Evaluation of the Mechanism of Action of Rosemary Volatile Oil in the Treatment of Alzheimer's Disease Using Gas Chromatography -mass Spectrometry Analysis and Network Pharmacology

Page: [2321 - 2332] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Objective: This study aimed to investigate the active components and mechanism of action of rosemary volatile oil for treating Alzheimer's disease (AD) using network pharmacology.

Methods: We obtained the constituents of the rosemary volatile oil by searching Chinese herbal systemic pharmacological databases and analytical platforms and constructed the constituent-target networks by predicting and screening the action targets of the rosemary volatile oil constituents using SwissTargetPrediction, metaTarFisher, and Pubchem. We obtained the AD-related targets using the Genecards, OMIM, and DisGeNET databases and constructed the protein-protein interaction networks (PPI) using the STRING database in Venny 2.1.0 graph to identify the cross-targets by screening the core-acting targets. Cytoscape 3.8.2 software was used to construct a componenttarget- pathway network to screen the potential active components of the rosemary volatile oil for the treatment of AD and predict the mechanism of action of the rosemary volatile oil for the treatment of AD in combination with existing pharmacological studies. We performed a gene ontology (GO) biological process and a Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the targets of the rosemary volatile oil for the treatment of AD using R language and molecular docking using Discovery Studio 4.0 software to validate their biological activities.

Results: A network constructed using gas chromatography-mass spectrometry (GC-MS) analysis identified 26 potentially active ingredients in the rosemary volatile oil. We retrieved a total of 10762 AD targets from Genecards and other databases. Our GO enrichment analysis yielded 39 entries (P < 0.05), including 14 entries for biological processes, five entries for cellular composition, and 20 entries for molecular function. A total of 14 entries (P < 0.05) were then enriched in the KEGG pathway that primarily involved the IL-17 signaling pathway and the AGE-RAGE pathway.

Conclusion: The active components of rosemary volatile oil had good inhibition of the inflammatory response. This study provides a reference and guidance for the in-depth study on rosemary volatile oil for the treatment of AD.

Keywords: Network pharmacology, Rosemary volatile oil, Alzheimer's disease, Mechanism.

[1]
2020 Alzheimer’s disease facts and figures. Alzheimers Dement., 2020, 16(3), 391-460.
[http://dx.doi.org/10.1002/alz.12068]
[2]
Landolt, H.P.; Wehrle, R. Antagonism of serotonergic 5-HT 2A/2C receptors: mutual improvement of sleep, cognition and mood? Eur. J. Neurosci., 2009, 29(9), 1795-1809.
[http://dx.doi.org/10.1111/j.1460-9568.2009.06718.x] [PMID: 19473234]
[3]
Vallée, A.; Vallée, J.N.; Guillevin, R.; Lecarpentier, Y. Riluzole: a therapeutic strategy in Alzheimer’s disease by targeting the WNT/β-catenin pathway. Aging (Albany NY), 2020, 12(3), 3095-3113.
[http://dx.doi.org/10.18632/aging.102830] [PMID: 32035419]
[4]
Qiu, S.; Joshi, P.S.; Miller, M.I.; Xue, C.; Zhou, X.; Karjadi, C.; Chang, G.H.; Joshi, A.S.; Dwyer, B.; Zhu, S.; Kaku, M.; Zhou, Y.; Alderazi, Y.J.; Swaminathan, A.; Kedar, S.; Saint-Hilaire, M.H.; Auerbach, S.H.; Yuan, J.; Sartor, E.A.; Au, R.; Kolachalama, V.B. Development and validation of an interpretable deep learning framework for Alzheimer’s disease classification. Brain, 2020, 143(6), 1920-1933.
[http://dx.doi.org/10.1093/brain/awaa137] [PMID: 32357201]
[5]
Domínguez-Álvaro, M.; Montero-Crespo, M.; Blazquez-Llorca, L.; Insausti, R.; DeFelipe, J.; Alonso-Nanclares, L. Three-dimensional analysis of synapses in the transentorhinal cortex of Alzheimer’s disease patients. Acta Neuropathol. Commun., 2018, 6(1), 20.
