A Network Pharmacology-based Mechanism of the Traditional Chinese Medicine Formula Li Kun Zhi Ji acting on Colon Cancer

Page: [1274 - 1283] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Li Kun Zhi Ji (LKZJ) is a traditional Chinese medicine formula that effectively improves the immune system. However, the mechanism of its action against cancer remains unknown. Our study aimed to determine whether LKZJ inhibits the growth of the human colon cancer cell line HCT-116, and we performed in vitro experiments to further explore the associated molecular mechanisms.

Objective: We explored the antitumor function and the mechanism of LKZJ against human colon cancer cells.

Methods: We selected the effective components of LKZJ. Then, the potential targets of these components were obtained against colon cancer, and an “LKZJ-targets-colon cancer” network was constructed. After that, a CCK-8 assay was used to assess cell viability. Next, apoptosis was analyzed with PI/Annexin V assay using flow cytometry. Finally, western blotting was carried out to determine the expression levels of the protein.

Results: We obtained 36 effective LKZJ components and identified 225 candidate targets acting on colon cancer. We demonstrated that the cell viability of HCT-116 cells had significantly decreased after treatment of LKZJ. The suppression of HCT-116 proliferation by LKZJ through inducing apoptosis was determined using Flow cytometry. In addition, mitochondria-associated apoptosis was stimulated, and the down-regulation of Bcl-2 and up-regulation of Bax and Bad were observed. LKZJ also attenuated the PI3K/Akt signaling pathway through western blotting.

Conclusion: Our study revealed that LKZJ induced HCT-116 cell line apoptosis through the PI3K/Akt apoptotic pathway. Our results indicated that LKZJ could be a possible therapeutic agent against human colon cancer.

Keywords: Li Kun Zhi Ji, Network pharmacology, Human colon cancer, Apoptosis, PI3K/Akt pathway

