Combinatorial Chemistry & High Throughput Screening

Author(s): Ziying Lin, Shengjun Wang, Zhihong Liu, Bingdong Liu, Liwei Xie* and Jingwei Zhou*

DOI: 10.2174/1386207325666220905155923

Exploring Anti-osteoporosis Medicinal Herbs using Cheminformatics and Deep Learning Approaches

Page: [1802 - 1811] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Osteoporosis is a prevalent disease for the aged population. Chinese herbderived natural compounds have anti-osteoporosis effects. Due to the complexity of chemical ingredients and natural products, it is necessary to develop a high-throughput approach with the integration of cheminformatics and deep-learning methods to explore their mechanistic action, especially herb/drug-gene interaction networks.

Methods: Ten medicinal herbs for clinical osteoporosis treatment were selected. Chemical ingredients of the top 10 herbs were retrieved from the TCMIO database, and their predicted targets were obtained from the SEA server. Anti-osteoporosis clinical drugs and targets were collected from multidatabases. Chemical space, fingerprint similarity, and scaffold comparison of the compounds between herbs and clinical drugs were analyzed by RDKit and SKlearn. A network of herb-ingredient-target was constructed via Gephi, and GO and KEGG enrichment analyses were performed using clusterProfiler. Additionally, the bioactivity of compounds and targets was predicted by DeepScreening. Molecular docking of YYH flavonoids to HSD17B2 was accomplished by AutoDockTools.

Results: Cheminformatics result depicts a pharmacological network consisting of 89 active components and 30 potential genes. The chemical structures of plant steroids, flavonoids, and alkaloids are key components for anti-osteoporosis effects. Moreover, bioinformatics result demonstrates that the active components of herbs mainly participate in steroid hormone biosynthesis and the TNF signaling pathway. Finally, deep-learning-based regression models were constructed to evaluate 22 anti-osteoporosis-related protein targets and predict the activity of 1350 chemical ingredients of the 10 herbs.

Conclusion: The combination of cheminformatics and deep-learning approaches sheds light on the exploration of medicinal herbs mechanisms, and the identification of novel and active compounds from medical herbs in complex molecular systems.

Keywords: Osteoporosis, Chinese medicine, natural product, cheminformatics, bioinformatics, deep learning

