F.C.D.; Rozental, S.; Ferreira, V.F. The antifungal activity of naphthoquinones: An integrative review. An. Acad. Bras. Cienc., 2018, 90((1 Suppl 2)(Suppl. 2)), 1187-1214.
[http://dx.doi.org/10.1590/0001-3765201820170815] [PMID: 29873671]
[66]
Yousfi, H.; Ranque, S.; Rolain, J.M.; Bittar, F. in vitro polymyxin activity against clinical multidrug-resistant fungi. Antimicrob. Resist. Infect. Control, 2019, 8(1), 66.
[http://dx.doi.org/10.1186/s13756-019-0521-7] [PMID: 31044071]
[67]
Bakht, M.A. Eco-friendly synthesis of isatin-thiazolidine hybrid using graphene oxide catalyst in deep eutectic solvent and further evaluated for antibacterial, anticancer and cytotoxic agents. Sustain. Chem. Pharm., 2020, 16, 100252.
[http://dx.doi.org/10.1016/j.scp.2020.100252]
[68]
El-Naggar, M.; Eldehna, W.M.; Almahli, H.; Elgez, A.; Fares, M.; Elaasser, M.M.; Abdel-Aziz, H.A. Novel thiazolidinone/thiazolo[3,2-a]benzimidazolone-isatin conjugates as apoptotic anti-proliferative agents towards breast cancer: One-pot synthesis and in vitro biological evaluation. Mol., 2018, 23, 1420.
[http://dx.doi.org/10.3390/molecules23061420]
[69]
Abdel-Aziz, H.; Eldehna, W.; Keeton, A.; Piazza, G.; Kadi, A.; Attwa, M.; Abdelhameed, A.; Attia, M. Isatin-benzoazine molecular hybrids as potential antiproliferative agents: Synthesis and in vitro pharmacological profiling. Drug Des. Devel. Ther., 2017, 11, 2333-2346.
[http://dx.doi.org/10.2147/DDDT.S140164] [PMID: 28848327]
[70]
Coxon, C.R.; Wong, C.; Bayliss, R.; Boxall, K.; Carr, K.H.; Fry, A.M.; Hardcastle, I.R.; Matheson, C.J.; Newell, D.R.; Sivaprakasam, M.; Thomas, H.; Turner, D.; Yeoh, S.; Wang, L.Z.; Griffin, R.J.; Golding, B.T.; Cano, C. Structure-guided design of purine-based probes for selective Nek2 inhibition. Oncotarget, 2017, 8(12), 19089-19124.
[http://dx.doi.org/10.18632/oncotarget.13249] [PMID: 27833088]
[71]
Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial activity of some essential oils-present status and future perspectives. Medicines, 2017, 4, 58.
[http://dx.doi.org/10.3390/medicines4030058]
[72]
Deng, J.J.; Deng, D.; Wang, Z.L.; Luo, X.C.; Chen, H.P.; Liu, S.Y.; Ma, X.Y.; Li, J.Z. Indole metabolism mechanisms in a new, efficient indole-degrading facultative anaerobe isolate Enterococcus hirae GDIAS-5. J. Hazard. Mater., 2022, 434, 128890.
[http://dx.doi.org/10.1016/j.jhazmat.2022.128890] [PMID: 35452978]
[73]
Izmest’ev, A.N.; Gazieva, G.А.; Kravchenko, A.N. Regioselectivity of (3+2) cycloaddition of azomethine ylides to activated olefins in the synthesis of spiro[oxindole-3,2′-pyrrolidine] derivatives. Chem. Heterocycl. Compd., 2020, 56(3), 255-264.
[http://dx.doi.org/10.1007/s10593-020-02654-z]
[74]
Ghadiri, S.; Bayat, M.; Hosseini, F.S. Synthesis of Spiro[indoline‐3,4′‐pyrano[3,2‐ c ]chromene]diones. J. Heterocycl. Chem., 2018, 55(12), 2693-2697.
[http://dx.doi.org/10.1002/jhet.3326]
[75]
Singh, G.; Kalra, P.; Singh, A.; Sharma, G. Sanchita; Pawan; Mohit; Espinosa-Ruíz, C.; Esteban, M.A. A quick microwave preparation of isatin hydrazone schiff base conjugated organosilicon compounds: Exploration of their antibacterial, antifungal, and antioxidative potentials. J. Organomet. Chem., 2021, 953, 122051.
[http://dx.doi.org/10.1016/j.jorganchem.2021.122051]
[76]
Hassan, A.U.; Sumrra, S.H. Exploring the bioactive sites of new sulfonamide metal chelates for multi-drug resistance: An experimental versus theoretical design. J. Inorg. Organomet. Polym. Mater., 2022, 32(2), 513-535.
[http://dx.doi.org/10.1007/s10904-021-02135-6]
[77]
Shoeibi, S.; Mashreghi, M. Biosynthesis of selenium nanoparticles using Enterococcus faecalis and evaluation of their antibacterial activities. J. Trace Elem. Med. Biol., 2017, 39, 135-139.
[http://dx.doi.org/10.1016/j.jtemb.2016.09.003] [PMID: 27908405]
[78]
Karalı, N.; Akdemir, A.; Göktaş, F.; Eraslan Elma, P.; Angeli, A.; KKızılırmak, M.; Supuran, C.T. Novel sulfonamide-containing 2-indolinones that selectively inhibit tumor-associated alpha carbonic anhydrases. Bioorg. Med. Chem., 2017, 25(14), 3714-3718.
[http://dx.doi.org/10.1016/j.bmc.2017.05.029] [PMID: 28545816]
[79]
Pervez, H.; Khan, N.; Zaib, S.; Yaqub, M.; Naseer, M.M.; Tahir, M.N.; Iqbal, J. Synthesis, X-ray molecular structure, biological evaluation and molecular docking studies of some N 4 -benzyl substituted 5-nitroisatin-3-thiosemicarbazones. Bioorg. Med. Chem., 2017, 25(3), 1022-1029.
[http://dx.doi.org/10.1016/j.bmc.2016.12.012] [PMID: 28011200]
[80]
Haj Mohammad Ebrahim Tehrani, K.; Hashemi, M.; Hassan, M.; Kobarfard, F.; Mohebbi, S. Synthesis and antibacterial activity of Schiff bases of 5-substituted isatins. Chin. Chem. Lett., 2016, 27(2), 221-225.
