Novel Synergistic Combination of Pamidronate and Temozolomide for Breast Cancer Therapeutics

Page: [222 - 234] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Objective: Human breast cancer is among one major health concerns with high prevalence and mortality among women worldwide. Various cellular signaling pathways are implicated in carcinogenesis. One of the major pathways that affect the downstream cellular growth cascades is Mevalonate pathway (MVA). The inhibition of MVA is therapeutically beneficial for various cancers. Pamidronate (PAM) (MVA inhibitor), a nitrogen-containing bisphosphosphonate, is an antiresorptive FDAapproved drug. The objective of our study was to explore adjuvant therapy using a combination of PAM and an alkylating agent, Temozolomide (TMZ) against breast cancer.

Methods: We have examined the differential gene and protein expression in response to the combination treatment strategy. For gene expression analysis RT-qPCR and for proteomic study, twodimensional gel electrophoresis and mass spectrometry techniques were utilized.

Results: Combination treatment (PAM+TMZ) showed more pronounced cytotoxic effect as compared to single agent treatment. Our results indicate that MVA pathway regulatory genes (FDFT1, FDPS, KRAS) are significantly (p<0.05) downregulated in combination-treated breast cancer cells. The differential proteomic analysis showed lower expression of GFAP, PPA1 and TRIM68 proteins after synergistic treatment whereas, these proteins are found to be up-regulated in multiple cancers.

Conclusion: The present study reveals that a combination of PAM and TMZ produces an effective anti-cancerous effect on breast cancer cells. Therefore, this novel therapeutic regimen is likely to provide a better treatment strategy for breast cancer.

Keywords: Pamidronate, MVA pathway, Synergistic effect, Proteomics, Breast cancer

Graphical Abstract

[1]
Lukong, K.E. Understanding breast cancer – The long and winding road. BBA Clin., 2017, 7, 64-77.
[http://dx.doi.org/10.1016/j.bbacli.2017.01.001] [PMID: 28194329]
[2]
Fitzmaurice, C.; Allen, C.; Barber, R.M.; Barregard, L.; Bhutta, Z.A.; Brenner, H.; Satpathy, M. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: A systematic analysis for the global burden of disease study. JAMA Oncol., 2017, 3, 524-548.
[http://dx.doi.org/10.1001/jamaoncol.2016.5688] [PMID: 27918777]
[3]
Bhurgri, Y.; Bhurgri, A.; Nishter, S.; Ahmed, A.; Usman, A.; Pervez, S.; Ahmed, R.; Kayani, N.; Riaz, A.; Bhurgri, H.; Bashir, I.; Hassan, S.H. Pakistan--country profile of cancer and cancer control 1995-2004. J. Pak. Med. Assoc., 2006, 56(3), 124-130.
[PMID: 16696512]
[4]
Khan, N.H.; Duan, S.F.; Wu, D.D.; Ji, X.Y. Better reporting and awareness campaigns needed for breast cancer in Pakistani women. Cancer Manag. Res., 2021, 13, 2125-2129.
[http://dx.doi.org/10.2147/CMAR.S270671] [PMID: 33688255]
[5]
Martin, A.M.; Weber, B.L. Genetic and hormonal risk factors in breast cancer. J. Natl. Cancer Inst., 2000, 92(14), 1126-1135.
[http://dx.doi.org/10.1093/jnci/92.14.1126] [PMID: 10904085]
[6]
Dall, G.V.; Britt, K.L. Estrogen effects on the mammary gland in early and late life and breast cancer risk. Front. Oncol., 2017, 7, 110.
[http://dx.doi.org/10.3389/fonc.2017.00110] [PMID: 28603694]
[7]
Hashemi, S.H.B.; Karimi, S.; Mahboobi, H. Lifestyle changes for prevention of breast cancer. Electron. Physician, 2014, 6, 894-05.
[8]
Mintzer, D.; Glassburn, J.; Mason, B.A.; Sataloff, D. Breast cancer in the very young patient: A multidisciplinary case presentation. Oncologist, 2002, 7(6), 547-554.
[http://dx.doi.org/10.1634/theoncologist.7-6-547] [PMID: 12490742]
[9]
Gulzar, F.; Akhtar, M.S.; Sadiq, R.; Bashir, S.; Jamil, S.; Baig, S.M. Identifying the reasons for delayed presentation of Pakistani breast cancer patients at a tertiary care hospital. Cancer Manag. Res., 2019, 11, 1087-1096.
