Inorganic Phosphate (Pi) in the Breast Cancer Microenvironment: Production, Transport and Signal Transduction as Potential Targets for Anticancer Strategies

Page: [187 - 198] Pages: 12

  • * (Excluding Mailing and Handling)

Abstract

Tumor cells develop a high demand for inorganic phosphate (Pi) due to their high growth rates and energy requirements. Serum Pi concentrations in cancer patients have been found to be two to four times higher than baseline levels in healthy individuals. Twofold Pi accumulation was observed in breast cancer cells in the mouse tumor microenvironment. In the breast tumoral microenvironment, ectonucleotidases and ectophosphatases—presenting catalytic sites facing the extracellular environment—could be involved in the extracellular release of Pi to be internalized by Pi transporters to fuel the high energy requirement typical of cancer cells. Two Pi transporters were characterized in breast cancer cells (Na+-dependent and H+-dependent) with strong associations with tumor processes such as proliferation, migration, adhesion, and epithelium-mesenchymal transition (EMT). Moreover, a high extracellular Pi concentration stimulates ROS production in triple-negative breast cancer cells by Pi transport stimulation. Several compounds show a potent ability to inhibit ectonucleotidases, ectophosphatases, Pi transporters, and Pi-modulated signal pathways in breast cancer cells and regulate proliferation, migration, adhesion, and EMT. This review article aimed to gather the relevant experimental records regarding Pi's effects on the breast cancer microenvironment and points to possible inhibitors for ectonucleotidases, ectophosphatases, Pi transporters, and Pi-modulated signal pathways as potential chemotherapeutic agents or Pi acting as a potent enhancer of classical chemical-induced cytotoxicity in triple-negative breast cancer cells.

Keywords: Inorganic Phosphate, Breast Cancer Microenvironment, Ectonucleotidase, Ectophosphatases, H+-dependent Pi transport, Na+-dependent Pi transport.

Graphical Abstract

[1]
Lacerda-Abreu, M.A.; Russo-Abrahão, T.; Monteiro, R.Q.; Rumjanek, F.D.; Meyer-Fernandes, J.R. Inorganic phosphate transporters in cancer: Functions, molecular mechanisms and possible clinical applications. Biochim. Biophys. Acta Rev. Cancer, 2018, 1870(2), 291-298.
[http://dx.doi.org/10.1016/j.bbcan.2018.05.001] [PMID: 29753110]
[2]
Brown, R.B.; Razzaque, M.S. Phosphate toxicity and tumorigenesis. Biochim. Biophys. Acta Rev. Cancer, 2018, 1869(2), 303-309.
[http://dx.doi.org/10.1016/j.bbcan.2018.04.007] [PMID: 29684520]
[3]
Elser, J.J.; Kyle, M.M.; Smith, M.S.; Nagy, J.D. Biological stoichiometry in human cancer. PLoS One, 2007, 2(10), e1028.
[http://dx.doi.org/10.1371/journal.pone.0001028] [PMID: 17925876]
[4]
Papaloucas, C.D.; Papaloucas, M.D.; Kouloulias, V.; Neanidis, K.; Pistevou-Gompaki, K.; Kouvaris, J.; Zygogianni, A.; Mystakidou, K.; Papaloucas, A.C. Measurement of blood phosphorus: A quick and inexpensive method for detection of the existence of cancer in the body. Too good to be true, or forgotten knowledge of the past? Med. Hypotheses, 2014, 82(1), 24-25.
[http://dx.doi.org/10.1016/j.mehy.2013.10.028] [PMID: 24252275]
[5]
Bobko, A.A.; Eubank, T.D.; Driesschaert, B.; Dhimitruka, I.; Evans, J.; Mohammad, R.; Tchekneva, E.E.; Dikov, M.M.; Khramtsov, V.V. Interstitial inorganic phosphate as a tumor microenvironment marker for tumor progression. Sci. Rep., 2017, 7(1), 41233.