[http://dx.doi.org/10.1016/j.cclet.2015.10.027]
[81]
Silva, B.N.M.; Sales, Junior P.A.; Romanha, A.J.; Murta, S.M.F.; Lima, C.H.S.; Albuquerque, M.G.; D’Elia, E.; Rodrigues, J.G.A.; Ferreira, V.F.; Silva, F.C.; Pinto, A.C.; Silva, B.V. Synthesis of new thiosemicarbazones and semicarbazones containing the 1,2,3-1h-triazole-isatin scaffold: Trypanocidal, cytotoxicity, electrochemical assays, and molecular docking. Med. Chem., 2019, 15(3), 240-256.
[http://dx.doi.org/10.2174/1573406414666180912120502] [PMID: 30332972]
[82]
Acharya, P.T.; Bhavsar, Z.A.; Jethava, D.J.; Patel, D.B.; Patel, H.D. A review on development of bio-active thiosemicarbazide derivatives: Recent advances. J. Mol. Struct., 2021, 1226, 129268.
[http://dx.doi.org/10.1016/j.molstruc.2020.129268]
[83]
Wilkinson, H.N.; Iveson, S.; Catherall, P.; Hardman, M.J. A novel silver bioactive glass elicits antimicrobial efficacy against Pseudomonas aeruginosa and Staphylococcus aureus in an ex vivo skin wound biofilm model. Front. Microbiol., 2018, 9, 1450.
[http://dx.doi.org/10.3389/fmicb.2018.01450] [PMID: 30018606]
[84]
Gao, F.; Wang, T.; Gao, M.; Zhang, X.; Liu, Z.; Zhao, S.; Lv, Z.; Xiao, J. Benzofuran-isatin-imine hybrids tethered via different length alkyl linkers: Design, synthesis and in vitro evaluation of anti-tubercular and anti-bacterial activities as well as cytotoxicity. Eur. J. Med. Chem., 2019, 165, 323-331.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.042] [PMID: 30690301]
[85]
Sridhar, S.K.; Saravanan, M.; Ramesh, A. Synthesis and antibacterial screening of hydrazones, Schiff and Mannich bases of isatin derivatives. Eur. J. Med. Chem., 2001, 36(7-8), 615-625.
[http://dx.doi.org/10.1016/S0223-5234(01)01255-7] [PMID: 11600231]
[86]
Bogdanov, A.V.; Voloshina, A.D.; Sapunova, A.S.; Kulik, N.V.; Bukharov, S.V.; Dobrynin, A.B.; Voronina, J.K.; Terekhova, N.V.; Samorodov, A.V.; Pavlov, V.N.; Mironov, V.F. Isatin‐3‐acylhydrazones with enhanced lipophilicity: Synthesis, antimicrobial activity evaluation and the influence on hemostasis system. Chem. Biodivers., 2022, 19(2), e202100496.
[http://dx.doi.org/10.1002/cbdv.202100496] [PMID: 34958705]
[87]
Zhang, Y.Z.; Du, H.Z.; Liu, H.L.; He, Q.S.; Xu, Z. Isatin dimers and their biological activities. Arch. Pharm. (Weinheim), 2020, 353(3), 1900299.
[http://dx.doi.org/10.1002/ardp.201900299] [PMID: 31985855]
[88]
Ma, T. Chen, R.; Xue, H.; Miao, Z.; Chen, L.; Zhang, H.; Shi, X. Di-isatin heteronuclear compounds and their antibacterial activity. J. Heterocycl. Chem., 2020, 57(1), 503-509.
[http://dx.doi.org/10.1002/jhet.3781]
[89]
Varpe, B.D.; Kulkarni, A.A.; Jadhav, S.B.; Mali, A.S.; Jadhav, S.Y. Isatin hybrids and their pharmacological investigations. Mini Rev. Med. Chem., 2020, 21, 1182-1225.
[http://dx.doi.org/10.2174/1389557520999201209213029] [PMID: 33302835]
[90]
Ahmad, T.B.; Rudd, D.; Smith, J.; Kotiw, M.; Mouatt, P.; Seymour, L.M.; Liu, L.; Benkendorff, K. Anti-inflammatory activity and structure-activity relationships of brominated indoles from a marine mollusc. Mar. Drugs, 2017, 15, 133.
[http://dx.doi.org/10.3390/md15050133]
[91]
Rahman Neamah, S.; Hadi, Mohsin D.; Hameed Kamil, Z. Phytochemical screening and antibacterial effect of methanol extracts of Suaeda aegyptiaca leaves on Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, and Pseudomonas aeruginosa. Arch. Razi Inst., 2021, 76(5), 1343-1349.
[http://dx.doi.org/10.22092/ARI.2021.356133.1784] [PMID: 35355769]
[92]
Venkateshan, N.; Pharm, M. Biological evaluation of novel isatin analogues under the guidance of., n.d.
[93]
Al-Salem, H.S.; Arifuzzaman, M.; Alkahtani, H.M.; Abdalla, A.N.; Issa, I.S.; Alqathama, A.; Albalawi, F.S.; Rahman, A.F.M.M. A series of isatin-hydrazones with cytotoxic activity and CDK2 kinase inhibitory activity: A potential type II ATP competitive inhibitor. Molecules, 2020, 25(19), 4400.
[http://dx.doi.org/10.3390/molecules25194400] [PMID: 32992673]
[94]
Strzelecka, M.; Świątek, P. 1,2,4-Triazoles as important antibacterial agents. Pharm., 2021, 14, 224.
[http://dx.doi.org/10.3390/ph14030224]
[95]
Jiang, J.; Zhang, Q.; Guo, J.; Fang, S.; Zhou, R.; Zhu, J.; Chen, X.; Zhou, Y.; Zheng, C. Synthesis and biological evaluation of 7-methoxy-1-(3,4,5-trimethoxyphenyl)-4,5-dihydro-2H-benzo[e]indazoles as new colchicine site inhibitors. Bioorg. Med. Chem. Lett., 2019, 29(18), 2632-2634.
[http://dx.doi.org/10.1016/j.bmcl.2019.07.042] [PMID: 31362922]
[96]
Dheer, D.; Singh, V.; Shankar, R. Medicinal attributes of 1,2,3-triazoles: Current developments. Bioorg. Chem., 2017, 71, 30-54.
[http://dx.doi.org/10.1016/j.bioorg.2017.01.010] [PMID: 28126288]
[97]
Singh, A.; Fong, G.; Liu, J.; Wu, Y.H.; Chang, K.; Park, W.; Kim, J.; Tam, C.; Cheng, L.W.; Land, K.M.; Kumar, V. Synthesis and preliminary antimicrobial analysis of isatin–ferrocene and isatin–ferrocenyl chalcone conjugates. ACS Omega, 2018, 3(5), 5808-5813.