Graphical Abstract

[1]
Peng, J.; Yuan, J.P.; Wu, C.F.; Wang, J.H. Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: Metabolism and bioactivities relevant to human health. Mar. Drugs, 2011, 9(10), 1806-1828.
[http://dx.doi.org/10.3390/md9101806] [PMID: 22072997]
[2]
Gupta, S.; Abu-Ghannam, N. Bioactive potential and possible health effects of edible brown seaweeds. Trends Food Sci. Technol., 2011, 22(6), 315-326.
[3]
Guo, K.; He, X.; Lu, D.; Zhang, Y.; Li, X.; Yan, Z.; Qin, B. Cycloartane-type triterpenoids from Astragalus hoantchy French. Nat. Prod. Res., 2017, 31(3), 314-319.
[http://dx.doi.org/10.1080/14786419.2016.1236100] [PMID: 27858488]
[4]
Wang, X.Q.; Wang, L.; Tu, Y.C.; Zhang, Y.C. Traditional Chinese medicine for refractory Nephrotic syndrome: Strategies and promising treatments. Evid. Based Complement. Alternat. Med., 2018, 2018, 8746349.
[http://dx.doi.org/10.1155/2018/8746349] [PMID: 29507594]
[5]
Kim, G.D.; Oh, J.; Park, H.J.; Bae, K.; Lee, S.K. Magnolol inhibits angiogenesis by regulating ROS-mediated apoptosis and the PI3K/AKT/mTOR signaling pathway in mES/EB-derived endothelial-like cells. Int. J. Oncol., 2013, 43(2), 600-610.
[http://dx.doi.org/10.3892/ijo.2013.1959] [PMID: 23708970]
[6]
Li, H.; Wang, P.; Huang, F.; Jin, J.; Wu, H.; Zhang, B.; Wang, Z.; Shi, H.; Wu, X. Astragaloside IV protects blood-brain barrier integrity from LPS-induced disruption via activating Nrf2 antioxidant signaling pathway in mice. Toxicol. Appl. Pharmacol., 2018, 340, 58-66.
[http://dx.doi.org/10.1016/j.taap.2017.12.019] [PMID: 29294303]
[7]
Cui, K.; Zhang, S.; Jiang, X.; Xie, W. Novel synergic antidiabetic effects of Astragalus polysaccharides combined with Crataegus flavonoids via improvement of islet function and liver metabolism. Mol. Med. Rep., 2016, 13(6), 4737-4744.
[http://dx.doi.org/10.3892/mmr.2016.5140] [PMID: 27081750]
[8]
Wang, Y.; Chen, Y.; Du, H.; Yang, J.; Ming, K.; Song, M.; Liu, J. Comparison of the anti-duck hepatitis A virus activities of phosphorylated and sulfated Astragalus polysaccharides. Exp. Biol. Med. (Maywood), 2017, 242(3), 344-353.
[http://dx.doi.org/10.1177/1535370216672750] [PMID: 27703041]
[9]
Pang, Z.; Zhi-yan, Z.; Wang, W.; Ma, Y.; Feng-ju, N.; Zhang, X.; Han, C. The advances in research on the pharmacological effects of Fructus ligustri lucidi. BioMed Res. Int., 2015, 2015, 281873.
[http://dx.doi.org/10.1155/2015/281873] [PMID: 25874204]
[10]
Han, J.; Wei, L.; Xu, W.; Lu, J.; Wang, C.; Bao, Y.; Jia, W. CTSK inhibitor exert its anti-obesity effects through regulating adipocyte differentiation in high-fat diet induced obese mice. Endocr. J., 2015, 62(4), 309-317.
[http://dx.doi.org/10.1507/endocrj.EJ14-0336] [PMID: 25410008]
[11]
Rampal, S.; Yang, M.H.; Sung, J.; Son, H.J.; Choi, Y.H.; Lee, J.H.; Kim, Y.H.; Chang, D.K.; Rhee, P.L.; Rhee, J.C.; Guallar, E.; Cho, J. Association between markers of glucose metabolism and risk of colorectal adenoma. Gastroenterology, 2014, 147(1), 78-87.
[http://dx.doi.org/10.1053/j.gastro.2014.03.006] [PMID: 24632359]
[12]
Zhang, Y.; Mukwaya, E.; Pan, H.; Li, X.M.; Yang, J.L.; Ge, J.; Wang, H.Y. Combination therapy of Chinese herbal medicine Fructus ligustri lucidi with high calcium diet on calcium imbalance induced by ovariectomy in mice. Pharm. Biol., 2015, 53(7), 1082-1085.
[http://dx.doi.org/10.3109/13880209.2014.950388] [PMID: 25495599]
[13]
Yu, Z.L.; Zeng, W.C. Antioxidant, antibrowning, and cytoprotective activities of Ligustrum robustum (Rxob.) Blume extract. J. Food Sci., 2013, 78(9), C1354-C1362.
[http://dx.doi.org/10.1111/1750-3841.12224] [PMID: 23924383]
[14]