[http://dx.doi.org/10.2147/CMAR.S180388] [PMID: 30774437]
[10]
Aziz, Z.; Sana, S.; Akram, M.; Saeed, A. Socioeconomic status and breast cancer survival in Pakistani women. J. Pak. Med. Assoc., 2004, 54(9), 448-453.
[PMID: 15518365]
[11]
von Minckwitz, G.; Untch, M.; Blohmer, J.U.; Costa, S.D.; Eidtmann, H.; Fasching, P.A.; Gerber, B.; Eiermann, W.; Hilfrich, J.; Huober, J.; Jackisch, C.; Kaufmann, M.; Konecny, G.E.; Denkert, C.; Nekljudova, V.; Mehta, K.; Loibl, S. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J. Clin. Oncol., 2012, 30(15), 1796-1804.
[http://dx.doi.org/10.1200/JCO.2011.38.8595] [PMID: 22508812]
[12]
Cortazar, P.; Geyer, C.E., Jr Pathological complete response in neoadjuvant treatment of breast cancer. Ann. Surg. Oncol., 2015, 22(5), 1441-1446.
[http://dx.doi.org/10.1245/s10434-015-4404-8] [PMID: 25727556]
[13]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[14]
Sever, R.; Brugge, J.S. Signal transduction in cancer. Cold Spring Harb. Perspect. Med., 2015, 5(4), a006098.
[http://dx.doi.org/10.1101/cshperspect.a006098] [PMID: 25833940]
[15]
Goldstein, J.L.; Brown, M.S. Regulation of the mevalonate pathway. Nature, 1990, 343(6257), 425-430.
[http://dx.doi.org/10.1038/343425a0] [PMID: 1967820]
[16]
Knight, L.A.; Kurbacher, C.M.; Glaysher, S.; Fernando, A.; Reichelt, R.; Dexel, S.; Reinhold, U.; Cree, I.A. Activity of mevalonate pathway inhibitors against breast and ovarian cancers in the ATP-based tumour chemosensitivity assay. BMC Cancer, 2009, 9(1), 38.
[http://dx.doi.org/10.1186/1471-2407-9-38] [PMID: 19175937]
[17]
Mullen, P.J.; Yu, R.; Longo, J.; Archer, M.C.; Penn, L.Z. The interplay between cell signalling and the mevalonate pathway in cancer. Nat. Rev. Cancer, 2016, 16(11), 718-731.
[http://dx.doi.org/10.1038/nrc.2016.76] [PMID: 27562463]
[18]
Iannelli, F.; Lombardi, R.; Milone, M.R.; Pucci, B.; De Rienzo, S.; Budillon, A.; Bruzzese, F. Targeting mevalonate pathway in cancer treatment: Repurposing of statins. Recent Patents Anticancer Drug Discov., 2018, 13(2), 184-200.
[http://dx.doi.org/10.2174/1574892812666171129141211] [PMID: 29189178]
[19]
Milner, R.J.; Farese, J.; Henry, C.J.; Selting, K.; Fan, T.M.; Lorimier, L-P. Bisphosphonates and Cancer. J. Vet. Intern. Med., 2004, 18(5), 597-604.
[http://dx.doi.org/10.1111/j.1939-1676.2004.tb02593.x] [PMID: 15515572]
[20]
Barbosa, J.S.; Almeida Paz, F.A.; Braga, S.S. Bisphosphonates, Old Friends of Bones and New Trends in Clinics. J. Med. Chem., 2021, 64(3), 1260-1282.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01292] [PMID: 33522236]
[21]
Balkhi, B.; Seoane-Vazquez, E.; Rodriguez-Monguio, R. Changes in the utilization of osteoporosis drugs after the 2010 FDA bisphosphonate drug safety communication. Saudi Pharm. J., 2018, 26(2), 238-243.
[http://dx.doi.org/10.1016/j.jsps.2017.12.005] [PMID: 30166922]
[22]
Gnant, M.; Clézardin, P. Direct and indirect anticancer activity of bisphosphonates: A brief review of published literature. Cancer Treat. Rev., 2012, 38(5), 407-415.