[http://dx.doi.org/10.1021/acsomega.8b00553] [PMID: 30023926]
[98]
Khalid, S.; Sumrra, S.H.; Chohan, Z.H.; Abstract, C. Isatin endowed metal chelates as antibacterial and antifungal agents. Sains Malays., 2020, 49(8), 1891-1904.
[http://dx.doi.org/10.17576/jsm-2020-4908-11]
[99]
Mohammad, H.; Younis, W.; Ezzat, H.G.; Peters, C.E.; AbdelKhalek, A.; Cooper, B.; Pogliano, K.; Pogliano, J.; Mayhoub, A.S.; Seleem, M.N. Bacteriological profiling of diphenylureas as a novel class of antibiotics against methicillin-resistant Staphylococcus aureus. PLoS One, 2017, 12(8), e0182821.
[http://dx.doi.org/10.1371/journal.pone.0182821] [PMID: 28797064]
[100]
Ezzat, A.; Mohamed, M.B.I.; Mahmoud, A.M.; Farag, R.S.; El-Tabl, A.S.; Ragab, A. Synthesis, spectral characterization, antimicrobial evaluation and molecular docking studies of new Cu (II), Zn (II) thiosemicarbazone based on sulfonyl isatin. J. Mol. Struct., 2022, 1251, 132004.
[http://dx.doi.org/10.1016/j.molstruc.2021.132004]
[101]
Singh, A.; Kaur, H.; Arora, S.; Bedi, P.M.S. Design, synthesis, and biological evaluation of novel morpholinated isatin–quinoline hybrids as potent anti-breast cancer agents. Arch. Pharm. (Weinheim), 2022, 355(2), 2100368.
[http://dx.doi.org/10.1002/ardp.202100368] [PMID: 34783073]
[102]
Jafari, E.; Khajouei, M.R.; Hassanzadeh, F.; Hakimelahi, G.H.; Khodarahmi, G.A. Quinazolinone and quinazoline derivatives: Recent structures with potent antimicrobial and cytotoxic activities. Res. Pharm. Sci., 2016, 11(1), 1-14.
[103]
Ding, Z.; Hou, P.; Liu, B. Gatifloxacin‐1,2,3‐triazole-isatin hybrids and their antimycobacterial activities. Arch. Pharm. (Weinheim), 2019, 352(10), 1900135.
[http://dx.doi.org/10.1002/ardp.201900135] [PMID: 31441087]
[104]
Al-blewi, F.F.; Almehmadi, M.A.; Aouad, M.R.; Bardaweel, S.K.; Sahu, P.K.; Messali, M.; Rezki, N.; El Ashry, E.S.H. Design, synthesis, ADME prediction and pharmacological evaluation of novel benzimidazole-1,2,3-triazole-sulfonamide hybrids as antimicrobial and antiproliferative agents. Chem. Cent. J., 2018, 12(1), 110.
[http://dx.doi.org/10.1186/s13065-018-0479-1] [PMID: 30387018]
[105]
Guo, H.Y.; Chen, Z.A.; Shen, Q.K.; Quan, Z.S. Application of triazoles in the structural modification of natural products. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 1115-1144.Available from:. https://Doi.Org/10.1080/14756366.2021.1890066
[http://dx.doi.org/10.1080/14756366.2021.1890066]
[106]
He, K.; Fu, Y.; Zhang, W.; Wang, C.; Jiang, Y-G.; Huang, F.; Xue, X. Harnessing synthesized abstraction images to improve facial attribute recognition. Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence Main track. Pages, 2018, pp. 733-740.
[http://dx.doi.org/10.24963/ijcai.2018/102]
[107]
Yang, M.; Liu, H.; Zhang, Y.; Wang, X.; Xu, Z. Moxifloxacin-isatin hybrids tethered by 1,2,3-triazole and their anticancer activities. Curr. Top. Med. Chem., 2020, 20(16), 1461-1467.
[http://dx.doi.org/10.2174/1568026620666200128144825] [PMID: 31994464]
[108]
Yan, X.; Lv, Z.; Wen, J.; Zhao, S.; Xu, Z. Synthesis and in vitro evaluation of novel substituted isatin-propylene-1H-1,2,3-triazole-4-methylene-moxifloxacin hybrids for their anti-mycobacterial activities. Eur. J. Med. Chem., 2018, 143, 899-904.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.090] [PMID: 29227930]
[109]
Hassan, A.S.; Moustafa, G.O.; Awad, H.M.; Nossier, E.S.; Mady, M.F. Design, synthesis, anticancer evaluation, enzymatic assays, and a molecular modeling study of novel pyrazole-indole hybrids. ACS Omega, 2021, 6(18), 12361-12374.
[http://dx.doi.org/10.1021/acsomega.1c01604] [PMID: 34056388]
[110]
Wang, R.; Yin, X.; Zhang, Y.; Yan, W. Design, synthesis and antimicrobial evaluation of propylene-tethered ciprofloxacin-isatin hybrids. Eur. J. Med. Chem., 2018, 156, 580-586.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.025] [PMID: 30025351]
[111]
Jiang, D.; Wang, G.Q.; Liu, X.; Zhang, Z.; Feng, L.S.; Liu, M.L. Isatin derivatives with potential antitubercular activities. J. Heterocycl. Chem., 2018, 55(6), 1263-1279.
[http://dx.doi.org/10.1002/jhet.3189]
[112]
Ezelarab, H.A.A.; Abbas, S.H.; Hassan, H.A.; Abuo-Rahma, G.E.D.A. Recent updates of fluoroquinolones as antibacterial agents. Arch. Pharm. (Weinheim), 2018, 351(9), 1800141.
[http://dx.doi.org/10.1002/ardp.201800141] [PMID: 30048015]
[113]
Guo, Y.; Xu, T.; Bao, C.; Liu, Z.; Fan, J.; Yang, R.; Qin, S. Design and synthesis of new norfloxacin-1,3,4-oxadiazole hybrids as antibacterial agents against methicillin-resistant Staphylococcus aureus (MRSA). Eur. J. Pharm. Sci., 2019, 136, 104966.
[http://dx.doi.org/10.1016/j.ejps.2019.104966] [PMID: 31233865]
[114]
Jia, Y.; Zhao, L. The antibacterial activity of fluoroquinolone derivatives: An update (2018-2021). Eur. J. Med. Chem., 2021, 224, 113741.
[http://dx.doi.org/10.1016/j.ejmech.2021.113741] [PMID: 34365130]
[115]
Liu, B.; Li, F.; Zhou, T.; Tang, X.Q.; Hu, G.W. Quinoline derivatives with potential activity against multidrug-resistant tuberculosis. J. Heterocycl. Chem., 2018, 55(8), 1863-1873.
