Molecular docking is a structure-based computational method that generates the binding pose and affinity between ligands and targets. There are many powerful docking programs. However, there is no single program that is suitable for every system. Hence, an appropriate program is chosen based on availability, need, and computer capacity. Molecular docking has clear steps that should be followed carefully to get a good result.
Molecular docking has many applications at various stages in drug discovery. Although it has various application areas, it is commonly applied in virtual screening and drug repurposing. As a result, it is playing a substantial role in the endeavor to discover a potent drug against COVID-19. There are also approved drugs in the pharmaceutical market that are developed through the use of molecular docking. As the accessible data is increasing and the method is advancing with the contribution of the latest computational developments, its use in drug discovery is also increasing.
Molecular docking has played a crucial role in making drug discovery faster, cheaper, and more effective. More advances in docking algorithms, integration with other computational methods, and the introduction of new approaches are expected. Thus, more applications that will make drug discovery easier are expected.
Keywords: CADD, computational, drug design, drug discovery, molecular docking, molecular modeling