[http://dx.doi.org/10.1016/j.ctrv.2011.09.003] [PMID: 21983264]
[23]
Ilyas, A.; Hashim, Z.; Naeem, N.; Haneef, K.; Zarina, S. The effect of alendronate on proteome of hepatocellular carcinoma cell lines. Int. J. Proteomics, 2014, 2014, 1-9.
[http://dx.doi.org/10.1155/2014/532953] [PMID: 24653834]
[24]
Todaro, M.; Orlando, V.; Cicero, G.; Caccamo, N.; Meraviglia, S.; Stassi, G.; Dieli, F. Chemotherapy sensitizes colon cancer initiating cells to Vγ9Vδ2 T cell-mediated cytotoxicity. PLoS One, 2013, 8(6), e65145.
[http://dx.doi.org/10.1371/journal.pone.0065145] [PMID: 23762301]
[25]
Santini, D.; Stumbo, L.; Spoto, C.; D’Onofrio, L.; Pantano, F.; Iuliani, M. fioramonti, M.; Zoccoli, A.; Ribelli, G.; Virzì, V.; Vincenzi, B.; Tonini, G. Bisphosphonates as anticancer agents in early breast cancer: Preclinical and clinical evidence. Breast Cancer Res., 2015, 17(1), 121.
[http://dx.doi.org/10.1186/s13058-015-0634-8] [PMID: 26328589]
[26]
Virtanen, S.S.; Ishizu, T.; Sandholm, J.A.; Löyttyniemi, E.; Väänänen, H.K.; Tuomela, J.M.; Härkönen, P.L. Alendronate-induced disruption of actin cytoskeleton and inhibition of migration/invasion are associated with cofilin downregulation in PC-3 prostate cancer cells. Oncotarget, 2018, 9(66), 32593-32608.
[http://dx.doi.org/10.18632/oncotarget.25961] [PMID: 30220968]
[27]
Iguchi, K.; Tatsuda, Y.; Usui, S.; Hirano, K. Pamidronate inhibits antiapoptotic bcl-2 expression through inhibition of the mevalonate pathway in prostate cancer PC-3 cells. Eur. J. Pharmacol., 2010, 641(1), 35-40.
[http://dx.doi.org/10.1016/j.ejphar.2010.05.010] [PMID: 20519142]
[28]
Ponce-Cusi, R.; Calaf, G.M. Antitumor activity of pamidronate in breast cancer cells transformed by low doses of α-particles and estrogen in vitro. Int. J. Oncol., 2015, 46(6), 2663-2669.
[http://dx.doi.org/10.3892/ijo.2015.2955] [PMID: 25873070]
[29]
Zhu, W.; Zhou, L.; Qian, J-Q.; Qiu, T-Z.; Shu, Y-Q.; Liu, P. Temozolomide for treatment of brain metastases: A review of 21 clinical trials. World J. Clin. Oncol., 2013, 5(1), 19-27.
[http://dx.doi.org/10.5306/wjco.v5.i1.19] [PMID: 24527399]
[30]
Shojaei, S.; Alizadeh, J.; Thliveris, J.; Koleini, N.; Kardami, E.; Hatch, G.M.; Xu, F.; Hombach-Klonisch, S.; Klonisch, T.; Ghavami, S. Statins: A new approach to combat temozolomide chemoresistance in glioblastoma. J. Investig. Med., 2018, 66(8), 1083-1087.
[http://dx.doi.org/10.1136/jim-2018-000874] [PMID: 30368483]
[31]
Friedman, H.S.; Kerby, T.; Calvert, H. Temozolomide and treatment of malignant glioma. Clin. Cancer Res., 2000, 6(7), 2585-2597.
[PMID: 10914698]
[32]
Zimmer, A.S.; Steinberg, S.M.; Smart, D.D.; Gilbert, M.R.; Armstrong, T.S.; Burton, E.; Houston, N.; Biassou, N.; Gril, B.; Brastianos, P.K.; Carter, S.; Lyden, D.; Lipkowitz, S.; Steeg, P.S. Temozolomide in secondary prevention of HER2-positive breast cancer brain metastases. Future Oncol., 2020, 16(14), 899-909.
[http://dx.doi.org/10.2217/fon-2020-0094] [PMID: 32270710]
[33]
Quan, R.; Zhang, H.; Li, Z.; Li, X. Survival analysis of patients with glioblastoma treated by long-term administration of temozolomide. Medicine, 2020, 99(2), e18591.
