Phosphoserine Aminotransferase 1: A Metabolic Enzyme Target of Cancers

Page: [171 - 186] Pages: 16

  • * (Excluding Mailing and Handling)

Abstract

Phosphoserine aminotransferase 1 (PSAT1) catalyzes 3-phosphohydroxylpyruvate and glutamate into 3-phosphoserine and α-ketoglutamate. It integrates metabolic pathways critical for cell proliferation, survival, migration and epigenetics, such as glycolysis, de novo serine synthesis, citric acid cycle and one-carbon metabolism. The level of this enzyme has been disclosed to be closely related to the occurrence, progression and prognosis of cancers like non-small cell lung cancer, colorectal cancer, esophageal squamous cell carcinoma, breast cancer, etc. via metabolic catalyzation, PSAT1 offers anabolic and energic supports for these tumor cells, affecting their proliferation, survival, autophagy, migration and invasion. Such functions also influence the epigenetics of other noncancerous cells and drive them to serve tumor cells. Moreover, PSAT1 exerts a non-enzymatic regulation of the IGF1 pathway and nuclear PKM2 to promote EMT and cancer metastasis. Genetically manipulating PSAT1 alters tumor progression in vitro and in vivo. This paper reviews the role and action mechanism of PSAT1 in tumor biology and chemotherapy as well as the regulation of PSAT1 expression, exhibiting the perspective for PSAT1 as a new molecular marker and target for cancer diagnosis and treatment.

Keywords: PSAT1, de novo serine synthesis, α-ketoglutamate, IGF1, cancer target, serine hydroxymethyl transferase.

Graphical Abstract

Animated Abstract

[1]
Hart, C.E.; Race, V.; Achouri, Y.; Wiame, E.; Sharrard, M.; Olpin, S.E.; Watkinson, J.; Bonham, J.R.; Jaeken, J.; Matthijs, G.; Van Schaftingen, E. Phosphoserine aminotransferase deficiency: a novel disorder of the serine biosynthesis pathway. Am. J. Hum. Genet., 2007, 80(5), 931-937.
[http://dx.doi.org/10.1086/517888] [PMID: 17436247]
[2]
Acuna-Hidalgo, R.; Schanze, D.; Kariminejad, A.; Nordgren, A.; Kariminejad, M.H.; Conner, P.; Grigelioniene, G.; Nilsson, D.; Nordenskjöld, M.; Wedell, A.; Freyer, C.; Wredenberg, A.; Wieczorek, D.; Gillessen-Kaesbach, G.; Kayserili, H.; Elcioglu, N.; Ghaderi-Sohi, S.; Goodarzi, P.; Setayesh, H.; van de Vorst, M.; Steehouwer, M.; Pfundt, R.; Krabichler, B.; Curry, C.; MacKenzie, M.G.; Boycott, K.M.; Gilissen, C.; Janecke, A.R.; Hoischen, A.; Zenker, M. Neu-Laxova syndrome is a heterogeneous metabolic disorder caused by defects in enzymes of the L-serine biosynthesis pathway. Am. J. Hum. Genet., 2014, 95(3), 285-293.
[http://dx.doi.org/10.1016/j.ajhg.2014.07.012] [PMID: 25152457]
[3]
Shapira Zaltsberg, G.; McMillan, H.J.; Miller, E. Phosphoserine aminotransferase deficiency: imaging findings in a child with congenital microcephaly. J. Matern. Fetal Neonatal Med., 2020, 33(6), 1033-1035.
[http://dx.doi.org/10.1080/14767058.2018.1514375] [PMID: 30122079]
[4]
Debs, S.; Ferreira, C.R.; Groden, C.; Kim, H.J.; King, K.A.; King, M.C.; Lehky, T.; Cowen, E.W.; Brown, L.H.; Merideth, M.; Owen, C.M.; Macnamara, E.; Toro, C.; Gahl, W.A.; Soldatos, A. Adult diagnosis of congenital serine biosynthesis defect: A treatable cause of progressive neuropathy. Am. J. Med. Genet. A., 2021, 185(7), 2102-2107.