[http://dx.doi.org/10.1038/srep41233] [PMID: 28117423]
[6]
Chen, Y.; Lu, B.; Yang, Q.; Fearns, C.; Yates, J.R., III; Lee, J.D. Combined integrin phosphoproteomic analyses and small interfering RNA--based functional screening identify key regulators for cancer cell adhesion and migration. Cancer Res., 2009, 69(8), 3713-3720.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2515] [PMID: 19351860]
[7]
Olsen, J.V.; Blagoev, B.; Gnad, F.; Macek, B.; Kumar, C.; Mortensen, P.; Mann, M. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell, 2006, 127(3), 635-648.
[http://dx.doi.org/10.1016/j.cell.2006.09.026] [PMID: 17081983]
[8]
Alvarez, C.L.; Troncoso, M.F.; Espelt, M.V. Extracellular ATP and adenosine in tumor microenvironment: Roles in epithelial– mesenchymal transition, cell migration, and invasion. J. Cell. Physiol., 2022, 237(1), 389-400.
[http://dx.doi.org/10.1002/jcp.30580] [PMID: 34514618]
[9]
Lacerda-Abreu, M.A.; Russo-Abrahão, T.; Leite Tenório Aguiar, R.; Monteiro, R.Q.; Rumjanek, F.D.; Meyer-Fernandes, J.R. Ectophosphatase activity in the triple‐negative breast cancer cell line MDA‐MB‐231. Cell Biol. Int., 2021, 45(2), 411-421.
[http://dx.doi.org/10.1002/cbin.11497] [PMID: 33140880]
[10]
Zimmermann, H. Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedebergs Arch. Pharmacol., 2000, 362(4-5), 299-309.
[http://dx.doi.org/10.1007/s002100000309] [PMID: 11111825]
[11]
Zimmermann, H. Prostatic acid phosphatase, a neglected ectonucleotidase. Purinergic Signal., 2009, 5(3), 273-275.
[http://dx.doi.org/10.1007/s11302-009-9157-z] [PMID: 19322680]
[12]
Forster, I.C.; Hernando, N.; Biber, J.; Murer, H. Phosphate transporters of the SLC20 and SLC34 families. Mol. Aspects Med., 2013, 34(2-3), 386-395.
[http://dx.doi.org/10.1016/j.mam.2012.07.007] [PMID: 23506879]
[13]
Wagner, C.A.; Hernando, N.; Forster, I.C.; Biber, J. The SLC34 family of sodium-dependent phosphate transporters. Pflugers Arch., 2014, 466(1), 139-153.
[http://dx.doi.org/10.1007/s00424-013-1418-6] [PMID: 24352629]
[14]
Lacerda-Abreu, M.A.; Russo-Abrahão, T.; Meyer-Fernandes, J.R. The roles of sodium-independent inorganic phosphate transporters in inorganic phosphate homeostasis and in cancer and other diseases. Int. J. Mol. Sci., 2020, 21(23), 9298.
[http://dx.doi.org/10.3390/ijms21239298] [PMID: 33291240]
[15]
Schetinger, M.R.C.; Morsch, V.M.; Bonan, C.D.; Wyse, A.T.S. NTPDase and 5′-nucleotidase activities in physiological and disease conditions: New perspectives for human health. Biofactors, 2007, 31(2), 77-98.
[http://dx.doi.org/10.1002/biof.5520310205] [PMID: 18806312]
[16]
Meyer- Fernandes. J.R.; Meyer‐Fernandes, J.R. Release of inorganic phosphate into the tumor environment: Possible roles of ectonucleotidases and ecto‐phosphatases. Novel Approach Cancer Study, 2019, 3(4), 289-293.
[http://dx.doi.org/10.31031/NACS.2019.03.000568]
[17]
Stagg, J.; Smyth, M.J. Extracellular adenosine triphosphate and adenosine in cancer. Oncogene, 2010, 29(39), 5346-5358.