[http://dx.doi.org/10.1186/s40478-018-0520-6] [PMID: 29499755]
[6]
Wang, W.; Sang, S.C. Research progress on the pathogenesis of Alzheimer’s disease and clinical use of drugs. China Drug Evaluation., 2019, 36(03), 204-209.
[7]
Chang, T.Y.; Chang, C. ApoE and lipid homeostasis in Alzheimer’s disease: Introduction to the thematic review series. J. Lipid Res., 2017, 58(5), 823.
[http://dx.doi.org/10.1194/jlr.R075697] [PMID: 28258088]
[8]
Ringman, J.M. Update on Alzheimer’s and the dementias. Neurol. Clin., 2017, 35(2), 171-174.
[http://dx.doi.org/10.1016/j.ncl.2017.01.009] [PMID: 28410654]
[9]
Ling, X.; Sheng, G.; Dawei, Q.; Wenxing, W.; Fanshu, B.; Yue, Z. Study on the potential mechanism of action of Bajhen Puzzle Formula in the treatment of Alzheimer’s disease based on network pharmacology and molecular docking techniques. J. Nanjing Univ. Trad. Chinese Med., 2020, 36(06), 876-881.
[10]
Min, Y. Advances in the study of the causes and pathogenesis of Alzheimer’s disease. Shiyong Laonian Yixue, 2017, 31(05), 402-406.
[11]
Zhi, L.; Linlin, F.; Hongliang, L.; Jingjing, L.; Qiran, T.; Shuxian, L. Current status and new advances in the pharmacological treatment of Alzheimer’s disease. Southwest Defense Medicine., 2018, 28(01), 85-87.
[12]
Kim, H.J.; Jung, S.W.; Kim, S.Y.; Cho, I.H.; Kim, H.C.; Rhim, H.; Kim, M.; Nah, S.Y. Panax ginseng as an adjuvant treatment for Alzheimer’s disease. J. Ginseng Res., 2018, 42(4), 401-411.
[http://dx.doi.org/10.1016/j.jgr.2017.12.008] [PMID: 30337800]
[13]
Li, X.T.; Zhou, J.C.; Zhou, Y.; Ren, Y.S.; Huang, Y.H.; Wang, S.M.; Tan, L.; Yang, Z.Y.; Ge, Y.W. Pharmacological effects of Eleutherococcus senticosus on the neurological disorders. Phytother. Res., 2022, ptr.7555.
[http://dx.doi.org/10.1002/ptr.7555] [PMID: 35844057]
[14]
Jiang, N.; Wei, S.; Zhang, Y.; He, W.; Pei, H.; Huang, H.; Wang, Q.; Liu, X. Protective effects and mechanism of radix polygalae against neurological diseases as well as effective substance. Front. Psychiatry, 2021, 12, 688703.
[http://dx.doi.org/10.3389/fpsyt.2021.688703] [PMID: 34975553]
[15]
Meng, P.; Yoshida, H.; Matsumiya, T.; Imaizumi, T.; Tanji, K.; Xing, F.; Hayakari, R.; Dempoya, J.; Tatsuta, T.; Aizawa-Yashiro, T.; Mimura, J.; Kosaka, K.; Itoh, K.; Satoh, K. Carnosic acid suppresses the production of amyloid-β 1–42 by inducing the metalloprotease gene TACE/ADAM17 in SH-SY5Y human neuroblastoma cells. Neurosci. Res., 2013, 75(2), 94-102.
[http://dx.doi.org/10.1016/j.neures.2012.11.007] [PMID: 23257508]
[16]
Meng, P.; Yoshida, H.; Tanji, K.; Matsumiya, T.; Xing, F.; Hayakari, R.; Wang, L.; Tsuruga, K.; Tanaka, H.; Mimura, J.; Kosaka, K.; Itoh, K.; Takahashi, I.; Kawaguchi, S.; Imaizumi, T. Carnosic acid attenuates apoptosis induced by amyloid-β 1–42 or 1–43 in SH-SY5Y human neuroblastoma cells. Neurosci. Res., 2015, 94, 1-9.
[http://dx.doi.org/10.1016/j.neures.2014.12.003] [PMID: 25510380]
[17]
Rasoolijazi, H.; Azad, N.; Joghataei, M.T.; Kerdari, M.; Nikbakht, F.; Soleimani, M. The protective role of carnosic acid against beta-amyloid toxicity in rats. ScientificWorldJ., 2013, 2013, 1-5.