Graphical Abstract

[1]
Compston, J.E.; McClung, M.R.; Leslie, W.D. Osteoporosis. Lancet, 2019, 393(10169), 364-376.
[http://dx.doi.org/10.1016/S0140-6736(18)32112-3] [PMID: 30696576]
[2]
Khosla, S.; Hofbauer, L.C. Osteoporosis treatment: Recent developments and ongoing challenges. Lancet Diabetes Endocrinol., 2017, 5(11), 898-907.
[http://dx.doi.org/10.1016/S2213-8587(17)30188-2] [PMID: 28689769]
[3]
He, J.; Li, X.; Wang, Z.; Bennett, S.; Chen, K.; Xiao, Z.; Zhan, J.; Chen, S.; Hou, Y.; Chen, J.; Wang, S.; Xu, J.; Lin, D. Therapeutic anabolic and anticatabolic benefits of natural Chinese medicines for the treatment of osteoporosis. Front. Pharmacol., 2019, 10, 1344.
[http://dx.doi.org/10.3389/fphar.2019.01344] [PMID: 31824310]
[4]
Guidelines of tcm for the diagnosis and management of postmenopausal osteoporosis(2019). J. Tradit. Chinese Orthop. Traumatol., 2020, 32, 81-93.
[5]
Villa, P.; Costantini, B.; Suriano, R.; Perri, C.; Macr̀i, F.; Ricciardi, L.; Panunzi, S.; Lanzone, A. The differential effect of the phytoestrogen genistein on cardiovascular risk factors in postmenopausal women: Relationship with the metabolic status. Obstet. Gynecol. Surv., 2005, 12, 186-192.
[6]
Lambert, M.N.T.; Thybo, C.B.; Lykkeboe, S.; Rasmussen, L.M.; Frette, X.; Christensen, L.P.; Jeppesen, P.B. Combined bioavailable isoflavones and probiotics improve bone status and estrogen metabolism in postmenopausal osteopenic women: A randomized controlled trial. Am. J. Clin. Nutr., 2017, 106(3)ajcn153353,
[http://dx.doi.org/10.3945/ajcn.117.153353] [PMID: 28768651]
[7]
Martin, B.R.; McCabe, G.P.; McCabe, L.; Jackson, G.S.; Horcajada, M.N.; Offord-Cavin, E.; Peacock, M.; Weaver, C.M. Effect of hesperidin with and without a calcium (Calcilock) supplement on bone health in postmenopausal women. J. Clin. Endocrinol. Metab., 2016, 101(3), 923-927.
[http://dx.doi.org/10.1210/jc.2015-3767] [PMID: 26751193]
[8]
Cai, C.; Wu, Q.; Hong, H.; He, L.; Liu, Z.; Gu, Y.; Zhang, S.; Wang, Q.; Fan, X.; Fang, J. In silico identification of natural products from traditional Chinese medicine for cancer immunotherapy. Sci. Rep., 2021, 11(1), 3332.
[http://dx.doi.org/10.1038/s41598-021-82857-2] [PMID: 33558586]
[9]
Zeng, T.; Liu, Z.; Liu, H.; He, W.; Tang, X.; Xie, L.; Wu, R. Exploring chemical and biological space of terpenoids. J. Chem. Inf. Model., 2019, 59(9), 3667-3678.
[http://dx.doi.org/10.1021/acs.jcim.9b00443] [PMID: 31403297]
[10]
Jeon, J.; Kang, S.; Kim, H.U. Predicting biochemical and physiological effects of natural products from molecular structures using machine learning. Nat. Prod. Rep., 2021, 38(11), 1954-1966.
[http://dx.doi.org/10.1039/D1NP00016K] [PMID: 34047331]
[11]
Unterthiner, T.; Ceulemans, H.; Steijaert, M. Multi-task deep networks for drug target prediction. Adv. Neural Inf. Process. Syst., 2014, 2014, 1-4.
[12]
Liu, Z.; Huang, D.; Zheng, S.; Song, Y.; Liu, B.; Sun, J.; Niu, Z.; Gu, Q.; Xu, J.; Xie, L. Deep learning enables discovery of highly potent anti-osteoporosis natural products. Eur. J. Med. Chem., 2021, 210, 112982.
[http://dx.doi.org/10.1016/j.ejmech.2020.112982] [PMID: 33158578]
[13]
Expert consensus on the prevention and treatment for primary osteoporosis with traditional Chinese medicine(2015). Zhongguo Guzhi Shusong Zazhi, 2015, 21, 1023-1028.
[14]