[http://dx.doi.org/10.1038/onc.2010.292] [PMID: 20661219]
[18]
Iqbal, J. Ectonucleotidases: Potential target in drug discovery and development. Mini Rev. Med. Chem., 2019, 19(11), 866-869.
[http://dx.doi.org/10.2174/138955751911190517102116] [PMID: 31379303]
[19]
Kawai, Y.; Kaidoh, M.; Yokoyama, Y.; Ohhashi, T. Cell surface F 1/F o ATP synthase contributes to interstitial flow-mediated development of the acidic microenvironment in tumor tissues. Am. J. Physiol. Cell Physiol., 2013, 305(11), C1139-C1150.
[http://dx.doi.org/10.1152/ajpcell.00199.2013] [PMID: 24067918]
[20]
do Carmo Araújo, M.; Batista Teixeira Rocha, J.; Morsch, A.; Zanin, R.; Bauchspiess, R.; Maria Morsch, V.; Rosa Chitolina Schetinger, M. Enzymes that hydrolyze adenine nucleotides in platelets from breast cancer patients. Biochim. Biophys. Acta Mol. Basis Dis., 2005, 1740(3), 421-426.
[http://dx.doi.org/10.1016/j.bbadis.2004.11.001] [PMID: 15949710]
[21]
Zhou, J.Z.; Riquelme, M.A.; Gao, X.; Ellies, L.G.; Sun, L.Z.; Jiang, J.X. Differential impact of adenosine nucleotides released by osteocytes on breast cancer growth and bone metastasis. Oncogene, 2015, 34(14), 1831-1842.
[http://dx.doi.org/10.1038/onc.2014.113] [PMID: 24837364]
[22]
Yang, S.Y.; Lee, J.; Park, C.G.; Kim, S.; Hong, S.; Chung, H.C.; Min, S.K.; Han, J.W.; Lee, H.W.; Lee, H.Y. Expression of autotaxin (NPP-2) is closely linked to invasiveness of breast cancer cells. Clin. Exp. Metastasis, 2002, 19(7), 603-608.
[http://dx.doi.org/10.1023/A:1020950420196] [PMID: 12498389]
[23]
Zhi, X.; Chen, S.; Zhou, P.; Shao, Z.; Wang, L.; Ou, Z.; Yin, L. RNA interference of ecto-5′-nucleotidase (CD73) inhibits human breast cancer cell growth and invasion. Clin. Exp. Metastasis, 2007, 24(6), 439-448.
[http://dx.doi.org/10.1007/s10585-007-9081-y] [PMID: 17587186]
[24]
Zhou, P.; Zhi, X.; Zhou, T.; Chen, S.; Li, X.; Wang, L.; Yin, L.; Shao, Z.; Ou, Z. Overexpression of Ecto-5′-Nucleotidase (CD73) promotes T-47D human breast cancer cells invasion and adhesion to extracellular matrix. Cancer Biol. Ther., 2007, 6(3), 426-431.
[http://dx.doi.org/10.4161/cbt.6.3.3762] [PMID: 17471030]
[25]
Wang, L.; Zhou, X.; Zhou, T.; Ma, D.; Chen, S.; Zhi, X.; Yin, L.; Shao, Z.; Ou, Z.; Zhou, P. Ecto-5′-nucleotidase promotes invasion, migration and adhesion of human breast cancer cells. J. Cancer Res. Clin. Oncol., 2008, 134(3), 365-372.
[http://dx.doi.org/10.1007/s00432-007-0292-z] [PMID: 17671792]
[26]
Petruk, N.; Tuominen, S.; Åkerfelt, M.; Mattsson, J.; Sandholm, J.; Nees, M.; Yegutkin, G.G.; Jukkola, A.; Tuomela, J.; Selander, K.S. CD73 facilitates EMT progression and promotes lung metastases in triple-negative breast cancer. Sci. Rep., 2021, 11(1), 6035.