[http://dx.doi.org/10.1155/2013/917082] [PMID: 24363627]
[18]
Hui, L.; Liu, K.; Xiyu, C.; Aihua, D.; Fengying, L. Extraction and pharmacological effects of efficacious components of rosemary. Agricult. Prod. Process., 2020, (16), 63-66.
[19]
Maczurek, A.; Shanmugam, K.; Münch, G. Inflammation and the redox-sensitive AGE-RAGE pathway as a therapeutic target in Alzheimer’s disease. Ann. N. Y. Acad. Sci., 2008, 1126(1), 147-151.
[http://dx.doi.org/10.1196/annals.1433.026] [PMID: 18448809]
[20]
El-Esawi, M.A.; Elansary, H.O.; El-Shanhorey, N.A.; Abdel-Hamid, A.M.E.; Ali, H.M.; Elshikh, M.S. Salicylic acid-regulated antioxidant mechanisms and gene expression enhance rosemary performance under saline conditions. Front. Physiol., 2017, 8, 716.
[http://dx.doi.org/10.3389/fphys.2017.00716] [PMID: 28983254]
[21]
Shengnan, L.; Yunfang, M.; Guihong, D.; Xiucheng, Z.; Xiang, Q. Research progress on the application of rosemary and its extracts in food preservation. China Season., 2019, 44(06), 181-185.
[22]
Meng, W.; Jun, X.X. Recent research progress on chemical composition and pharmacological effects of rosemary. Biomass Chem. Engineer., 2016, 50(03), 51-57.
[23]
Zongyang, M.D.; Coco, J.; Shitang, M.; Wenzheng, J. Network pharmacology and molecular docking based approach to explore the active compounds of Dagenia for the treatment of novel coronavirus pneumonia (COVID-19). Chin. Herb. Med., 2020, 51(04), 836-844.
[24]
Xiaoshui, C.; Hongwei, H.; Zhaoyang, B.; Gangling, T.; Qingyuan, H. Advances in the application of gas chromatography-tandem mass spectrometry (GC-MS/MS). J. Mass Spectrom., 2013, 34(05), 308-320.
[25]
Xue, Shujuan GC-MS combined with retention index method to resolve the chemical composition of volatile oil of Taixing Ju. Chinese J. Exper. Formul., 2022, 28(15), 120-128.
[http://dx.doi.org/10.13422/j.cnki.syfjx.20211864]
[26]
Jiankun, W. Study on the mechanism of action and clinical observation of sugar kidney formula for diabetic nephropathy based on GEO differential gene analysis and network pharmacology; Tianjin University of Chinese Medicine, 2021.
[27]
Zheng, X.; Xianjin, W.; Ting, L.; Dan, L. Reflections and explorations on the pharmacological mechanism of action of traditional Chinese medicine based on network biology approach. Chin. J. Trad. Chin. Med., 2012, 37(02), 146-151.
[28]
Otasek, D.; Morris, J.H.; Bouças, J.; Pico, A.R.; Demchak, B. Cytoscape Automation: empowering workflow-based network analysis. Genome Biol., 2019, 20(1), 185.
[http://dx.doi.org/10.1186/s13059-019-1758-4] [PMID: 31477170]
[29]
Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; Jensen, L.J.; von Mering, C. The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res., 2021, 49(D1), D605-D612.
[http://dx.doi.org/10.1093/nar/gkaa1074] [PMID: 33237311]
[30]
Wu, T.; Hu, E.; Xu, S.; Chen, M.; Guo, P.; Dai, Z.; Feng, T.; Zhou, L.; Tang, W.; Zhan, L.; Fu, X.; Liu, S.; Bo, X.; Yu, G. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation, 2021, 2(3), 100141.
[http://dx.doi.org/10.1016/j.xinn.2021.100141] [PMID: 34557778]
[31]
Zhong, H.; Zhao, M.; Wu, C.; Zhang, J.; Chen, L.; Sun, J. Development of oxoisoaporphine derivatives with topoisomerase I inhibition and reversal of multidrug resistance in breast cancer MCF-7/ADR cells. Eur. J. Med. Chem., 2022, 235, 114300.