Tan, X.L.; Zhang, Y.H.; Cai, J.P.; Zhu, L.H.; Ge, W.J.; Zhang, X. 5-(Hydroxymethyl)-2-furaldehyde inhibits adipogenic and enhances osteogenic differentiation of rat bone mesenchymal stem cells. Nat. Prod. Commun., 2014, 9(4), 529-532.
[http://dx.doi.org/10.1177/1934578X1400900427] [PMID: 24868876]
[15]
Cai, J.; Zheng, T.; Zhang, L.; Tian, Y.; Yang, M.H.; Du, J. Effects of Herba epimedii and Fructus ligustri lucidi on the transcription factors in hypothalamus of aged rats. Chin. J. Integr. Med., 2011, 17(10), 758-763.
[http://dx.doi.org/10.1007/s11655-011-0636-z] [PMID: 21465296]
[16]
Zhou, P. Recent advances in retinol binding protein-4 and gestational diabetes mellitus. J. Int. Obstetrics Gynecol., 2013, 40
[17]
Kanayama, H.; Togami, M.; Adachi, N.; Fukai, Y.; Okumoto, T. Studies on the antitumor active polysaccharides from the mycelia of Poria cocos Wolf. III. Antitumor activity against mouse tumors. Yakugaku Zasshi, 1986, 106(4), 307-312.
[http://dx.doi.org/10.1248/yakushi1947.106.4_307] [PMID: 3735073]
[18]
Kaminaga, T.; Yasukawa, K.; Kanno, H.; Tai, T.; Nunoura, Y.; Takido, M. Inhibitory effects of lanostane-type triterpene acids, the components of Poria cocos, on tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in two-stage carcinogenesis in mouse skin. Oncology, 1996, 53(5), 382-385.
[http://dx.doi.org/10.1159/000227592] [PMID: 8784472]
[19]
Ríos, J.L.; Andújar, I.; Recio, M.C.; Giner, R.M. Lanostanoids from fungi: A group of potential anticancer compounds. J. Nat. Prod., 2012, 75(11), 2016-2044.
[http://dx.doi.org/10.1021/np300412h] [PMID: 23092389]
[20]
Ríos, J.L. Chemical constituents and pharmacological properties of Poria cocos. Planta Med., 2011, 77(7), 681-691.
[http://dx.doi.org/10.1055/s-0030-1270823] [PMID: 21347995]
[21]
Czabotar, P.E.; Lessene, G.; Strasser, A.; Adams, J.M. Control of apoptosis by the Bcl-2 protein family: Implications for physiology and therapy. Nat. Rev. Mol. Cell Biol., 2014, 15(1), 49-63.
[http://dx.doi.org/10.1038/nrm3722] [PMID: 24355989]
[22]
Brentnall, M.; Rodriguez-Menocal, L.; Guevara, R.; Cepero, E.; Boise, L.H. Caspase-9, caspase-3 and caspase-7 have distinct roles during intrinsic apoptosis. BMC Cell Biol., 2013, 14, 32.
[http://dx.doi.org/10.1186/1471-2121-14-32]
[23]
Volkmann, N.; Marassi, F.M.; Newmeyer, D.D.; Hanein, D. The rheostat in the membrane: Bcl-2 family proteins and apoptosis. Cell Death Differ., 2014, 21(2), 206-215.
[24]
Zong, W.X.; Rabinowitz, J.D.; White, E.J.M.C. Mitochondria and Cancer. Mol. Cell, 2016, 61(5), 667-676.
[http://dx.doi.org/10.1016/j.molcel.2016.02.011] [PMID: 26942671]
[25]
Yuen, H.F.; Chan, K.K.; Grills, C.; Murray, J.T.; Higgins, A.P.; Eldin, O.S.; O’Byrne, K.; Janne, P.; Fennell, D.A.; Johnston, P.G.; Rudland, P.S.; El-Tanani, M. Ran is a potential therapeutic target for cancer cells with molecular changes associated with activation of the PI3K/Akt/mTORC1 and Ras/MEK/ERK pathways. Clin. Cancer Res., 2012, 18(2), 380-391.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-2035] [PMID: 22090358]
[26]
Oberst, A.; Bender, C.; Green, D.R. Living with death: The evolution of the mitochondrial pathway of apoptosis in animals. Cell Death Differ., 2008, 15(7), 1139-1146.
[http://dx.doi.org/10.1038/cdd.2008.65] [PMID: 18451868]
[27]
Tan, Y.; Demeter, M.R.; Ruan, H.; Comb, M.J. BAD Ser-155 phosphorylation regulates BAD/Bcl-XL interaction and cell survival. J. Biol. Chem., 2000, 275(33), 25865-25869.
[http://dx.doi.org/10.1074/jbc.M004199200] [PMID: 10837486]
[28]
Hers, I.; Vincent, E.E.; Tavaré, J.M.J.C.S. Akt signalling in health and disease. Cell. Signal., 2011, 23(10), 1515-1527.
[http://dx.doi.org/10.1016/j.cellsig.2011.05.004] [PMID: 21620960]