[http://dx.doi.org/10.1038/s41598-021-85379-z] [PMID: 33727591]
[27]
Yang, X.; Pei, S.; Wang, H.; Jin, Y.; Yu, F.; Zhou, B.; Zhang, H.; Zhang, D.; Lin, D. Tiamulin inhibits breast cancer growth and pulmonary metastasis by decreasing the activity of CD73. BMC Cancer, 2017, 17(1), 255.
[http://dx.doi.org/10.1186/s12885-017-3250-4] [PMID: 28399915]
[28]
Loose, J.H.; Damjanov, I.; Harris, H. Identity of the neoplastic alkaline phosphatase as revealed with monoclonal antibodies to the placental form of the enzyme. Am. J. Clin. Pathol., 1984, 82(2), 173-177.
[http://dx.doi.org/10.1093/ajcp/82.2.173] [PMID: 6380267]
[29]
Wada, H.G.; Shindelman, J.E.; Ortmeyer, A.E.; Sussman, H.H. Demonstration of placental alkaline phosphatase in human breast cancer. Int. J. Cancer, 1979, 23(6), 781-787.
[http://dx.doi.org/10.1002/ijc.2910230608] [PMID: 468412]
[30]
Kato, M.; Brijlall, D.; Adler, S.A.; Kato, S.; Herz, F. Effect of hyperosmolality on alkaline phosphatase and stress-response protein 27 of MCF-7 breast cancer cells. Breast Cancer Res. Treat., 1992, 23(3), 241-249.
[http://dx.doi.org/10.1007/BF01833521] [PMID: 1463864]
[31]
Tsai, L.C.; Hung, M.W.; Chen, Y.H.; Su, W.C.; Chang, G.G.; Chang, T.C. Expression and regulation of alkaline phosphatases in human breast cancer MCF-7 cells. Eur. J. Biochem., 2000, 267(5), 1330-1339.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01100.x] [PMID: 10691970]
[32]
Vincent, J.B.; Crowder, M.W.; Averill, B.A. Hydrolysis of phosphate monoesters: A biological problem with multiple chemical solutions. Trends Biochem. Sci., 1992, 17(3), 105-110.
[http://dx.doi.org/10.1016/0968-0004(92)90246-6] [PMID: 1412693]
[33]
Furuya, T.; Zhong, L.; Meyer‐Fernandes, J.R.; Lu, H.; Moreno, S.N.J.; Docampo, R. Ecto‐protein tyrosine phosphatase activity in trypanosoma cruzi infective stages. Mol. Biochem. Parasitol., 1998, 92, 339-348.
[http://dx.doi.org/10.1016/S0166-6851(97)00246-6]
[34]
Moss, D.W.; Raymond, F.D.; Wile, D.B.; Rej, R. Clinical and biological aspects of acid phosphatase. Crit. Rev. Clin. Lab. Sci., 1995, 32(4), 431-467.
[http://dx.doi.org/10.3109/10408369509084690] [PMID: 7576159]
[35]
Muniyan, S.; Chaturvedi, N.; Dwyer, J.; LaGrange, C.; Chaney, W.; Lin, M.F. Human prostatic acid phosphatase: Structure, function and regulation. Int. J. Mol. Sci., 2013, 14(5), 10438-10464.
[http://dx.doi.org/10.3390/ijms140510438] [PMID: 23698773]
[36]
Quintero, I.B.; Araujo, C.L.; Pulkka, A.E.; Wirkkala, R.S.; Herrala, A.M.; Eskelinen, E.L.; Jokitalo, E.; Hellström, P.A.; Tuominen, H.J.; Hirvikoski, P.P.; Vihko, P.T. Prostatic acid phosphatase is not a prostate specific target. Cancer Res., 2007, 67(14), 6549-6554.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1651] [PMID: 17638863]
[37]
Chen, D.R.; Chien, S-Y.; Kuo, S-J.; Teng, Y-H.; Tsai, H-T.; Kuo, J-H.; Chung, J-G. SLC34A2 as a novel marker for diagnosis and targeted therapy of breast cancer. Anticancer Res., 2010, 30(10), 4135-4140.