[http://dx.doi.org/10.1097/MD.0000000000018591] [PMID: 31914038]
[34]
Giorgio, C.G.; Giuffrida, D.; Pappalardo, A.; Russo, A.; Santini, D.; Salice, P.; Blanco, G.; Castorina, S.; Failla, G.; Bordonaro, R. Oral temozolomide in heavily pre-treated brain metastases from non-small cell lung cancer: Phase II study. Lung Cancer, 2005, 50(2), 247-254.
[http://dx.doi.org/10.1016/j.lungcan.2005.05.026] [PMID: 16039010]
[35]
Tatar, Z.; Thivat, E.; Planchat, E.; Gimbergues, P.; Gadea, E.; Abrial, C.; Durando, X. Temozolomide and unusual indications: Review of literature. Cancer Treat. Rev., 2013, 39(2), 125-135.
[http://dx.doi.org/10.1016/j.ctrv.2012.06.002] [PMID: 22818211]
[36]
van Brussel, J.P.; Busstra, M.B.; Lang, M.S.; Catsburg, T.; Schröder, F.H.; Mickisch, G.H. A phase II study of temozolomide in hormone-refractory prostate cancer. Cancer Chemother. Pharmacol., 2000, 45(6), 509-512.
[http://dx.doi.org/10.1007/s002800051027] [PMID: 10854140]
[37]
Trudeau, M.E.; Crump, M.; Charpentier, D.; Yelle, L.; Bordeleau, L.; Matthews, S.; Eisenhauer, E. Temozolomide in metastatic breast cancer (MBC): A phase II trial of the National Cancer Institute of Canada – Clinical Trials Group (NCIC-CTG). Ann. Oncol., 2006, 17(6), 952-956.
[http://dx.doi.org/10.1093/annonc/mdl056] [PMID: 16565212]
[38]
Ochiai, Y.; Sumi, K.; Sano, E.; Yoshimura, S.; Yamamuro, S.; Ogino, A.; Ueda, T.; Suzuki, Y.; Nakayama, T.; Hara, H.; Katayama, Y.; Yoshino, A. Antitumor effects of ribavirin in combination with TMZ and IFN β in malignant glioma cells. Oncol. Lett., 2020, 20(5), 1.
[http://dx.doi.org/10.3892/ol.2020.12039] [PMID: 32934745]
[39]
Tamanoi, F.; Azizian, M.; Ashrafi, M.; Bathaie, S. Mevalonate pathway and human cancers. Curr. Mol. Pharmacol., 2017, 10(2), 77-85.
[http://dx.doi.org/10.2174/1874467209666160112123205] [PMID: 26758953]
[40]
Guerra, B.; Recio, C.; Aranda-Tavío, H.; Guerra-Rodríguez, M.; García-Castellano, J.M.; Fernández-Pérez, L. The mevalonate pathway, a metabolic target in cancer therapy. Front. Oncol., 2021, 11, 626971.
[http://dx.doi.org/10.3389/fonc.2021.626971] [PMID: 33718197]
[41]
Kambach, D.M.; Halim, A.S.; Cauer, A.G.; Sun, Q.; Tristan, C.A.; Celiku, O.; Kesarwala, A.H.; Shankavaram, U.; Batchelor, E.; Stommel, J.M. Disabled cell density sensing leads to dysregulated cholesterol synthesis in glioblastoma. Oncotarget, 2017, 8(9), 14860-14875.
[http://dx.doi.org/10.18632/oncotarget.14740] [PMID: 28118603]
[42]
Tüzmen, Ş.; Hostetter, G.; Watanabe, A.; Ekmekçi, C.; Carrigan, P.E.; Shechter, I.; Kallioniemi, O.; Miller, L.J.; Mousses, S. Characterization of farnesyl diphosphate farnesyl transferase 1 (FDFT1) expression in cancer. Per. Med., 2019, 16(1), 51-65.