[http://dx.doi.org/10.1002/jhet.3241]
[116]
Chauhan, G.; Pathak, D.P.; Ali, F.; Bhutani, R.; Kapoor, G.; Khasimbi, S. Advances in synthesis, derivatization and bioactivity of isatin: A review. Curr. Org. Synth., 2021, 18(1), 37-74.
[http://dx.doi.org/10.2174/1570179417666200924150907] [PMID: 32972348]
[117]
Zhang, J.; Wang, S.; Ba, Y.; Xu, Z. 1,2,4-Triazole-quinoline/quinolone hybrids as potential anti-bacterial agents. Eur. J. Med. Chem., 2019, 174, 1-8.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.033] [PMID: 31015103]
[118]
Yang, P.; Luo, J.B.; Wang, Z.Z.; Zhang, L.L.; Feng, J.; Xie, X.B.; Shi, Q.S.; Zhang, X.G. Synthesis, molecular docking, and evaluation of antibacterial activity of 1,2,4-triazole-norfloxacin hybrids. Bioorg. Chem., 2021, 115, 105270.
[http://dx.doi.org/10.1016/j.bioorg.2021.105270] [PMID: 34467939]
[119]
Su, Y.; Tang, X.; Zhu, L.; Yang, K.; Pan, L.; Li, H.; Chen, Z. Enhanced biosynthesis of fatty acids contributes to ciprofloxacin resistance in Pseudomonas aeruginosa. Front. Microbiol., 2022, 13, 845173.
[http://dx.doi.org/10.3389/fmicb.2022.845173] [PMID: 35547113]
[120]
Mohebbi, S.; Hassan, M.; Ghaffari, R.; Sardari, S.; Farahani, Y.F. Discovery of novel isatin-based thiosemicarbazones: Synthesis, antibacterial, antifungal, and antimycobacterial screening. Res. Pharm. Sci., 2020, 15(3), 281-290.
[http://dx.doi.org/10.4103/1735-5362.288435] [PMID: 33088328]
[121]
Ganim, M.A.; Baloglu, M.C.; Aygun, A.; Altunoglu, Y.C.; Sayiner, H.S.; Kandemirli, F.; Sen, F. Analysis of DNA protection, interaction and antimicrobial activity of isatin derivatives. Int. J. Biol. Macromol., 2019, 122, 1271-1278.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.084] [PMID: 30227206]
[122]
Saadon, K.E.; Taha, N.M.H.; Mahmoud, N.A.; Elhagali, G.A.M.; Ragab, A. Synthesis, characterization, and in vitro antibacterial activity of some new pyridinone and pyrazole derivatives with some in silico ADME and molecular modeling study. J. Iran. Chem. Soc., 2022, 19, 3899-3917.
[123]
Fedorowicz, J. Sączewski, J. Modifications of quinolones and fluoroquinolones: Hybrid compounds and dual-action molecules. Monatshefte Für Chemie - Chem. Mon., 2018, 149, 1199-1245.
[http://dx.doi.org/10.1007/s00706-018-2215-x]
[124]
Mangasuli, S.N. Microwave assisted synthesis and biological activity of a novel triazino indole-coumarin hybrid: Crystal structure, hirshfeld surface analysis and DFT calculations. Chem. Data Collect., 2020, 29, 100503.
[http://dx.doi.org/10.1016/j.cdc.2020.100503]
[125]
Guo, H.; Diao, Q.P. The anti-breast cancer potential of bis-isatin scaffolds. Curr. Top. Med. Chem., 2020, 20(16), 1499-1503.
[http://dx.doi.org/10.2174/1568026620666200310124416] [PMID: 32156238]
[126]
Bhagat, K.; Singh, J.V.; Sharma, A.; Kaur, A.; Kumar, N.; Gulati, H.K.; Singh, A.; Singh, H.; Bedi, P.M.S. Novel series of triazole containing coumarin and isatin based hybrid molecules as acetylcholinesterase inhibitors. J. Mol. Struct., 2021, 1245, 131085.
[http://dx.doi.org/10.1016/j.molstruc.2021.131085]
[127]
Fotopoulos, I.; Hadjipavlou-Litina, D. Hybrids of coumarin derivatives as potent and multifunctional bioactive agents: A review. Med. Chem., 2020, 16(3), 272-306.
[http://dx.doi.org/10.2174/1573406415666190416121448] [PMID: 31038071]
[128]
Mangasuli, S.N. Synthesis of novel isatin-dithiocarbamate hybrids: An approach to microwave and potent antimicrobial agents. Chem. Data Collect., 2020, 29, 100515.
[http://dx.doi.org/10.1016/j.cdc.2020.100515]
[129]
Khanna, L.; Singhal, S.; Jain, S.C.; Khanna, P. Spiro‐indolecoumarin hybrids: Synthesis, ADME, DFT, NBO studies and in silico screening through molecular docking on DNA G-quadruplex. ChemistrySelect, 2020, 5(11), 3420-3433.
[http://dx.doi.org/10.1002/slct.201904783] [PMID: 32328514]
[130]
Madni, M.; Ahmed, M.N.; Hafeez, M.; Ashfaq, M.; Tahir, M.N.; Gil, D.M.; Galmés, B.; Hameed, S.; Frontera, A. Recurrent π–π stacking motifs in three new 4,5-dihydropyrazolyl–thiazole–coumarin hybrids: X-ray characterization, Hirshfeld surface analysis and DFT calculations. New J. Chem., 2020, 44(34), 14592-14603.
[http://dx.doi.org/10.1039/D0NJ02931A]
[131]
Wang, G.; Sun, S.; Wu, B.; Liu, J. Coumarins as potential anti-drug resistant cancer agents: A mini review. Curr. Top. Med. Chem., 2021, 21(19), 1725-1736.
[http://dx.doi.org/10.2174/1568026620999201113110041] [PMID: 33185162]
[132]
Zeydi, M.M.; Kalantarian, S.J.; Kazeminejad, Z. Overview on developed synthesis procedures of coumarin heterocycles. J. Indian Chem. Soc., 2020, 17(12), 3031-3094.
[http://dx.doi.org/10.1007/s13738-020-01984-1]
[133]
Kumar, R.; Takkar, P. Repositioning of Isatin hybrids as novel anti-tubercular agents overcoming pre-existing antibiotics resistance. Med. Chem. Res., 2021, 30, 847-876.