[http://dx.doi.org/10.1002/ajmg.a.62245] [PMID: 34089226]
[5]
Ozeki, Y.; Pickard, B.S.; Kano, S.; Malloy, M.P.; Zeledon, M.; Sun, D.Q.; Fujii, K.; Wakui, K.; Shirayama, Y.; Fukushima, Y.; Kunugi, H.; Hashimoto, K.; Muir, W.J.; Blackwood, D.H.; Sawa, A. A novel balanced chromosomal translocation found in subjects with schizophrenia and schizotypal personality disorder: Altered l-serine level associated with disruption of PSAT1 gene expression. Neurosci. Res., 2011, 69(2), 154-160.
[http://dx.doi.org/10.1016/j.neures.2010.10.003] [PMID: 20955740]
[6]
Sánchez-Castillo, A.; Vooijs, M.; Kampen, K.R. Linking serine/glycine metabolism to radiotherapy resistance. Cancers (Basel), 2021, 13(6), 1191.
[http://dx.doi.org/10.3390/cancers13061191] [PMID: 33801846]
[7]
Muthusamy, T.; Cordes, T.; Handzlik, M.K.; You, L.; Lim, E.W.; Gengatharan, J.; Pinto, A.F.M.; Badur, M.G.; Kolar, M.J.; Wallace, M.; Saghatelian, A.; Metallo, C.M. Serine restriction alters sphingolipid diversity to constrain tumour growth. Nature, 2020, 586(7831), 790-795.
[http://dx.doi.org/10.1038/s41586-020-2609-x] [PMID: 32788725]
[8]
Geeraerts, S.L.; Heylen, E.; De Keersmaecker, K.; Kampen, K.R. The ins and outs of serine and glycine metabolism in cancer. Nat. Metab., 2021, 3(2), 131-141.
[http://dx.doi.org/10.1038/s42255-020-00329-9] [PMID: 33510397]
[9]
Tajan, M.; Hennequart, M.; Cheung, E.C.; Zani, F.; Hock, A.K.; Legrave, N.; Maddocks, O.D.K.; Ridgway, R.A.; Athineos, D.; Suárez-Bonnet, A.; Ludwig, R.L.; Novellasdemunt, L.; Angelis, N.; Li, V.S.W.; Vlachogiannis, G.; Valeri, N.; Mainolfi, N.; Suri, V.; Friedman, A.; Manfredi, M.; Blyth, K.; Sansom, O.J.; Vousden, K.H. Serine synthesis pathway inhibition cooperates with dietary serine and glycine limitation for cancer therapy. Nat. Commun., 2021, 12(1), 366.
[http://dx.doi.org/10.1038/s41467-020-20223-y] [PMID: 33446657]
[10]
Huang, S.P.; Chan, Y.C.; Huang, S.Y.; Lin, Y.F. Overexpression of PSAT1 Gene is a Favorable Prognostic Marker in Lower-Grade Gliomas and Predicts a Favorable Outcome in Patients with IDH1 Mutations and Chromosome 1p19q Codeletion. Cancers (Basel), 2019, 12(1), 13.
[http://dx.doi.org/10.3390/cancers12010013] [PMID: 31861486]
[11]
Birsoy, K.; Wang, T.; Chen, W.W.; Freinkman, E.; Abu-Remaileh, M.; Sabatini, D.M. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell, 2015, 162(3), 540-551.
[http://dx.doi.org/10.1016/j.cell.2015.07.016] [PMID: 26232224]
[12]
Sullivan, L.B.; Gui, D.Y.; Hosios, A.M.; Bush, L.N.; Freinkman, E.; Vander Heiden, M.G. Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells. Cell, 2015, 162(3), 552-563.
[http://dx.doi.org/10.1016/j.cell.2015.07.017] [PMID: 26232225]
[13]
Dang, L.; Jin, S.; Su, S.M. IDH mutations in glioma and acute myeloid leukemia. Trends Mol. Med., 2010, 16(9), 387-397.
[http://dx.doi.org/10.1016/j.molmed.2010.07.002] [PMID: 20692206]
[14]
Baksh, S.C.; Finley, L.W.S. Metabolic coordination of cell fate by α-ketoglutarate-dependent dioxygenases. Trends Cell Biol., 2021, 31(1), 24-36.