[http://dx.doi.org/10.2217/pme-2016-0058] [PMID: 30468409]
[43]
Chiarella, E.; Codispoti, B.; Aloisio, A.; Cosentino, E.G.; Scicchitano, S.; Montalcini, Y.; Lico, D.; Morrone, G.; Mesuraca, M.; Bond, H.M. Zoledronic acid inhibits the growth of leukemic MLL-AF9 transformed hematopoietic cells. Heliyon, 2020, 6(6), e04020.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04020] [PMID: 32529062]
[44]
Abate, M.; Laezza, C.; Pisanti, S.; Torelli, G.; Seneca, V.; Catapano, G.; Montella, F.; Ranieri, R.; Notarnicola, M.; Gazzerro, P.; Bifulco, M.; Ciaglia, E. Deregulated expression and activity of Farnesyl Diphosphate Synthase (FDPS) in Glioblastoma. Sci. Rep., 2017, 7(1), 14123.
[http://dx.doi.org/10.1038/s41598-017-14495-6] [PMID: 29075041]
[45]
André, F.; Zielinski, C.C. Optimal strategies for the treatment of metastatic triple-negative breast cancer with currently approved agents. Ann. Oncol., 2012, 23(Suppl. 6), vi46-vi51.
[http://dx.doi.org/10.1093/annonc/mds195] [PMID: 23012302]
[46]
Parson, C.; Smith, V.; Krauss, C.; Banerjee, H.N.; Reilly, C.; Krause, J.A.; Wachira, J.M.; Giri, D.; Winstead, A.; Mandal, S.K. Anticancer properties of novel rhenium pentylcarbanato compounds against MDA-MB-468 (HTB-132) triple node negative human breast cancer cell lines. Br. J. Pharm. Res., 2014, 4(3), 362-367.
[http://dx.doi.org/10.9734/BJPR/2014/4697] [PMID: 25419517]
[47]
Ilyas, A.; Hashim, Z.; Zarina, S. Effects of 5′-azacytidine and alendronate on a hepatocellular carcinoma cell line: A proteomics perspective. Mol. Cell. Biochem., 2015, 405(1-2), 53-61.
[http://dx.doi.org/10.1007/s11010-015-2395-1] [PMID: 25854900]
[48]
Ilyas, A.; Hashim, Z.; Channa, I.S.; Zarina, S. Alendronate and FTI-277 combination as a possible therapeutic approach for hepatocellular carcinoma: An in vitro study. Hepatobiliary Pancreat. Dis. Int., 2018, 17(3), 241-250.
[http://dx.doi.org/10.1016/j.hbpd.2018.03.013] [PMID: 29627155]
[49]
Ferraiuolo, M.; Di Agostino, S.; Blandino, G.; Strano, S. Oncogenic intra-p53 family member interactions in human cancers. Front. Oncol., 2016, 6, 77.
[http://dx.doi.org/10.3389/fonc.2016.00077] [PMID: 27066457]
[50]
Mantovani, F.; Collavin, L.; Del Sal, G. Mutant p53 as a guardian of the cancer cell. Cell Death Differ., 2019, 26(2), 199-212.
[http://dx.doi.org/10.1038/s41418-018-0246-9] [PMID: 30538286]
[51]
Etichetti, B.C.M.; Zalazar, A.E.; Cocordano, N.; Girardini, J. Beyond the mevalonate pathway: Control of post-prenylation processing by Mutant p53. Front. Oncol., 2020, 10, 595034.
[http://dx.doi.org/10.3389/fonc.2020.595034] [PMID: 33224889]
[52]
Tan, B.S.; Tiong, K.H.; Choo, H.L.; Fei-Lei Chung, F.; Hii, L-W.; Tan, S.H.; Yap, K.; Pani, S.; Khor, N.T.; Wong, S.F.; Rosli, R.; Cheong, S-K.; Leong, C-O. Mutant p53-R273H mediates cancer cell survival and anoikis resistance through AKT-dependent suppression of BCL2-modifying factor (BMF). Cell Death Dis., 2015, 6(7), e1826.
[http://dx.doi.org/10.1038/cddis.2015.191] [PMID: 26181206]
[53]
Freed-Pastor, W.A.; Mizuno, H.; Zhao, X.; Langerød, A.; Moon, S.H.; Rodriguez-Barrueco, R.; Barsotti, A.; Chicas, A.; Li, W.; Polotskaia, A.; Bissell, M.J.; Osborne, T.F.; Tian, B.; Lowe, S.W.; Silva, J.M.; Børresen-Dale, A.L.; Levine, A.J.; Bargonetti, J.; Prives, C. Mutant p53 disrupts mammary tissue architecture via the mevalonate pathway. Cell, 2012, 148(1-2), 244-258.