[http://dx.doi.org/10.1007/s00044-021-02699-5]
[134]
Sherafati, M.; Mohammadi-Khanaposhtani, M.; Moradi, S.; Asgari, M.S.; Najafabadipour, N.; Faramarzi, M.A.; Mahdavi, M.; Biglar, M.; Larijani, B.; Hamedifar, H.; Hajimiri, M.H. Design, synthesis and biological evaluation of novel phthalimide-Schiff base-coumarin hybrids as potent α-glucosidase inhibitors. Chem. Pap., 2020, 74, 4379-4388.
[http://dx.doi.org/10.1007/s11696-020-01246-7]
[135]
Sanduja, M.; Gupta, J.; Singh, H.; Pagare, P.P.; Rana, A. Uracil-coumarin based hybrid molecules as potent anti-cancer and anti-bacterial agents. J. Saudi Chem. Soc., 2020, 24(2), 251-266.
[http://dx.doi.org/10.1016/j.jscs.2019.12.001]
[136]
Tan, Z.; Deng, J.; Ye, Q.; Zhang, Z. Triazole-containing hybrids with anti-Mycobacterium tuberculosis potential - Part I: 1,2,3-Triazole. Future Med. Chem., 2021, 13(7), 643-662.Available from:. https://Doi.Org/10.4155/Fmc-2020-0301
[http://dx.doi.org/10.4155/fmc-2020-0301]
[137]
Yerer, M.B.; Dayan, S.; Han, M.I.; Sharma, A.; Tuli, H.S.; Sak, K. Nanoformulations of coumarins and the hybrid molecules of coumarins with potential anticancer effects. Anticancer. Agents Med. Chem., 2020, 20(15), 1797-1816.
[http://dx.doi.org/10.2174/1871520620666200310094646] [PMID: 32156246]
[138]
Thadem, N.; Rajesh, M.; Das, S. Activator free diastereoselective 1,3-dipolar cycloaddition: A quick access to coumarin based spiro multi heterocyclic adducts. RSC Adv., 2021, 11(48), 29934-29938.
[http://dx.doi.org/10.1039/D1RA05070B] [PMID: 35480285]
[139]
Matiadis, D.; Sagnou, M. Pyrazoline hybrids as promising anticancer agents: An up-to-date overview. Int. J. Mol. Sci., 2020, 21, 5507.
[http://dx.doi.org/10.3390/ijms21155507]
[140]
Carceller-Ferrer, L.; Vila, C.; Blay, G.; Muñoz, M.C.; Pedro, J.R. Catalytic diastereo- and enantioselective vinylogous mannich reaction of alkylidenepyrazolones to isatin-derived ketimines. Org. Lett., 2021, 23(19), 7391-7395.
[http://dx.doi.org/10.1021/acs.orglett.1c02571] [PMID: 34553948]
[141]
Shakhatreh, M.A.; Al-Smadi, M.L.; Khabour, O.F.; Shuaibu, F.A.; Hussein, E.I.; Alzoubi, K.H. Study of the antibacterial and antifungal activities of synthetic benzyl bromides, ketones, and corresponding chalcone derivatives. Drug Des. Devel. Ther., 2016, 10, 3653-3660.
[http://dx.doi.org/10.2147/DDDT.S116312] [PMID: 27877017]
[142]
El-serwy, W.S.; Mohamed, N.A.; Kassem, E.M.M.; Nossier, E.S.; Al Shimaa, G.S. Novel 5-nitro isatin derivatives as DNA gyrase inhibitors: Synthesis, anti-microbial evaluation, molecular docking, ADMET predictions and QSAR studies. 7(4) Available from: http://pubs.iscience.in/journal/index.php/cbl/article/view/1083 (accessed on: April 26, 2022)
[143]
Cortes, E.; Mora, J.; Márquez, E. Modelling the anti-methicillin-resistant staphylococcus aureus (MRSA) activity of cannabinoids: A QSAR and docking study. Crystals (Basel), 2020, 10(8), 692.
[http://dx.doi.org/10.3390/cryst10080692]
[144]
Song, G.Q.; Wang, W.M.; Li, Z.S.; Wang, Y.; Wang, J.G. First identification of isatin-β-thiosemicarbazones as novel inhibitors of New Delhi metallo-β-lactamase-1: Chemical synthesis, biological evaluation and molecular simulation. Chin. Chem. Lett., 2018, 29(6), 899-902.
[http://dx.doi.org/10.1016/j.cclet.2017.09.035]
[145]
Wang, X.; Liu, J.; Xu, L.; Hao, Z.; Wang, L.; Xiao, J. Friedel–Crafts alkylation of heteroarenes and arenes with indolyl alcohols for construction of 3,3-disubstituted oxindoles. RSC Adv., 2015, 5(123), 101713-101717.
[http://dx.doi.org/10.1039/C5RA21919A]
[146]
Ashok, D.; Gundu, S.; Aamate, V.K.; Devulapally, M.G.; Bathini, R.; Manga, V. Dimers of coumarin-1,2,3-triazole hybrids bearing alkyl spacer: Design, microwave-assisted synthesis, molecular docking and evaluation as antimycobacterial and antimicrobial agents. J. Mol. Struct., 2018, 1157, 312-321.
[http://dx.doi.org/10.1016/j.molstruc.2017.12.080]
[147]
Zhao, B.; Zhang, X.; Yu, T.; Liu, Y.; Zhang, X.; Yao, Y.; Feng, X.; Liu, H.; Yu, D.; Ma, L.; Qin, S. Discovery of thiosemicarbazone derivatives as effective New Delhi metallo-β-lactamase-1 (NDM-1) inhibitors against NDM-1 producing clinical isolates. Acta Pharm. Sin. B, 2021, 11(1), 203-221.
[http://dx.doi.org/10.1016/j.apsb.2020.07.005] [PMID: 33532189]
[148]
Barros Freitas, L.A.; Caroline da Silva Santos, A.; de Cássia Silva, G.; Nayara do Nascimento Albuquerque, F.; Silva, E.D.; Alberto de Simone, C.; Alves Pereira, V.R.; Alves, L.C.; Brayner, F.A.; Lima, Leite A.C.; de Moraes Gomes, P.A.T. Structural improvement of new thiazolyl-isatin derivatives produces potent and selective trypanocidal and leishmanicidal compounds. Chem. Biol. Interact., 2021, 345, 109561.
[http://dx.doi.org/10.1016/j.cbi.2021.109561] [PMID: 34174251]
[149]
Wang, R.; Xu, K.; Shi, W. Quinolone derivatives: Potential anti-HIV agent-development and application. Arch. Pharm. (Weinheim), 2019, 352(9), 1900045.
[http://dx.doi.org/10.1002/ardp.201900045] [PMID: 31274223]
[150]
Sonmez, F.; Gunesli, Z.; Kurt, B.Z.; Gazioglu, I.; Avci, D.; Kucukislamoglu, M. Synthesis, antioxidant activity and SAR study of novel spiro-isatin-based Schiff bases. Mol. Divers., 2019, 23(4), 829-844.