[http://dx.doi.org/10.1016/j.tcb.2020.09.010] [PMID: 33092942]
[15]
Atlante, S. Visintin, A.; Marini, E.; Savoia, M.; Dianzani, C.; Giorgis, M.; Sürün, D.; Maione, F.; Schnütgen, F.; Farsetti, A.; Zeiher, A.M.; Bertinaria, M.; Giraudo, E.; Spallotta, F.; Cencioni, C.; Gaetano, C. α-ketoglutarate dehydrogenase inhibition counteracts breast cancer-associated lung metastasis. Cell Death Dis., 2018, 9(7), 756.
[http://dx.doi.org/10.1038/s41419-018-0802-8] [PMID: 29988033]
[16]
Tseng, C.W.; Kuo, W.H.; Chan, S.H.; Chan, H.L.; Chang, K.J.; Wang, L.H. Transketolase regulates the metabolic switch to control breast cancer cell metastasis via the α-ketoglutarate signaling pathway. Cancer Res., 2018, 78(11), 2799-2812.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-2906] [PMID: 29599405]
[17]
Chan, Y.C.; Chang, Y.C.; Chuang, H.H.; Yang, Y.C.; Lin, Y.F.; Huang, M.S.; Hsiao, M.; Yang, C.J.; Hua, K.T. Overexpression of PSAT1 promotes metastasis of lung adenocarcinoma by suppressing the IRF1-IFNγ axis. Oncogene, 2020, 39(12), 2509-2522.
[http://dx.doi.org/10.1038/s41388-020-1160-4] [PMID: 31988456]
[18]
Xu, R.; Jones, W.; Wilcz-Villega, E.; Costa, A.S.H.; Rajeeve, V.; Bentham, R.B.; Bryson, K.; Nagano, A.; Yaman, B.; Olendo Barasa, S.; Wang, Y.; Chelala, C.; Cutillas, P.; Szabadkai, G.; Frezza, C.; Bianchi, K. The breast cancer oncogene IKKε coordinates mitochondrial function and serine metabolism. EMBO Rep., 2020, 21(9), e48260.
[http://dx.doi.org/10.15252/embr.201948260] [PMID: 32783398]
[19]
Tsymbal, D.O.; Minchenko, D.O.; Hnatiuk, O.S.; Luzina, O.Y.; Minchenko, O.H. Effect of hypoxia on the expression of a subset of proliferation related genes in IRE1 knockdown U87 glioma cells. Adv. Biol. Chem., 2017, 7(6), 195-210.
[http://dx.doi.org/10.4236/abc.2017.76014]
[20]
Coloff, J.L.; Murphy, J.P.; Braun, C.R.; Harris, I.S.; Shelton, L.M.; Kami, K.; Gygi, S.P.; Selfors, L.M.; Brugge, J.S. Differential glutamate metabolism in proliferating and quiescent mammary epithelial cells. Cell Metab., 2016, 23(5), 867-880.
[http://dx.doi.org/10.1016/j.cmet.2016.03.016] [PMID: 27133130]
[21]
Amin, A.; Farrukh, A.; Murali, C.; Soleimani, A.; Praz, F.; Graziani, G.; Brim, H.; Ashktorab, H. Saffron and its major ingredients’ effect on colon cancer cells with mismatch repair deficiency and microsatellite instability. Molecules, 2021, 26(13), 3855.
[http://dx.doi.org/10.3390/molecules26133855] [PMID: 34202689]
[22]
Abdalla, Y.; Abdalla, A.; Hamza, A.A.; Amin, A. Safranal prevents liver cancer through inhibiting oxidative stress and alleviating inflammation. Front. Pharmacol., 2022, 12, 777500.
[http://dx.doi.org/10.3389/fphar.2021.777500] [PMID: 35177980]
[23]
Hamza, A.A.; Heeba, G.H.; Hamza, S.; Abdalla, A.; Amin, A. Standardized extract of ginger ameliorates liver cancer by reducing proliferation and inducing apoptosis through inhibition oxidative stress/inflammation pathway. Biomed. Pharmacother., 2021, 134, 111102.
[http://dx.doi.org/10.1016/j.biopha.2020.111102] [PMID: 33338743]
[24]
Al-Dabbagh, B.; Elhaty, I.A.; Murali, C.; Madhoon, A.A.; Amin, A. Salvadora persica (Miswak): Antioxidant and Promising Antiangiogenic Insights. Am. J. Plant Sci., 2018, 09(06), 1228-1244.