[http://dx.doi.org/10.1016/j.cell.2011.12.017] [PMID: 22265415]
[54]
Xing, F.; Kobayashi, A.; Okuda, H.; Watabe, M.; Pai, S.K.; Pandey, P.R.; Hirota, S.; Wilber, A.; Mo, Y.Y.; Moore, B.E.; Liu, W.; Fukuda, K.; Iiizumi, M.; Sharma, S.; Liu, Y.; Wu, K.; Peralta, E.; Watabe, K. Reactive astrocytes promote the metastatic growth of breast cancer stem‐like cells by activating Notch signalling in brain. EMBO Mol. Med., 2013, 5(3), 384-396.
[http://dx.doi.org/10.1002/emmm.201201623] [PMID: 23495140]
[55]
Zayoud, M.; Marcu-Malina, V.; Vax, E.; Jacob-Hirsch, J.; Elad-Sfadia, G.; Barshack, I.; Kloog, Y.; Goldstein, I. Ras signaling inhibitors attenuate disease in adjuvant-induced arthritis via targeting pathogenic antigen-specific Th17-type cells. Front. Immunol., 2017, 8, 799.
[http://dx.doi.org/10.3389/fimmu.2017.00799] [PMID: 28736556]
[56]
Murakami, M.; Fukuyama, K.; Hubbard, S.; Matsuzawa, K.; Dirks, P.B.; Rutka, J.T. Inducible expression of glial fibrillary acidic protein in HT-1080 human fibrosarcoma cells. Cell Growth Differ., 1996, 7(12), 1697-1703.
[PMID: 8959338]
[57]
Matias, I.; Morgado, J.; Gomes, F.C.A. Astrocyte heterogeneity: Impact to brain aging and disease. Front. Aging Neurosci., 2019, 11, 59.
[http://dx.doi.org/10.3389/fnagi.2019.00059] [PMID: 30941031]
[58]
Hol, E.M.; Pekny, M. Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Curr. Opin. Cell Biol., 2015, 32, 121-130.
[http://dx.doi.org/10.1016/j.ceb.2015.02.004] [PMID: 25726916]
[59]
Varma, A.V.; Gupta, G.; Gupta, J.; Gupta, S. GFAP expression in neuroglial tumours--immunohistochemical confirmation for diagnosis and grading. J. Med. Dent. Sci., 2018, 7, 5834-5839.
[60]
Bailleux, C.; Eberst, L.; Bachelot, T. Treatment strategies for breast cancer brain metastases. Br. J. Cancer, 2021, 124(1), 142-155.
[http://dx.doi.org/10.1038/s41416-020-01175-y] [PMID: 33250512]
[61]
Sperduto, P.W.; Kased, N.; Roberge, D.; Chao, S.T.; Shanley, R.; Luo, X.; Sneed, P.K.; Suh, J.; Weil, R.J.; Jensen, A.W.; Brown, P.D.; Shih, H.A.; Kirkpatrick, J.; Gaspar, L.E.; Fiveash, J.B.; Chiang, V.; Knisely, J.P.S.; Sperduto, C.M.; Lin, N.; Mehta, M. The effect of tumor subtype on the time from primary diagnosis to development of brain metastases and survival in patients with breast cancer. J. Neurooncol., 2013, 112(3), 467-472.
[http://dx.doi.org/10.1007/s11060-013-1083-9] [PMID: 23462853]
[62]
Komorowski, A.S.; Warner, E.; MacKay, H.J.; Sahgal, A.; Pritchard, K.I.; Jerzak, K.J. Incidence of brain metastases in nonmetastatic and metastatic breast cancer: Is there a role for screening? Clin. Breast Cancer, 2020, 20(1), e54-e64.
[http://dx.doi.org/10.1016/j.clbc.2019.06.007] [PMID: 31447286]
[63]
Boire, A.; Brastianos, P.K.; Garzia, L.; Valiente, M. Brain metastasis. Nat. Rev. Cancer, 2020, 20(1), 4-11.
[http://dx.doi.org/10.1038/s41568-019-0220-y] [PMID: 31780784]
[64]
Wasilewski, D.; Priego, N.; Fustero-Torre, C.; Valiente, M. Reactive astrocytes in brain metastasis. Front. Oncol., 2017, 7, 298.