[http://dx.doi.org/10.1007/s11030-018-09910-7] [PMID: 30612259]
[151]
Kaur, R.; Kumar, R.; Dogra, N.; Kumar, A.; Yadav, A.K.; Kumar, M. Synthesis and studies of thiazolidinedione-isatin hybrids as α-glucosidase inhibitors for management of diabetes. 2021, 13, 457-485.Available from:. https://Doi.Org/10.4155/Fmc-2020-0022
[http://dx.doi.org/10.4155/fmc-2020-0022]
[152]
Malah, T.E.; Farag, H.; Hemdan, B.A.; Abdel Mageid, R.E.; Abdelrahman, M.T.; El-Manawaty, M.A.; Nour, H.F. Synthesis, in vitro antimicrobial evaluation, and molecular docking studies of new isatin-1,2,3-triazole hybrids. J. Mol. Struct., 2022, 1250, 131855.
[http://dx.doi.org/10.1016/j.molstruc.2021.131855]
[153]
Ibrahim, H.S.; Abou-Seri, S.M.; Abdel-Aziz, H.A. 3-Hydrazinoindolin-2-one derivatives: Chemical classification and investigation of their targets as anticancer agents. Eur. J. Med. Chem., 2016, 122, 366-381.
[http://dx.doi.org/10.1016/j.ejmech.2016.06.034] [PMID: 27391135]
[154]
Ahmad, M.; Pervez, H.; Zaib, S.; Yaqub, M.; Naseer, M.M.; Khan, S.U.; Iqbal, J. Synthesis, biological evaluation and docking studies of some novel isatin-3-hydrazonothiazolines. RSC Advances, 2016, 6(65), 60826-60844.
[http://dx.doi.org/10.1039/C6RA10043K]
[155]
Abbasi, I.; Nadeem, H.; Saeed, A.; Kharl, H.A.A.; Tahir, M.N.; Naseer, M.M. Isatin-hydrazide conjugates as potent α-amylase and α-glucosidase inhibitors: Synthesis, structure and in vitro evaluations. Bioorg. Chem., 2021, 116, 105385.
[http://dx.doi.org/10.1016/j.bioorg.2021.105385] [PMID: 34600331]
[156]
Taha, M.; Alshamrani, F.J.; Rahim, F.; Hayat, S.; Ullah, H.; Zaman, K.; Imran, S.; Khan, K.M.; Naz, F. Synthesis of novel triazinoindole-based thiourea hybrid: A study on α-glucosidase inhibitors and their molecular docking. Mol, 2019, 24, 3819.
[http://dx.doi.org/10.3390/molecules24213819]
[157]
Scarim, C.B.; Pavan, F.R. Recent advancement in drug development of nitro(NO 2 )‐heterocyclic compounds as lead scaffolds for the treatment of Mycobacterium tuberculosis. Drug Dev. Res., 2022, 83(4), 842-858.
[http://dx.doi.org/10.1002/ddr.21921] [PMID: 35106801]
[158]
Belkafouf, N.E.H.; Triki Baara, F.; Altomare, A.; Rizzi, R.; Chouaih, A.; Djafri, A.; Hamzaoui, F. Synthesis, PXRD structural determination, Hirshfeld surface analysis and DFT/TD-DFT investigation of 3N-ethyl-2N′-(2-ethylphenylimino) thiazolidin-4-one. J. Mol. Struct., 2019, 1189, 8-20.
[http://dx.doi.org/10.1016/j.molstruc.2019.04.028]
[159]
Lv, Y.L.; Kong, F.Y.; Zhou, L.; Hu, Y.X.; Wang, Q.; Wang, Y.Q.; Li, X. 1, 10-phenanthroimidazole derivatives as efficient corrosion inhibitors for mild steel in 1 M HCl: Synthesis, gravimetric, electrochemical and theoretical investigation. J. Mol. Struct., 2021, 1228, 129746.
[http://dx.doi.org/10.1016/j.molstruc.2020.129746]
[160]
Dawood, K.M. An update on benzofuran inhibitors: A patent review. Expert Opin. Ther. Pat., 2019, 29, 841-870.Available from:. https://Doi.Org/10.1080/13543776.2019.1673727
[http://dx.doi.org/10.1080/13543776.2019.1673727]
[161]
Annunziata, F.; Pinna, C.; Dallavalle, S.; Tamborini, L.; Pinto, A. An overview of coumarin as a versatile and readily accessible scaffold with broad-ranging biological activities. Int. J. Mol. Sci., 2020, 21, 4618.
[http://dx.doi.org/10.3390/ijms21134618]
[162]
SSığırcık, G.; Yildirim, D.; Tüken, T. Synthesis and inhibitory effect of N,N′-bis(1-phenylethanol)ethylenediamine against steel corrosion in HCl media. Corros. Sci., 2017, 120, 184-193.
[http://dx.doi.org/10.1016/j.corsci.2017.03.003]
[163]
Adrir, M.S.; Dewi, R.S.; Sari, A.A. Aktivitas enzimatik isolat trametes spp. dari kebun raya baturraden dalam pewarna batik dengan variasi konsentrasi indigosol blue glukosa. BioEksakta. Jurnal Ilmiah Biologi Unsoed, 2020, 2(2), 174-180.
[http://dx.doi.org/10.20884/1.bioe.2020.2.2.1810]
[164]
Askri, S.; Dbeibia, A.; McHiri, C.; Boudriga, S.; Knorr, M.; Roulland, E.; Laprévote, O.; Saffon-merceron, N.; Gharbi, R. Antimicrobial activity and in silico molecular docking studies of pentacyclic spiro oxindole-2,3&pyrrolidines tethered with succinimide scaffolds. Appl. Sci., 2021, 12, 360.
[http://dx.doi.org/10.3390/app12010360]
[165]
Islam, M.S.; Haukka, M.; Soliman, S.M.; Al-Majid, A.M.; Rahman, A.F.M.M.; Bari, A.; Barakat, A. Regio- and stereoselective synthesis of spiro-heterocycles bearing the pyrazole scaffold via [3+2] cycloaddition reaction. J. Mol. Struct., 2022, 1250, 131711.
[http://dx.doi.org/10.1016/j.molstruc.2021.131711]
[166]
Sakly, R.; Edziri, H.; Askri, M.; Knorr, M.; Strohmann, C.; Mastouri, M. One-pot four-component domino strategy for the synthesis of novel spirooxindole-pyrrolidine/pyrrolizidine-linked 1,2,3-triazole conjugates via stereo- and regioselective [3+2] cycloaddition reactions: In vitro antibacterial and antifungal studies. C. R. Chim., 2018, 21(1), 41-53.