[http://dx.doi.org/10.4236/ajps.2018.96091]
[25]
Abdalla, A.; Murali, C.; Amin, A. Safranal inhibits angiogenesis via targeting HIF-1α/VEGF machinery: In vitro and ex vivo insights. Front. Oncol., 2022, 11, 789172.
[http://dx.doi.org/10.3389/fonc.2021.789172] [PMID: 35211395]
[26]
Juaid, N.; Amin, A.; Abdalla, A.; Reese, K.; Alamri, Z.; Moulay, M.; Abdu, S.; Miled, N. Anti-hepatocellular carcinoma biomolecules: Molecular targets insights. Int. J. Mol. Sci., 2021, 22(19), 10774.
[http://dx.doi.org/10.3390/ijms221910774] [PMID: 34639131]
[27]
Yang, Y.; Wu, J.; Cai, J.; He, Z.; Yuan, J.; Zhu, X.; Li, Y.; Li, M.; Guan, H. PSAT1 regulates cyclin D1 degradation and sustains proliferation of non-small cell lung cancer cells. Int. J. Cancer, 2015, 136(4), E39-E50.
[http://dx.doi.org/10.1002/ijc.29150] [PMID: 25142862]
[28]
Jin, H.O.; Hong, S.E.; Kim, J.Y.; Jang, S.K.; Kim, Y.S.; Sim, J.H.; Oh, A.C.; Kim, H.; Hong, Y.J.; Lee, J.K.; Park, I.C. Knock-down of PSAT1 enhances sensitivity of NSCLC cells to glutamine-limiting conditions. Anticancer Res., 2019, 39(12), 6723-6730.
[http://dx.doi.org/10.21873/anticanres.13887] [PMID: 31810937]
[29]
Ye, J.; Mancuso, A.; Tong, X.; Ward, P.S.; Fan, J.; Rabinowitz, J.D.; Thompson, C.B. Pyruvate kinase M2 promotes de novo serine synthesis to sustain mTORC1 activity and cell proliferation. Proc. Natl. Acad. Sci. USA, 2012, 109(18), 6904-6909.
[http://dx.doi.org/10.1073/pnas.1204176109] [PMID: 22509023]
[30]
Diehl, J.A.; Zindy, F.; Sherr, C.J. Inhibition of cyclin D1 phosphorylation on threonine-286 prevents its rapid degradation via the ubiquitin-proteasome pathway. Genes Dev., 1997, 11(8), 957-972.
[http://dx.doi.org/10.1101/gad.11.8.957] [PMID: 9136925]
[31]
Guo, Y.; Yang, K.; Harwalkar, J.; Nye, J.M.; Mason, D.R.; Garrett, M.D.; Hitomi, M.; Stacey, D.W. Phosphorylation of cyclin D1 at Thr 286 during S phase leads to its proteasomal degradation and allows efficient DNA synthesis. Oncogene, 2005, 24(16), 2599-2612.
[http://dx.doi.org/10.1038/sj.onc.1208326] [PMID: 15735756]
[32]
Lv, L.; Xu, Y.P.; Zhao, D.; Li, F.L.; Wang, W.; Sasaki, N.; Jiang, Y.; Zhou, X.; Li, T.T.; Guan, K.L.; Lei, Q.Y.; Xiong, Y. Mitogenic and oncogenic stimulation of K433 acetylation promotes PKM2 protein kinase activity and nuclear localization. Mol. Cell, 2013, 52(3), 340-352.
[http://dx.doi.org/10.1016/j.molcel.2013.09.004] [PMID: 24120661]
[33]
Yang, Y.C.; Chien, M.H.; Liu, H.Y.; Chang, Y.C.; Chen, C.K.; Lee, W.J.; Kuo, T.C.; Hsiao, M.; Hua, K.T.; Cheng, T.Y. Nuclear translocation of PKM2/AMPK complex sustains cancer stem cell populations under glucose restriction stress. Cancer Lett., 2018, 421, 28-40.