[PMID: 21036732]
[38]
Russo-Abrahão, T.; Lacerda-Abreu, M.A.; Gomes, T. Cosentino- Gomes, D.; Carvalho-de-Araújo, A.D.; Rodrigues, M.F.; Oliveira, A.C.L.; Rumjanek, F.D.; Monteiro, R.Q.; Meyer-Fernandes, J.R. Characterization of inorganic phosphate transport in the triplenegative breast cancer cell line, MDA-MB-231. PLoS One, 2018, 13(2), e0191270.
[http://dx.doi.org/10.1371/journal.pone.0191270] [PMID: 29415049]
[39]
Leslie, T.K.; James, A.D.; Zaccagna, F.; Grist, J.T.; Deen, S.; Kennerley, A.; Riemer, F.; Kaggie, J.D.; Gallagher, F.A.; Gilbert, F.J.; Brackenbury, W.J. Sodium homeostasis in the tumour microenvironment. Biochim. Biophys. Acta Rev. Cancer, 2019, 1872(2), 188304.
[http://dx.doi.org/10.1016/j.bbcan.2019.07.001] [PMID: 31348974]
[40]
Lacerda-Abreu, M.A.; Russo-Abrahão, T.; Meyer-Fernandes, J.R. Resveratrol is an inhibitor of sodium‐dependent inorganic phosphate transport in triple‐negative MDA‐MB‐231 breast cancer cells. Cell Biol. Int., 2021, 45(8), 1768-1775.
[http://dx.doi.org/10.1002/cbin.11616] [PMID: 33851766]
[41]
Wang, Y.; Catana, F.; Yang, Y.; Roderick, R.; van Breemen, R.B. An LC-MS method for analyzing total resveratrol in grape juice, cranberry juice, and in wine. J. Agric. Food Chem., 2002, 50(3), 431-435.
[http://dx.doi.org/10.1021/jf010812u] [PMID: 11804508]
[42]
Gomez, L.S.; Zancan, P.; Marcondes, M.C.; Ramos-Santos, L.; Meyer-Fernandes, J.R.; Sola-Penna, M.; Da Silva, D. Resveratrol decreases breast cancer cell viability and glucose metabolism by inhibiting 6-phosphofructo-1-kinase. Biochimie, 2013, 95(6), 1336-1343.
[http://dx.doi.org/10.1016/j.biochi.2013.02.013] [PMID: 23454376]
[43]
Jung, K-H.; Lee, J.H.; Thien Quach, C.H.; Paik, J-Y.; Oh, H.; Park, J.W.; Lee, E.J.; Moon, S-H.; Lee, K-H. Resveratrol suppresses cancer cell glucose uptake by targeting reactive oxygen species mediated hypoxia‐inducible factor‐1 activation. J. Nucl. Med., 2013, 54(12), 2161-2167.
[http://dx.doi.org/10.2967/jnumed.112.115436]
[44]
Sun, Y.; Zhou, Q.M.; Lu, Y.Y.; Zhang, H.; Chen, Q.L.; Zhao, M.; Su, S.B. Resveratrol inhibits the migration and metastasis of MDAMB‐ 231 human breast cancer by reversing TGF‐β1‐induced epithelial‐ mesenchymal transition. Molecules, 2019, 24(6), 1131.
[http://dx.doi.org/10.3390/molecules24061131] [PMID: 30901941]
[45]
Liu, S.; Wicha, M.S. Targeting breast cancer stem cells. J. Clin. Oncol. Off J. Am. Soc. Clin. Oncol., 2010, 28(25), 4006-4012.