[http://dx.doi.org/10.1016/j.crci.2017.11.009]
[167]
Hammouda, M.B.; Boudriga, S.; Hamden, K.; Askri, M.; Knorr, M.; Strohmann, C.; Brieger, L.; Krupp, A.; Anouar, E.H.; Snoussi, M.; Aouadi, K.; Kadri, A. New spiropyrrolothiazole derivatives bearing an oxazolone moiety as potential antidiabetic agent: Design, synthesis, crystal structure, Hirshfeld surface analysis, ADME and molecular docking studies. J. Mol. Struct., 2022, 1254, 132398.
[http://dx.doi.org/10.1016/j.molstruc.2022.132398]
[168]
Akhavan, M.; Bekhradnia, A. Stereoselective synthesis of spirocyclic pyrrolidines/pyrrolizidines/pyrrolothiazolidines using L -proline functionalized manganese ferrite nanorods as a novel heterogeneous catalyst. RSC Adv., 2021, 11(24), 14755-14768.
[http://dx.doi.org/10.1039/D1RA00841B] [PMID: 35423973]
[169]
Toumi, A.; Boudriga, S.; Hamden, K.; Daoud, I.; Askri, M.; Soldera, A.; Lohier, J.F.; Strohmann, C.; Brieger, L.; Knorr, M. Diversity-oriented synthesis of spiropyrrolo[1,2- a]isoquinoline derivatives via diastereoselective and regiodivergent three-component 1,3-dipolar cycloaddition reactions: In vitro and in vivo evaluation of the antidiabetic activity of rhodanine analogues. J. Org. Chem., 2021, 86(19), 13420-13445.
[http://dx.doi.org/10.1021/acs.joc.1c01544] [PMID: 34546053]
[170]
Boudriga, S.; Haddad, S.; Murugaiyah, V.; Askri, M.; Knorr, M.; Strohmann, C.; Golz, C. Three-component access to functionalized spiropyrrolidine heterocyclic scaffolds and their cholinesterase inhibitory activity. Mol, 2020, 25, 1963.
[http://dx.doi.org/10.3390/molecules25081963]
[171]
Fahmi, M.R.G.; Khumaidah, L.; Ilmiah, T.K.; Fadlan, A.; Santoso, M. 2-Thiophenecarboxylic acid hydrazide derivatives: Synthesis and anti-tuberculosis studies. IOP Conf. Ser. Mater. Sci. Eng.,20 September 2017Indonesia2018, 349, p. 012039.
[http://dx.doi.org/10.1088/1757-899X/349/1/012039]
[172]
Khanna, G.; Aggarwal, K.; Khurana, J.M. Efficient catalyst-free synthesis of diversified bis (spirooxindoles) via one-pot, threecomponent reaction. 2016, 46, 1880-1886.Available from:. http://Dx.Doi.Org/10.1080/00397911.2016.1233437
[http://dx.doi.org/10.1080/00397911.2016.1233437]
[173]
Arshad, M.; Jadoon, M.; Iqbal, Z.; Fatima, M.; Ali, M.; Ayub, K.; Qureshi, A.M.; Ashraf, M.; Arshad, M.N.; Asiri, A.M.; Waseem, A.; Mahmood, T. Synthesis, molecular structure, quantum mechanical studies and urease inhibition assay of two new isatin derived sulfonylhydrazides. J. Mol. Struct., 2017, 1133, 80-89.
[http://dx.doi.org/10.1016/j.molstruc.2016.11.065]
[174]
Kang, I.J.; Wang, L.W.; Hsu, T.A.; Yueh, A.; Lee, C.C.; Lee, Y.C.; Lee, C.Y.; Chao, Y.S.; Shih, S.R.; Chern, J.H. Isatin-β-thiosemicarbazones as potent herpes simplex virus inhibitors. Bioorg. Med. Chem. Lett., 2011, 21(7), 1948-1952.
[http://dx.doi.org/10.1016/j.bmcl.2011.02.037] [PMID: 21356589]
[175]
Zhang, Y.; Wang, R.; Zhang, T.; Yan, W.; Chen, Y.; Zhang, Y.; Zhou, M. Benzofuran-isatin-hydroxylimine/thiosemicarbazide hybrids: Design, synthesis and in vitro anti-mycobacterial activity evaluation. Chin. Chem. Lett., 2019, 30(3), 653-655.
[http://dx.doi.org/10.1016/j.cclet.2018.11.032]
[176]
Pervez, H.; Ramzan, M.; Yaqub, M.; Mohammed Khan, K. Synthesis, cytotoxic and phytotoxic effects of some new n4-aryl substituted isatin-3-thiosemicarbazones. Lett. Drug Des. Discov., 2011, 8(5), 452-458.
[http://dx.doi.org/10.2174/157018011795514159]
[177]
Balachandran, C.; Haribabu, J.; Jeyalakshmi, K.; Bhuvanesh, N.S.P.; Karvembu, R.; Emi, N.; Awale, S. Nickel(II) bis(isatin thiosemicarbazone) complexes induced apoptosis through mitochondrial signaling pathway and G0/G1 cell cycle arrest in IM-9 cells. J. Inorg. Biochem., 2018, 182, 208-221.
[http://dx.doi.org/10.1016/j.jinorgbio.2018.02.014] [PMID: 29510336]
[178]
Rahim, F.; Taha, M.; Iqbal, N.; Hayat, S.; Qureshi, F.; Uddin, I.; Zaman, K.; Rab, A.; Wadood, A.; Uddin, N.; Nawaz, M.; Shah, S.A.A.; Khan, K.M. Isatin based thiosemicarbazide derivatives as potential inhibitor of α-glucosidase, synthesis and their molecular docking study. J. Mol. Struct., 2020, 1222, 128922.
[http://dx.doi.org/10.1016/j.molstruc.2020.128922]
[179]
Fan, Y.L.; Liu, M.; Zhang, F.; Zhang, S. Design, synthesis and in vitro antitubercular evaluation of isatin-ciprofloxacin hybrids with hydrogen bonding capacity. J. Heterocycl. Chem., 2018, 55(6), 1494-1498.
[http://dx.doi.org/10.1002/jhet.3157]
[180]
Xu, Z.; Song, X.F.; Fan, J.; Lv, Z.S. Design, synthesis, and in vitro anti-mycobacterial evaluation of propylene-1 H -1,2,3-triazole-4-methylene-tethered (thio)semicarbazone-isatin-moxifloxacin hybrids. J. Heterocycl. Chem., 2018, 55(1), 77-82.