[http://dx.doi.org/10.1016/j.canlet.2018.01.075] [PMID: 29408265]
[34]
Biyik-Sit, R.; Kruer, T.; Dougherty, S.; Bradley, J.A.; Wilkey, D.W.; Merchant, M.L.; Trent, J.O.; Clem, B.F. Nuclear Pyruvate Kinase M2 (PKM2) Contributes to Phosphoserine Aminotransferase 1 (PSAT1)-Mediated Cell Migration in EGFR-Activated Lung Cancer Cells. Cancers (Basel), 2021, 13(16), 3938.
[http://dx.doi.org/10.3390/cancers13163938] [PMID: 34439090]
[35]
DeNicola, G.M.; Chen, P.H.; Mullarky, E.; Sudderth, J.A.; Hu, Z.; Wu, D.; Tang, H.; Xie, Y.; Asara, J.M.; Huffman, K.E.; Wistuba, I.I.; Minna, J.D.; DeBerardinis, R.J.; Cantley, L.C. NRF2 regulates serine biosynthesis in non–small cell lung cancer. Nat. Genet., 2015, 47(12), 1475-1481.
[http://dx.doi.org/10.1038/ng.3421] [PMID: 26482881]
[36]
Marengo, B.; Nitti, M.; Furfaro, A.L.; Colla, R.; Ciucis, C.D.; Marinari, U.M.; Pronzato, M.A.; Traverso, N.; Domenicotti, C. Redox homeostasis and cellular antioxidant systems: Crucial players in cancer growth and therapy. Oxid. Med. Cell. Longev., 2016, 2016, 1-16.
[http://dx.doi.org/10.1155/2016/6235641] [PMID: 27418953]
[37]
Tian, Y.; Liu, Q.; He, X.; Yuan, X.; Chen, Y.; Chu, Q.; Wu, K. Emerging roles of Nrf2 signal in non-small cell lung cancer. J. Hematol. Oncol., 2016, 9(1), 14.
[http://dx.doi.org/10.1186/s13045-016-0246-5] [PMID: 26922479]
[38]
Kasai, S.; Yamazaki, H.; Tanji, K.; Engler, M.J.; Matsumiya, T.; Itoh, K. Role of the ISR-ATF4 pathway and its cross talk with Nrf2 in mitochondrial quality control. J. Clin. Biochem. Nutr., 2019, 64(1), 1-12.
[http://dx.doi.org/10.3164/jcbn.18-37] [PMID: 30705506]
[39]
Ye, P.; Mimura, J.; Okada, T.; Sato, H.; Liu, T.; Maruyama, A.; Ohyama, C.; Itoh, K. Nrf2- and ATF4-dependent upregulation of xCT modulates the sensitivity of T24 bladder carcinoma cells to proteasome inhibition. Mol. Cell. Biol., 2014, 34(18), 3421-3434.
[http://dx.doi.org/10.1128/MCB.00221-14] [PMID: 25002527]
[40]
Singleton, D.C.; Harris, A.L. Targeting the ATF4 pathway in cancer therapy. Expert Opin. Ther. Targets, 2012, 16(12), 1189-1202.
[http://dx.doi.org/10.1517/14728222.2012.728207] [PMID: 23009153]
[41]
B’chir, W.; Maurin, A.C.; Carraro, V.; Averous, J.; Jousse, C.; Muranishi, Y.; Parry, L.; Stepien, G.; Fafournoux, P.; Bruhat, A. The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Res., 2013, 41(16), 7683-7699.
[http://dx.doi.org/10.1093/nar/gkt563] [PMID: 23804767]
[42]
Kilberg, M.S.; Shan, J.; Su, N. ATF4-dependent transcription mediates signaling of amino acid limitation. Trends Endocrinol. Metab., 2009, 20(9), 436-443.
[http://dx.doi.org/10.1016/j.tem.2009.05.008] [PMID: 19800252]
[43]
Wang, X.; Min, S.; Liu, H.; Wu, N.; Liu, X.; Wang, T.; Li, W.; Shen, Y.; Wang, H.; Qian, Z.; Xu, H.; Zhao, C.; Chen, Y. Nf1 loss promotes Kras ‐driven lung adenocarcinoma and results in Psat1‐mediated glutamate dependence. EMBO Mol. Med., 2019, 11(6), e9856.