[http://dx.doi.org/10.1200/JCO.2009.27.5388]
[46]
Al-Hajj, M.; Wicha, M.S.; Benito-Hernandez, A.; Morrison, S.J.; Clarke, M.F. Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. U.S.A, 2003, 100(7), 3983-3988.
[http://dx.doi.org/10.1073/pnas.0530291100]
[47]
Heddleston, J.M.; Li, Z.; Lathia, J.D.; Bao, S.; Hjelmeland, A.B.; Rich, J.N. Hypoxia inducible factors in cancer stem cells. Br. J. Cancer, 2010, 102(5), 789-795.
[http://dx.doi.org/10.1038/sj.bjc.6605551] [PMID: 20104230]
[48]
Ge, G.; Zhou, C.; Ren, Y.; Tang, X.; Wang, K.; Zhang, W.; Niu, L.; Zhou, Y.; Yan, Y.; He, J. Enhanced SLC34A2 in breast cancer stem cell-like cells induces chemotherapeutic resistance to doxorubicin via SLC34A2-Bmi1-ABCC5 signaling. Tumour Biol., 2016, 37(4), 5049-5062.
[http://dx.doi.org/10.1007/s13277-015-4226-0] [PMID: 26546432]
[49]
Lacerda-Abreu, M.A.; Russo-Abrahão, T.; Cosentino-Gomes, D.; Nascimento, M.T.C.; Carvalho-Kelly, L.F.; Gomes, T.; Rodrigues, M.F.; König, S.; Rumjanek, F.D.; Monteiro, R.Q. Meyer- Fernandes, J.R. H+-dependent inorganic phosphate transporter in breast cancer cells: Possible functions in the tumor microenvironment. Biochim. Biophys. Acta Mol. Basis Dis., 2019, 1865(9), 2180-2188.
[http://dx.doi.org/10.1016/j.bbadis.2019.04.015] [PMID: 31034992]
[50]
Bowen, J.W.; Levinson, C. Phosphate concentration and transport in Ehrlich ascites tumor cells: Effect of sodium. J. Cell. Physiol., 1982, 110(2), 149-154.
[http://dx.doi.org/10.1002/jcp.1041100207] [PMID: 7068772]
[51]
Loghman-Adham, M. Use of phosphonocarboxylic acids as inhibitors of sodium-phosphate cotransport. Gen. Pharmacol., 1996, 27(2), 305-312.
[http://dx.doi.org/10.1016/0306-3623(95)02017-9] [PMID: 8919647]
[52]
Ito, M.; Matsuka, N.; Izuka, M.; Haito, S.; Sakai, Y.; Nakamura, R.; Segawa, H.; Kuwahata, M.; Yamamoto, H.; Pike, W.J.; Miyamoto, K. Characterization of inorganic phosphate transport in osteoclast- like cells. Am. J. Physiol. Cell Physiol., 2005, 288(4), C921-C931.
[http://dx.doi.org/10.1152/ajpcell.00412.2004] [PMID: 15601753]
[53]
Candeal, E.; Caldas, Y.A.; Guillén, N.; Levi, M.; Sorribas, V. Na + -independent phosphate transport in Caco2BBE cells. Am. J. Physiol. Cell Physiol., 2014, 307(12), C1113-C1122.
[http://dx.doi.org/10.1152/ajpcell.00251.2014] [PMID: 25298422]
[54]
Yang, J.; Weinberg, R.A. Epithelial-mesenchymal transition: At the crossroads of development and tumor metastasis. Dev. Cell, 2008, 14(6), 818-829.
[http://dx.doi.org/10.1016/j.devcel.2008.05.009] [PMID: 18539112]
[55]
Lacerda-Abreu, M.A.; Russo-Abrahão, T.; Rocco-Machado, N.; Cosentino-Gomes, D.; Dick, C.F.; Carvalho-Kelly, L.F.; Cunha Nascimento, M.T.; Rocha-Vieira, T.C.; Meyer-Fernandes, J.R. Hydrogen peroxide generation as an underlying response to high extracellular inorganic phosphate (Pi) in breast cancer cells. Int. J. Mol. Sci., 2021, 22(18), 10096.