Zhang, N.D.; Han, T.; Huang, B.K.; Rahman, K.; Jiang, Y.P.; Xu, H.T.; Qin, L.P.; Xin, H.L.; Zhang, Q.Y.; Li, Y. Traditional Chinese medicine formulas for the treatment of osteoporosis: Implication for antiosteoporotic drug discovery. J. Ethnopharmacol., 2016, 189, 61-80.
[http://dx.doi.org/10.1016/j.jep.2016.05.025] [PMID: 27180315]
[15]
Liu, Z.; Cai, C.; Du, J.; Liu, B.; Cui, L.; Fan, X.; Wu, Q.; Fang, J.; Xie, L. TCMIO: A comprehensive database of traditional Chinese medicine on immuno-oncology. Front. Pharmacol., 2020, 11, 439.
[http://dx.doi.org/10.3389/fphar.2020.00439] [PMID: 32351388]
[16]
Liu, Z.; Du, J.; Yan, X.; Zhong, J.; Cui, L.; Lin, J.; Zeng, L.; Ding, P.; Chen, P.; Zhou, X.; Zhou, H.; Gu, Q.; Xu, J. TCMAnalyzer: A Chemo- and bioinformatics web service for analyzing traditional Chinese medicine. J. Chem. Inf. Model., 2018, 58(3), 550-555.
[http://dx.doi.org/10.1021/acs.jcim.7b00549] [PMID: 29420025]
[17]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open babel: An open chemical toolbox. J. Cheminform., 2011, 3(1), 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[18]
Keiser, M.J.; Roth, B.L.; Armbruster, B.N.; Ernsberger, P.; Irwin, J.J.; Shoichet, B.K. Relating protein pharmacology by ligand chemistry. Nat. Biotechnol., 2007, 25(2), 197-206.
[http://dx.doi.org/10.1038/nbt1284] [PMID: 17287757]
[19]
Carvalho-Silva, D.; Pierleoni, A.; Pignatelli, M.; Ong, C.; Fumis, L.; Karamanis, N.; Carmona, M.; Faulconbridge, A.; Hercules, A.; McAuley, E.; Miranda, A.; Peat, G.; Spitzer, M.; Barrett, J.; Hulcoop, D.G.; Papa, E.; Koscielny, G.; Dunham, I. Open targets platform: New developments and updates two years on. Nucleic Acids Res., 2019, 47(D1), D1056-D1065.
[http://dx.doi.org/10.1093/nar/gky1133] [PMID: 30462303]
[20]
Chen, C.; Chen, H.; Zhang, Y.; Thomas, H.R.; Frank, M.H.; He, Y.; Xia, R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant, 2020, 13(8), 1194-1202.
[http://dx.doi.org/10.1016/j.molp.2020.06.009] [PMID: 32585190]
[21]
Liu, Z.; Du, J.; Fang, J.; Yin, Y.; Xu, G.; Xie, L. DeepScreening: A deep learning-based screening web server for accelerating drug discovery. Database (Oxford), 2019, 2019baz104,
[http://dx.doi.org/10.1093/database/baz104] [PMID: 31608949]
[22]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[23]
Ren, J.G.; Wang, D.Z.; Lei, L.; Kang, L.; Liu, J.X. Preliminary analysis on relationship between traditional efficacy of Chinese medicine and modern pharmacological action. Zhongguo Zhongyao Zazhi, 2017, 42(10), 1979-1983.
[PMID: 29090560]
[24]
Li, J.X.; Hareyama, T.; Tezuka, Y.; Zhang, Y.; Miyahara, T.; Kadota, S. Five new oleanolic acid glycosides from Achyranthes bidentata with inhibitory activity on osteoclast formation. Planta Med., 2005, 71(7), 673-679.
[http://dx.doi.org/10.1055/s-2005-871275] [PMID: 16041655]
[25]
Wu, X.H.; Dou, B.; Sun, N.Y.; Gao, J.; Liu, X.L. Astragalus saponin IV promotes osteogenic differentiation of bone marrow mesenchymal stem cells via miR-21/NGF/BMP2/Runx2 pathway. Acta Histochem., 2020, 122(4), 151549.
[http://dx.doi.org/10.1016/j.acthis.2020.151549] [PMID: 32381364]
[26]
Chevalier, C.; Kieser, S.; Macpherson, A.; Bonnet, N.; Hadadi, N.; Brun, J. Warmth prevents bone loss through the gut microbiota. Cell Metab., 2020, 32(4), 575-590.
[27]