[http://dx.doi.org/10.3389/fonc.2017.00298] [PMID: 29312881]
[65]
Sartorius, C.A.; Hanna, C.T.; Gril, B.; Cruz, H.; Serkova, N.J.; Huber, K.M.; Kabos, P.; Schedin, T.B.; Borges, V.F.; Steeg, P.S.; Cittelly, D.M. Estrogen promotes the brain metastatic colonization of triple negative breast cancer cells via an astrocyte-mediated paracrine mechanism. Oncogene, 2016, 35(22), 2881-2892.
[http://dx.doi.org/10.1038/onc.2015.353] [PMID: 26411365]
[66]
Tezuka, Y.; Okada, M.; Tada, Y.; Yamauchi, J.; Nishigori, H.; Sanbe, A. Regulation of neurite growth by inorganic pyrophosphatase 1 via JNK dephosphorylation. PLoS One, 2013, 8(4), e61649.
[http://dx.doi.org/10.1371/journal.pone.0061649] [PMID: 23626709]
[67]
Peng, H.; Yan, Z.; Zeng, X.; Zhang, S.; Jiang, H.; Huang, H.; Zhuo, H. Serum and tissue proteomic signatures of patients with hepatocellular carcinoma using 2 D gel electrophoresis. Mol. Med. Rep., 2019, 20(2), 1025-1038.
[http://dx.doi.org/10.3892/mmr.2019.10311] [PMID: 31173207]
[68]
Luo, D.; Liu, D.; Shi, W.; Jiang, H.; Liu, W.; Zhang, X.; Bao, Y.; Yang, W.; Wang, X.; Zhang, C.; Wang, H. PPA1 promotes NSCLC progression via a JNK-and TP53-dependent manner. Oncogenesis, 2019, 8, 1-13.
[69]
Li, H.; Xiao, N.; Li, Z.; Wang, Q. Expression of inorganic pyrophosphatase (PPA1) correlates with poor prognosis of epithelial ovarian cancer. Tohoku J. Exp. Med., 2017, 241(2), 165-173.
[http://dx.doi.org/10.1620/tjem.241.165] [PMID: 28202851]
[70]
Mishra, D.R.; Chaudhary, S.; Krishna, B.M.; Mishra, S.K. Identification of critical elements for regulation of inorganic pyrophosphatase (PPA1) in MCF7 breast cancer cells. PLoS One, 2015, 10(4), e0124864.
[http://dx.doi.org/10.1371/journal.pone.0124864] [PMID: 25923237]
[71]
Jeong, S.H.; Ko, G.H.; Cho, Y.H.; Lee, Y.J.; Cho, B.I.; Ha, W.S.; Choi, S.K.; Kim, J.W.; Lee, C.W.; Heo, Y.S.; Shin, S.H.; Yoo, J.; Hong, S.C. Pyrophosphatase overexpression is associated with cell migration, invasion, and poor prognosis in gastric cancer. Tumour Biol., 2012, 33(6), 1889-1898.
[http://dx.doi.org/10.1007/s13277-012-0449-5] [PMID: 22797819]
[72]
Li, Y.; Kong, D.; Ahmad, A.; Bao, B.; Dyson, G.; Sarkar, F.H. Epigenetic deregulation of miR-29a and miR-1256 by isoflavone contributes to the inhibition of prostate cancer cell growth and invasion. Epigenetics, 2012, 7(8), 940-949.
[http://dx.doi.org/10.4161/epi.21236] [PMID: 22805767]
[73]
Jiang, J.; Liu, D.; Xu, G.; Liang, T.; Yu, C.; Liao, S.; Chen, L.; Huang, S.; Sun, X.; Yi, M.; Zhang, Z.; Lu, Z.; Wang, Z.; Chen, J.; Chen, T.; Li, H.; Yao, Y.; Chen, W.; Guo, H.; Liu, C.; Zhan, X. TRIM68, PIKFYVE, and DYNLL2: The novel autophagy-and immunity-associated gene biomarkers for osteosarcoma prognosis. Front. Oncol., 2021, 11, 643104.
[http://dx.doi.org/10.3389/fonc.2021.643104] [PMID: 33968741]