[http://dx.doi.org/10.3390/ijms221810096] [PMID: 34576256]
[56]
Sugiura, R.; Satoh, R.; Takasaki, T. ERK: A double-edged sword in cancer. ERK-dependent apoptosis as a potential therapeutic strategy for cancer. Cells, 2021, 10(10), 2509.
[http://dx.doi.org/10.3390/cells10102509] [PMID: 34685488]
[57]
Ayele, M.T.; Muche, T.Z.; Teklemariam, B.A.; Bogale, A.; Abebe, C.E. Role of JAK2/STAT3 signaling pathway in the tumorigenesis, chemotherapy resistance, and treatment of solid tumors: A systemic review. J. Inflamm. Res., 2022, 15, 1349-1364.
[http://dx.doi.org/10.2147/JIR.S353489] [PMID: 35241923]
[58]
Camalier, C.E.; Young, M.R.; Bobe, G.; Perella, C.M.; Colburn, N.H.; Beck, G.R. Jr Elevated phosphate activates N-ras and promotes cell transformation and skin tumorigenesis. Cancer Prev. Res., 2010, 3(3), 359-370.
[http://dx.doi.org/10.1158/1940-6207.CAPR-09-0068] [PMID: 20145188]
[59]
Jin, H.; Xu, C.X.; Lim, H.T.; Park, S.J.; Shin, J.Y.; Chung, Y.S.; Park, S.C.; Chang, S.H.; Youn, H.J.; Lee, K.H.; Lee, Y.S.; Ha, Y.C.; Chae, C.H.; Beck, G.R., Jr; Cho, M.H. High dietary inorganic phosphate increases lung tumorigenesis and alters Akt signaling. Am. J. Respir. Crit. Care Med., 2009, 179(1), 59-68.
[http://dx.doi.org/10.1164/rccm.200802-306OC] [PMID: 18849498]
[60]
Spina, A.; Sapio, L.; Esposito, A.; Di Maiolo, F.; Sorvillo, L.; Naviglio, S. Inorganic phosphate as a novel signaling molecule with antiproliferative action in MDA-MB-231 breast cancer cells. Biores. Open Access, 2013, 2(1), 47-54.
[http://dx.doi.org/10.1089/biores.2012.0266] [PMID: 23515235]
[61]
Sapio, L.; Sorvillo, L.; Illiano, M.; Chiosi, E.; Spina, A.; Naviglio, S. Inorganic phosphate prevents Erk1/2 and Stat3 activation and improves sensitivity to doxorubicin of MDA-MB-231 breast cancer cells. Molecules, 2015, 20(9), 15910-15928.
[http://dx.doi.org/10.3390/molecules200915910] [PMID: 26340617]
[62]
Shanti, A.; Al Adem, K.; Stefanini, C.; Lee, S. Hydrogen phosphate selectively induces MDA MB 231 triple negative breast cancer cell death in vitro. Sci. Rep., 2022, 12(1), 5333.
[http://dx.doi.org/10.1038/s41598-022-09299-2] [PMID: 35351930]
[63]
de Carvalho, C.C.C.R.; Caramujo, M.J. Tumour metastasis as an adaptation of tumour cells to fulfil their phosphorus requirements. Med. Hypotheses, 2012, 78(5), 664-667.
[http://dx.doi.org/10.1016/j.mehy.2012.02.006] [PMID: 22391031]
[64]
Lin, Y.; McKinnon, K.E.; Ha, S.W.; Beck, G.R. Jr Inorganic phosphate induces cancer cell mediated angiogenesis dependent on forkhead box protein C2 (FOXC2) regulated osteopontin expression. Mol. Carcinog., 2015, 54(9), 926-934.