[http://dx.doi.org/10.1002/jhet.3004]
[181]
Packialakshmi, P.; Gobinath, P.; Vijayakumar, K.; Ali, D.; Alarifi, S.; Ravindran, B. PitchaiSangan, R.; Surendrakumar, R. Synthesis of isatin derivatives using silver nanoparticles as green catalyst: Study of molecular docking interactions in SARS-CoV-2 3c-like protease and determination of cytotoxic activities of the compounds. J. Nanomater., 2021, 2021, 1-17.
[http://dx.doi.org/10.1155/2021/7241699]
[182]
Kumar, S.; Bains, T.; Won Kim, A.S.; Tam, C.; Kim, J.; Cheng, L.W.; Land, K.M.; Debnath, A.; Kumar, V. Highly potent 1H-1,2,3-triazole-tethered isatin-metronidazole conjugates against anaerobic foodborne, waterborne, and sexually-transmitted protozoal parasites. Front. Cell. Infect. Microbiol., 2018, 8, 380.
[http://dx.doi.org/10.3389/fcimb.2018.00380] [PMID: 30425970]
[183]
Pervez, H.; Manzoor, N.; Yaqub, M.; Khan, A.; Khan, K.; Nasim, F.H.; Choudhary, M. Synthesis and urease inhibitory properties of some New N4-substituted 5-nitroisatin-3-thiosemicarbazones. Lett. Drug Des. Discov., 2010, 7(2), 102-108.
[http://dx.doi.org/10.2174/157018010790225840]
[184]
Ragab, A.; Ammar, Y.A.; Ezzat, A.; Mahmoud, A.M.; Mohamed, M.B.I.; El-Tabl, A.S.; Farag, R.S. Synthesis, characterization, thermal properties, antimicrobial evaluation, ADMET study, and molecular docking simulation of new mono Cu (II) and Zn (II) complexes with 2-oxoindole derivatives. Comput. Biol. Med., 2022, 145, 105473.
[http://dx.doi.org/10.1016/j.compbiomed.2022.105473] [PMID: 35395516]
[185]
Elsayed, Z.M.; Eldehna, W.M.; Abdel-Aziz, M.M.; El Hassab, M.A.; Elkaeed, E.B.; Al-Warhi, T.; Abdel-Aziz, H.A.; Abou-Seri, S.M.; Mohammed, E.R. Development of novel isatin–nicotinohydrazide hybrids with potent activity against susceptible/resistant Mycobacterium tuberculosis and bronchitis causing-bacteria. J. Enzyme Inhib. Med. Chem., 2021, 36(1), 384-392.
[http://dx.doi.org/10.1080/14756366.2020.1868450] [PMID: 33406941]
[186]
Jeankumar, V.U.; Alokam, R.; Sridevi, J.P.; Suryadevara, P.; Matikonda, S.S.; Peddi, S.; Sahithi, S.; Alvala, M.; Yogeeswari, P.; Sriram, D. Discovery and structure optimization of a series of isatin derivatives as Mycobacterium tuberculosis chorismate mutase inhibitors. Chem. Biol. Drug Des., 2014, 83(4), 498-506.
[http://dx.doi.org/10.1111/cbdd.12265] [PMID: 24636345]
[187]
Elsaman, T.; Mohamed, M.S.; Eltayib, E.M.; Abdel-aziz, H.A.; Abdalla, A.E.; Munir, M.U.; Mohamed, M.A. Isatin derivatives as broad-spectrum antiviral agents: The current landscape. Med. Chem. Res., 2022, 31(2), 244-273.
[http://dx.doi.org/10.1007/s00044-021-02832-4] [PMID: 35039740]
[188]
Kumar, S.; Saha, S.T.; Gu, L.; Palma, G.; Perumal, S.; Singh-Pillay, A.; Singh, P.; Anand, A.; Kaur, M.; Kumar, V. 1 H -1,2,3-triazole tethered nitroimidazole–isatin conjugates: Synthesis, docking, and anti-proliferative evaluation against breast cancer. ACS Omega, 2018, 3(9), 12106-12113.
[http://dx.doi.org/10.1021/acsomega.8b01513] [PMID: 30320289]
[189]
Nath, P.; Mukherjee, A.; Mukherjee, S.; Banerjee, S.; Das, S.; Banerjee, S. Isatin: A scaffold with immense biodiversity. Mini Rev. Med. Chem., 2021, 21(9), 1096-1112.
[http://dx.doi.org/10.2174/2211536609666201125115559] [PMID: 33238872]
[190]
Sharma, B.; Kumar, S.; Preeti, M.D.; Johansen, M.D.; Kremer, L.; Kumar, V. 1 H ‐1,2,3‐triazole embedded isatin-benzaldehydebis(heteronuclearhydrazones): Design, synthesis, antimycobacterial, and cytotoxic evaluation. Chem. Biol. Drug Des., 2022, 99(2), 301-307.
[http://dx.doi.org/10.1111/cbdd.13984] [PMID: 34786862]
[191]
Raghav, N.; Kaur, R. A comparative account of sar studies of semicarbazones and thiosemicarbazones on cathepsins H and L. Med. Chem. Res., 2017, 26(8), 1723-1734.
[http://dx.doi.org/10.1007/s00044-017-1826-9]
[192]
Pape, V.F.S.; Tóth, S.; Füredi, A.; Szebényi, K.; Lovrics, A.; Szabó, P.; Wiese, M.; Szakács, G. Design, synthesis and biological evaluation of thiosemicarbazones, hydrazinobenzothiazoles and arylhydrazones as anticancer agents with a potential to overcome multidrug resistance. Eur. J. Med. Chem., 2016, 117, 335-354.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.078] [PMID: 27161177]
[193]
Pervez, H.; Khan, N.; Iqbal, J.; Zaib, S.; Yaqub, M.; Naseer, M.M. Synthesis and in vitro bio-activity evaluation of N4-benzyl substituted 5-chloroisatin-3-thiosemicarbazones as urease and glycation inhibitors. Acta Chim. Slov., 2018, 65(1), 108-118.
[http://dx.doi.org/10.17344/acsi.2017.3649] [PMID: 29562103]
[194]
Kumar, S.; Choudhary, M. Synthetic aromatic organic compounds bearing 4, 4-dimethyl-3-thiosemicarbazide moiety: Theoretical and experimental approach. Polycyclic Aromatic Compounds, 2022.Available from:. https://Doi.Org/10.1080/10406638.2022.2036777
[http://dx.doi.org/10.1080/10406638.2022.2036777]