[http://dx.doi.org/10.15252/emmm.201809856] [PMID: 31036704]
[44]
Cheng, D.K.; Oni, T.E.; Thalappillil, J.S.; Park, Y.; Ting, H.C.; Alagesan, B.; Prasad, N.V.; Addison, K.; Rivera, K.D.; Pappin, D.J.; Van Aelst, L.; Tuveson, D.A. Oncogenic KRAS engages an RSK1/NF1 pathway to inhibit wild-type RAS signaling in pancreatic cancer. Proc. Natl. Acad. Sci. USA, 2021, 118(21), e2016904118.
[http://dx.doi.org/10.1073/pnas.2016904118] [PMID: 34021083]
[45]
Guo, K.; Qi, D.; Huang, B. LncRNA MEG8 promotes NSCLC progression by modulating the miR-15a-5p-miR-15b-5p/PSAT1 axis. Cancer Cell Int., 2021, 21(1), 84.
[http://dx.doi.org/10.1186/s12935-021-01772-8] [PMID: 33526036]
[46]
Waks, A.G.; Winer, E.P. Breast cancer treatment. JAMA, 2019, 321(3), 288-300.
[http://dx.doi.org/10.1001/jama.2018.19323] [PMID: 30667505]
[47]
Gao, S.; Ge, A.; Xu, S.; You, Z.; Ning, S.; Zhao, Y.; Pang, D. PSAT1 is regulated by ATF4 and enhances cell proliferation via the GSK3β/β-catenin/cyclin D1 signaling pathway in ER-negative breast cancer. J. Exp. Clin. Cancer Res., 2017, 36(1), 179.
[http://dx.doi.org/10.1186/s13046-017-0648-4] [PMID: 29216929]
[48]
De Marchi, T.; Timmermans, M.A.; Sieuwerts, A.M.; Smid, M.; Look, M.P.; Grebenchtchikov, N.; Sweep, F.C.G.J.; Smits, J.G.; Magdolen, V.; van Deurzen, C.H.M.; Foekens, J.A.; Umar, A.; Martens, J.W. Phosphoserine aminotransferase 1 is associated to poor outcome on tamoxifen therapy in recurrent breast cancer. Sci. Rep., 2017, 7(1), 2099.
[http://dx.doi.org/10.1038/s41598-017-02296-w] [PMID: 28522855]
[49]
Wang, C.Y.; Chiao, C.C.; Phan, N.N.; Li, C.Y.; Sun, Z.D.; Jiang, J.Z.; Hung, J.H.; Chen, Y.L.; Yen, M.C.; Weng, T.Y.; Chen, W.C.; Hsu, H.P.; Lai, M.D. Gene signatures and potential therapeutic targets of amino acid metabolism in estrogen receptor-positive breast cancer. Am. J. Cancer Res., 2020, 10(1), 95-113.
[PMID: 32064155]
[50]
Metcalf, S.; Dougherty, S.; Kruer, T.; Hasan, N.; Biyik-Sit, R.; Reynolds, L.; Clem, B.F. Selective loss of phosphoserine aminotransferase 1 (PSAT1) suppresses migration, invasion, and experimental metastasis in triple negative breast cancer. Clin. Exp. Metastasis, 2020, 37(1), 187-197.
[http://dx.doi.org/10.1007/s10585-019-10000-7] [PMID: 31630284]
[51]
Choi, B-H.; Conger, K.O.; Selfors, L.M.; Coloff, J.L. Lineage-specific silencing of PSAT1 induces serine auxotrophy and sensitivity to dietary serine starvation in luminal breast tumors. Biorxiv, 2020.
[http://dx.doi.org/10.1101/2020.06.19.161844]
[52]
Choi, B.H.; Rawat, V.; Högström, J.; Burns, P.A.; Conger, K.O.; Ozgurses, M.E.; Patel, J.M.; Mehta, T.S.; Warren, A.; Selfors, L.M.; Muranen, T.; Coloff, J.L. Lineage-specific silencing of PSAT1 induces serine auxotrophy and sensitivity to dietary serine starvation in luminal breast tumors. Cell Rep., 2022, 38(3), 110278.