[http://dx.doi.org/10.1016/j.ejmech.2022.114300] [PMID: 35339100]
[32]
Zhiqiang, L.; Bolong, W. Research progress on the screening and target prediction of pharmacodynamic components in Chinese medicine network pharmacology. Chinese Patent Medicine, 2019, 41(01), 171-8.
[33]
Zhao, Q.; Zhifeng, L.; Ciying, X.; Huang, B.; Meng, Y.; Jie, Z. Predicting the action targets and cellular signaling pathways of Cuscuta sinensis in Alzheimer's disease based on network pharmacology. J. Hubei Univ. National. (Medical Edition), 2020, 37(04), 16-21.
[34]
Ozarowski, M.; Mikolajczak, P.L.; Bogacz, A.; Gryszczynska, A.; Kujawska, M.; Jodynis-Liebert, J.; Piasecka, A.; Napieczynska, H.; Szulc, M.; Kujawski, R.; Bartkowiak-Wieczorek, J.; Cichocka, J.; Bobkiewicz-Kozlowska, T.; Czerny, B.; Mrozikiewicz, P.M. Rosmarinus officinalis L. leaf extract improves memory impairment and affects acetylcholinesterase and butyrylcholinesterase activities in rat brain. Fitoterapia, 2013, 91, 261-271.
[http://dx.doi.org/10.1016/j.fitote.2013.09.012] [PMID: 24080468]
[35]
Rasoolijazi, H.; Mehdizadeh, M.; Soleimani, M.; Nikbakhte, F.; Eslami Farsani, M.; Ababzadeh, S. The effect of rosemary extract on spatial memory, learning and antioxidant enzymes activities in the hippocampus of middle-aged rats. Med. J. Islam. Repub. Iran, 2015, 29, 187.
[PMID: 26034740]
[36]
Chiarini, A.; Armato, U.; Hu, P.; Dal Prà, I. Danger-sensing/patten recognition receptors and neuroinflammation in Alzheimer’s Disease. Int. J. Mol. Sci., 2020, 21(23), 9036.
[http://dx.doi.org/10.3390/ijms21239036] [PMID: 33261147]
[37]
Quach, T.T.; Moutal, A.; Khanna, R.; Deems, N.P.; Duchemin, A.M.; Barrientos, R.M. Collapsin response mediator proteins: novel targets for alzheimer’s disease. J. Alzheimers Dis., 2020, 77(3), 949-960.
[http://dx.doi.org/10.3233/JAD-200721] [PMID: 32804096]
[38]
Kiyota, T.; Yamamoto, M.; Xiong, H.; Lambert, M.P.; Klein, W.L.; Gendelman, H.E.; Ransohoff, R.M.; Ikezu, T. CCL2 accelerates microglia-mediated Abeta oligomer formation and progression of neurocognitive dysfunction. PLoS One, 2009, 4(7), e6197.
[http://dx.doi.org/10.1371/journal.pone.0006197] [PMID: 19593388]
[39]
Ashutosh, K.W.; Kou, W.; Cotter, R.; Borgmann, K.; Wu, L.; Persidsky, R.; Sakhuja, N.; Ghorpade, A. CXCL8 protects human neurons from amyloid-β-induced neurotoxicity: Relevance to Alzheimer’s disease. Biochem. Biophys. Res. Commun., 2011, 412(4), 565-571.
[http://dx.doi.org/10.1016/j.bbrc.2011.07.127] [PMID: 21840299]
[40]
Conway, M.; Nafar, F.; Straka, T.; Mearow, K. Modulation of amyloid-β protein precursor expression by HspB1. J. Alzheimers Dis., 2014, 42(2), 435-450.
[http://dx.doi.org/10.3233/JAD-140348] [PMID: 24898650]
[41]
Akhter, R.; Sanphui, P.; Das, H.; Saha, P.; Biswas, S.C. The regulation of p53 up-regulated modulator of apoptosis by JNK/c-Jun pathway in β-amyloid-induced neuron death. J. Neurochem., 2015, 134(6), 1091-1103.
[http://dx.doi.org/10.1111/jnc.13128] [PMID: 25891762]