[http://dx.doi.org/10.1002/mc.22153] [PMID: 24700685]
[65]
Wang, T.; Zheng, L.; Wang, Q.; Hu, Y.W. Emerging roles and mechanisms of FOXC2 in cancer. Clin. Chim. Acta, 2018, 479, 84-93.
[http://dx.doi.org/10.1016/j.cca.2018.01.019] [PMID: 29341903]
[66]
Chakraborty, G.; Jain, S.; Kundu, G.C. Osteopontin promotes vascular endothelial growth factor-dependent breast tumor growth and angiogenesis via autocrine and paracrine mechanisms. Cancer Res., 2008, 68(1), 152-161.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-2126] [PMID: 18172307]
[67]
Sies, H.; Jones, D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol., 2020, 21(7), 363-383.
[http://dx.doi.org/10.1038/s41580-020-0230-3] [PMID: 32231263]
[68]
Kumari, S.; Badana, A.K. G, M.M.; G, S.; Malla, R. Reactive oxygen species: A key constituent in cancer survival. Biomark. Insights, 2018, 13, 1177271918755391.
[http://dx.doi.org/10.1177/1177271918755391] [PMID: 29449774]
[69]
Sarmiento-Salinas, F.L.; Delgado-Magallón, A.; Montes-Alvarado, J.B.; Ramírez-Ramírez, D.; Flores-Alonso, J.C.; Cortés-Hernández, P.; Reyes-Leyva, J.; Herrera-Camacho, I.; Anaya-Ruiz, M.; Pelayo, R.; Millán-Pérez-Peña, L.; Maycotte, P. Breast cancer subtypes present a differential production of reactive oxygen species (ROS) and susceptibility to antioxidant treatment. Front. Oncol., 2019, 9, 480.
[http://dx.doi.org/10.3389/fonc.2019.00480] [PMID: 31231612]
[70]
Dröge, W. Free radicals in the physiological control of cell function. Physiol. Rev., 2002, 82(1), 47-95.
[http://dx.doi.org/10.1152/physrev.00018.2001] [PMID: 11773609]
[71]
Cichon, M.A.; Radisky, D.C. ROS-induced epithelialmesenchymal transition in mammary epithelial cells is mediated by NF-κB-dependent activation of Snail. Oncotarget, 2014, 5(9), 2827-2838.
[http://dx.doi.org/10.18632/oncotarget.1940] [PMID: 24811539]
[72]
Lee, S.; Ju, M.; Jeon, H.; Lee, Y.; Kim, C.; Park, H.; Han, S.; Kang, H. Reactive oxygen species induce epithelial-mesenchymal transition, glycolytic switch, and mitochondrial repression through the Dlx-2/Snail signaling pathways in MCF-7 cells. Mol. Med. Rep., 2019, 20(3), 2339-2346.
[http://dx.doi.org/10.3892/mmr.2019.10466] [PMID: 31322179]
[73]
Tang, C.; Zhu, G. Classic and novel signaling pathways involved in cancer: Targeting the NF-κB and Syk signaling pathways. Curr. Stem Cell Res. Ther., 2019, 14(3), 219-225.
[http://dx.doi.org/10.2174/1574888X13666180723104340] [PMID: 30033874]
[74]
Huber, M.A.; Azoitei, N.; Baumann, B.; Grünert, S.; Sommer, A.; Pehamberger, H.; Kraut, N.; Beug, H.; Wirth, T. NF-κB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J. Clin. Invest., 2004, 114(4), 569-581.
[http://dx.doi.org/10.1172/JCI200421358] [PMID: 15314694]
[75]
Cosentino-Gomes, D.; Rocco-Machado, N.; Meyer-Fernandes, J.R. Cell signaling through protein kinase C oxidation and activation. Int. J. Mol. Sci., 2012, 13(9), 10697-10721.
[http://dx.doi.org/10.3390/ijms130910697] [PMID: 23109817]