Abstract
Chimeric antigen receptor (CAR T) cell treatment for solid tumours faces significant challenges.
CAR T cells are unable to pass the vascular barrier in tumours due to a lack of endothelial leukocyte
adhesion molecules. The invasion, activity, and durability of CAR T cells may be hampered by
additional immunosuppressive mechanisms present in the solid tumour environment. The use of CAR
T cells to attack cancer vascular endothelial metabolic targets from within the blood may simplify the
fight against cancer. These are the principles that govern our examination of CAR T cell treatment for
tumor cells, with a specific eye toward tumour venous delivery. CAR T cells may also be designed
such that they can be readily, safely, and successfully transferred.
Keywords:
Solid tumor, angiogenesis, targeted therapy, CAR T cells, blood diffusion, tumour.
Graphical Abstract
[24]
Griffioen, A.W.; Damen, C.A.; Blijham, G.H.; Groenewegen, G. Tumor angiogenesis is accompanied by a decreased inflammatory response of tumor-associated endothelium. Blood, 1996, 88, 667-673.
[51]
van Beijnum, J.R.; Griffioen, A.W. In silico analysis of angiogenesis associated gene expression identifies angiogenic stage related profiles. Biochim. Biophys. Acta Rev. Cancer, 2005, 1755, 121-134.
[54]
Goveia, J.; Rohlenova, K.; Taverna, F.; Treps, L.; Conradi, L.C.; Pircher, A.; Geldhof, V.; de Rooij, L.P.M.H.; Kalucka, J.; Sokol, L.; García-Caballero, M.; Zheng, Y.; Qian, J.; Teuwen, L.A.; Khan, S.; Boeckx, B.; Wauters, E.; Decaluwé, H.; De Leyn, P.; Vansteenkiste, J.; Weynand, B.; Sagaert, X.; Verbeken, E.; Wolthuis, A.; Topal, B.; Everaerts, W.; Bohnenberger, H.; Emmert, A.; Panovska, D.; De Smet, F.; Staal, F.J.T.; Mclaughlin, R.J.; Impens, F.; Lagani, V.; Vinckier, S.; Mazzone, M.; Schoonjans, L.; Dewerchin, M.; Eelen, G.; Karakach, T.K.; Yang, H.; Wang, J.; Bolund, L.; Lin, L.; Thienpont, B.; Li, X.; Lambrechts, D.; Luo, Y.; Carmeliet, P. An integrated gene expression landscape profiling approach to identify lung tumor endothelial cell heterogeneity and Angiogenic candidates.
Cancer Cell, 2020,
37(1), 21-36.e13.
[
http://dx.doi.org/10.1016/j.ccell.2019.12.001] [PMID:
31935371]
[60]
Xing, H.; Yang, X.; Xu, Y.; Tang, K.; Tian, Z.; Chen, Z.; Zhang, Y.; Xue, Z.; Rao, Q.; Wang, M. Anti-tumor effects of vascular endothelial growth factor/vascular endothelial growth factor receptor binding domain-modified chimeric antigen receptor T cells. Cytotherapy, 2021, 23, 810-819.
[86]
Kloss, C.C.; Lee, J.; Zhang, A.; Chen, F.; Melenhorst, J.J.; Lacey, S.F.; Maus, M.V.; Fraietta, J.A.; Zhao, Y.; June, C.H. Dominant-negative TGF-β receptor enhances PSMA-targeted human CAR T cell proliferation and augments prostate Cancer eradication. Mol. Ther., 2018, 26, 1855-1866.
[119]
Lesch, S.; Blumenberg, V.; Stoiber, S.; Gottschlich, A.; Ogonek, J.; Cadilha, B.L.; Dantes, Z.; Rataj, F.; Dorman, K.; Lutz, J.; Karches, C.H.; Heise, C.; Kurzay, M.; Larimer, B.M.; Grassmann, S.; Rapp, M.; Nottebrock, A.; Kruger, S.; Tokarew, N.; Metzger, P.; Hoerth, C.; Benmebarek, M.R.; Dhoqina, D.; Grünmeier, R.; Seifert, M.; Oener, A.; Umut, Ö.; Joaquina, S.; Vimeux, L.; Tran, T.; Hank, T.; Baba, T.; Huynh, D.; Megens, R.T.A.; Janssen, K.P.; Jastroch, M.; Lamp, D.; Ruehland, S.; Di Pilato, M.; Pruessmann, J.N.; Thomas, M.; Marr, C.; Ormanns, S.; Reischer, A.; Hristov, M.; Tartour, E.; Donnadieu, E.; Rothenfusser, S.; Duewell, P.; König, L.M.; Schnurr, M.; Subklewe, M.; Liss, A.S.; Halama, N.; Reichert, M.; Mempel, T.R.; Endres, S.; Kobold, S. T cells armed with C-X-C chemokine receptor type 6 enhance adoptive cell therapy for pancreatic tumours.
Nat. Biomed. Eng., 2021,
5(11), 1246-1260.
[
http://dx.doi.org/10.1038/s41551-021-00737-6] [PMID:
34083764]
[122]
Yin, Y.; Boesteanu, A.C.; Binder, Z.A.; Xu, C.; Reid, R.A.; Rodriguez, J.L.; Cook, D.R.; Thokala, R.; Blouch, K.; McGettigan-Croce, B. Checkpoint blockade reverses Anergy in IL-13Rα2 humanized scFv-based CAR T cells to treat murine and canine gliomas. Mol. Ther. Oncol., 2018, 11, 20-38.