Yu, A.X.D.; Xiao, J.; Zhao, S.Z.; Kong, X.P.; Kwan, K.K.L.; Zheng, B.Z.Y.; Wu, K.Q.Y.; Dong, T.T.X.; Tsim, K.W.K. Biological evaluation and transcriptomic analysis of corylin as an inhibitor of osteoclast differentiation. Int. J. Mol. Sci., 2021, 22(7), 3540.
[http://dx.doi.org/10.3390/ijms22073540] [PMID: 33805517]
[28]
Yu, A.X.D.; Xu, M.L.; Yao, P.; Kwan, K.K.L.; Liu, Y.X.; Duan, R.; Dong, T.T.X.; Ko, R.K.M.; Tsim, K.W.K. Corylin, a flavonoid derived from Psoralea Fructus, induces osteoblastic differentiation via estrogen and Wnt/β‐catenin signaling pathways. FASEB J., 2020, 34(3), 4311-4328.
[http://dx.doi.org/10.1096/fj.201902319RRR] [PMID: 31965654]
[29]
Niu, L.; Wei, J.; Li, X.; Jin, Y.; Shi, X. Inhibitory activity of narirutin on RBL-2H3 cells degranulation. Immunopharmacol. Immunotoxicol., 2021, 43(1), 68-76.
[http://dx.doi.org/10.1080/08923973.2020.1850764] [PMID: 33272043]
[30]
Marahatha, R.; Gyawali, K.; Sharma, K.; Gyawali, N.; Tandan, P.; Adhikari, A.; Timilsina, G.; Bhattarai, S.; Lamichhane, G.; Acharya, A.; Pathak, I.; Devkota, H.P.; Parajuli, N. Pharmacologic activities of phytosteroids in inflammatory diseases: Mechanism of action and therapeutic potentials. Phytother. Res., 2021, 35(9), 5103-5124.
[http://dx.doi.org/10.1002/ptr.7138] [PMID: 33957012]
[31]
Guo, D.; Zhao, M.; Xu, W.; He, H.; Li, B.; Hou, T. Dietary interventions for better management of osteoporosis: An overview. Crit. Rev. Food Sci. Nutr., 2021, 0, 1-20.
[http://dx.doi.org/10.1080/10408398.2021.1944975] [PMID: 34251926]
[32]
Zhang, Y.; Ma, J.; Zhang, W. Berberine for bone regeneration: Therapeutic potential and molecular mechanisms. J. Ethnopharmacol., 2021, 277, 114249.
[http://dx.doi.org/10.1016/j.jep.2021.114249] [PMID: 34058315]
[33]
Tsukasaki, M.; Takayanagi, H. Osteoimmunology: Evolving concepts in bone–immune interactions in health and disease. Nat. Rev. Immunol., 2019, 19(10), 626-642.
[http://dx.doi.org/10.1038/s41577-019-0178-8] [PMID: 31186549]
[34]
Tyagi, A.M.; Srivastava, K.; Mansoori, M.N.; Trivedi, R.; Chattopadhyay, N.; Singh, D. Estrogen deficiency induces the differentiation of IL-17 secreting Th17 cells: A new candidate in the pathogenesis of osteoporosis. PLoS One, 2012, 7(9)e44552
[http://dx.doi.org/10.1371/journal.pone.0044552] [PMID: 22970248]
[35]
Steeve, K.T.; Marc, P.; Sandrine, T.; Dominique, H.; Yannick, F. IL-6, RANKL, TNF-alpha/IL-1: Interrelations in bone resorption pathophysiology. Cytokine Growth Factor Rev., 2004, 15(1), 49-60.
[http://dx.doi.org/10.1016/j.cytogfr.2003.10.005] [PMID: 14746813]
[36]
Soubhye, J.; Alard, I.C.; Antwerpen, P.; Dufrasne, F. Type 2 17-β hydroxysteroid dehydrogenase as a novel target for the treatment of osteoporosis. Future Med. Chem., 2015, 7(11), 1431-1456.
[http://dx.doi.org/10.4155/fmc.15.74] [PMID: 26230882]
[37]
Weivoda, M.M.; Hohl, R.J. Effects of farnesyl pyrophosphate accumulation on calvarial osteoblast differentiation. Endocrinology, 2011, 152(8), 3113-3122.
[http://dx.doi.org/10.1210/en.2011-0016] [PMID: 21586555]
[38]
Nishizaki, Y.; Ishimoto, Y.; Hotta, Y.; Hosoda, A.; Yoshikawa, H.; Akamatsu, M.; Tamura, H. Effect of flavonoids on androgen and glucocorticoid receptors based on in vitro reporter gene assay. Bioorg. Med. Chem. Lett., 2009, 19(16), 4706-4710.
[http://dx.doi.org/10.1016/j.bmcl.2009.06.073] [PMID: 19592245]