Abstract
Background: The lack of anti-COVID-19 treatment to date warrants urgent research into
potential therapeutic targets. Virtual drug screening techniques enable the identification of novel
compounds that target the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Main
Protease (Mpro).
Objective: The binding of the halogenated compounds to Mpro may inhibit the replication and transcription
of SARS-CoV-2 and, ultimately, stop the viral life cycle. In times of dire need for anti-
COVID-19 treatment, this study lays the groundwork for further experimental research to investigate
these compounds' efficacy and potential medical uses to treat COVID-19.
Methods: New heterocyclic compounds were synthesized through the first reaction of cyclohexane-
1, 3-dione (1a) or dimedone (1b) with trichloroacetonitrile (2) to give the 2,2,2-trichloroethylidene)
cyclohexane-1,3-dione derivatives 3a and 3b, respectively. The latter compounds underwent a series
of heterocyclization reactions to produce biologically active compounds.
Results: Novel compounds, including fused thiophene, pyrimidine and pyran derivatives, were synthesized
and tested against human RNA N7-MTase (hRNMT) and selected viral N7-MTases such as
SARS-CoV nsp14 and Vaccinia D1-D12 complex to evaluate their specificity and their molecular
modeling was also studied in the aim of producing anti-COVID-19 target molecules.
Conclusion: The results showed that compounds 10a, 10b, 10c, 10e, 10f, 10g and 10h showed high
% inhibitions against SARs-Covnsp 14. Whereas compounds 5a, 7a, 8b, 10a, 10b, 10c and 10i
showed high inhibitions against hRNMT. This study explored the binding affinity of twenty-two
halogenated compounds to the SARS-CoV-2 MPro and discovered fifteen compounds with higher
binding affinity than Nelfinavir, of which three showed remarkable results. c-Met kinase inhibitions
of 10a, 10f, 10g and 10h showed that all compounds exhibited higher inhibitions than the reference
Foretinib.
Keywords:
Trichloroethylidene, SARS-CoV-2, Corona virus, Main protease, Mpro, Molecular Docking
Graphical Abstract
[24]
Bastián, M.R.; Tejedor, M.R.; Angélica, M.; Núñez, R. Detection of SARS-CoV-2 genomic RNA on surgical masks worn by patients: Proof of conceptPrueba de concepto: Detección de material genético de SARS-CoV-2 en mascarillas quirúrgicas de pacientes. Enferm. Infecc. Microbiol. Clin., 2021, 39, 528-530.
[26]
Wieske, L.; van Dam, K.P.J.; Steenhuis, M.; Stalman, E.W.; Kummer, L.Y.L.; van Kempen, Z.L.E.; Killestein, J.; Volkers, A.G.; Tas, S.W.; Boekel, L.; Wolbink, G.J.; van der Kooi, A.J.; Raaphorst, J.; Löwenberg, M.; Takkenberg, R.B.; D’Haens, G.R.A.M.; Spuls, P.I.; Bekkenk, M.W.; Musters, A.H.; Post, N.F.; Bosma, A.L.; Hilhorst, M.L.; Vegting, Y.; Bemelman, F.J.; Voskuyl, A.E.; Broens, B.; Sanchez, A.P.; van Els, C.A.C.M.; de Wit, J.; Rutgers, A.; de Leeuw, K.; Horváth, B.; Verschuuren, J.J.G.M.; Ruiter, A.M.; van Ouwerkerk, L.; van der Woude, D.; Allaart, R.C.F.; Teng, Y.K.O.; van Paassen, P.; Busch, M.H.; Jallah, P.B.P.; Brusse, E.; van Doorn, P.A.; Baars, A.E.; Hijnen, D.J.; Schreurs, C.R.G.; van der Pol, W.L.; Goedee, H.S.; Keijzer, S.; Keijser, J.B.D.; Boogaard, A.; Cristianawati, O.; ten Brinke, A.; Verstegen, N.J.M.; Zwinderman, K.A.H.; van Ham, S.M.; Kuijpers, T.W.; Rispens, T.; Eftimov, F.; de Jongh, R.; van de Sandt, C.E.; Kuijper, L.; Duurland, M.; Hagen, R.R.; van den Dijssel, J.; Kreher, C.; Bos, A.; Palomares Cabeza, V.; Konijn, V.A.L.; Elias, G.; Vallejo, J.G.; van Gils, M.J.; Ashhurst, T.M.; Nejentsev, S.; Mirfazeli, E.S. Humoral responses after second and third SARS-CoV-2 vaccination in patients with immune-mediated inflammatory disorders on immunosuppressants: A cohort study.
Lancet Rheumatol., 2022,
4(5), e338-e350.
[
http://dx.doi.org/10.1016/S2665-9913(22)00034-0] [PMID:
35317410]
[29]
Didehban, K.; Vessally, E.; Salary, M.; Edjlali, L.; Babazadeh, M. Synthesis of a variety of key medicinal heterocyclic compounds via chemical fixation of CO2 onto o-alkynylaniline derivatives. J. CO2 Utiliz., 2018, 23, 42-50.
[48]
The PyMOL Molecular Graphics System. Version 1.7.6; Schrödinger, LLC, 2015.
[54]
Vallejos, M.; Auffinger, P.; Ho, P.S. Halogen interactions in biomolecular crystal structures. Int. Tables Crystallogr., 2012, F, 821-826.
[57]
Parks, D.J.; Lafrance, L.V.; Calvo, R.R.; Milkiewicz, K.L.; Gupta, V.; Lattanze, J.; Ramachandren, K.; Carver, T.E.; Petrella, E.C.; Cummings, M.D.; Maguire, D.; Grasberger, B.L.; Lu, T. 1,4-Benzodiazepine-2,5-diones as small molecule antagonists of the HDM2-p53 interaction: Discovery and SAR. Bioorg. Med. Chem. Lett., 2005, 15, 765-770.