[http://dx.doi.org/10.1016/j.celrep.2021.110278] [PMID: 35045283]
[53]
Martens, J.W.M.; Nimmrich, I.; Koenig, T.; Look, M.P.; Harbeck, N.; Model, F.; Kluth, A.; Bolt-de Vries, J.; Sieuwerts, A.M.; Portengen, H.; Meijer-Van Gelder, M.E.; Piepenbrock, C.; Olek, A.; Höfler, H.; Kiechle, M.; Klijn, J.G.M.; Schmitt, M.; Maier, S.; Foekens, J.A. Association of DNA methylation of phosphoserine aminotransferase with response to endocrine therapy in patients with recurrent breast cancer. Cancer Res., 2005, 65(10), 4101-4117.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0064] [PMID: 15899800]
[54]
Gendy, A.; Soubh, A.; Al-Mokaddem, A.; Kotb El-Sayed, M. Dimethyl fumarate protects against intestinal ischemia/reperfusion lesion: Participation of Nrf2/HO-1, GSK-3β and Wnt/β-catenin pathway. Biomed. Pharmacother., 2021, 134, 111130.
[http://dx.doi.org/10.1016/j.biopha.2020.111130] [PMID: 33348309]
[55]
Zhang, C.; Liu, H.; Zhao, W.; Zhao, W.; Zhou, H.; Shao, R. G3BP1 promotes human breast cancer cell proliferation through coordinating with GSK-3β and stabilizing β-catenin. Acta Pharmacol. Sin., 2021, 42(11), 1900-1912.
[http://dx.doi.org/10.1038/s41401-020-00598-w] [PMID: 33536604]
[56]
Yang, C.S.; Stampouloglou, E.; Kingston, N.M.; Zhang, L.; Monti, S.; Varelas, X. Glutamine‐utilizing transaminases are a metabolic vulnerability of TAZ/YAP‐activated cancer cells. EMBO Rep., 2018, 19(6), e43577.
[http://dx.doi.org/10.15252/embr.201643577] [PMID: 29661856]
[57]
Kim, T.; Yang, S.J.; Hwang, D.; Song, J.; Kim, M.; Kyum Kim, S.; Kang, K.; Ahn, J.; Lee, D.; Kim, M.; Kim, S.; Seung Koo, J.; Seok Koh, S.; Kim, S.Y.; Lim, D.S. A basal-like breast cancer-specific role for SRF–IL6 in YAP-induced cancer stemness. Nat. Commun., 2015, 6(1), 10186.
[http://dx.doi.org/10.1038/ncomms10186] [PMID: 26671411]
[58]
Cordenonsi, M.; Zanconato, F.; Azzolin, L.; Forcato, M.; Rosato, A.; Frasson, C.; Inui, M.; Montagner, M.; Parenti, A.R.; Poletti, A.; Daidone, M.G.; Dupont, S.; Basso, G.; Bicciato, S.; Piccolo, S. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell, 2011, 147(4), 759-772.
[http://dx.doi.org/10.1016/j.cell.2011.09.048] [PMID: 22078877]
[59]
Xie, Y.H.; Chen, Y.X.; Fang, J.Y. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct. Target. Ther., 2020, 5(1), 22.
[http://dx.doi.org/10.1038/s41392-020-0116-z] [PMID: 32296018]
[60]
Ojala, P.; Sundström, J.; Grönroos, J.M.; Virtanen, E.; Talvinen, K.; Nevalainen, T.J. mRNA differential display of gene expression in colonic carcinoma. Electrophoresis, 2002, 23(11), 1667-1676.
[http://dx.doi.org/10.1002/1522-2683(200206)23:11<1667:AID-ELPS1667>3.0.CO;2-0] [PMID: 12179986]
[61]
Friederichs, J.; Rosenberg, R.; Mages, J.; Janssen, K.P.; Maeckl, C.; Nekarda, H.; Holzmann, B.; Siewert, J.R. Gene expression profiles of different clinical stages of colorectal carcinoma: Toward a molecular genetic understanding of tumor progression. Int. J. Colorectal Dis., 2005, 20(5), 391-402.
[http://dx.doi.org/10.1007/s00384-004-0722-1] [PMID: 15883783]
[62]
Vié, N.; Copois, V.; Bascoul-Mollevi, C.; Denis, V.; Bec, N.; Robert, B.; Fraslon, C.; Conseiller, E.; Molina, F.; Larroque, C.; Martineau, P.; Del Rio, M.; Gongora, C. Overexpression of phosphoserine aminotransferase PSAT1 stimulates cell growth and increases chemoresistance of colon cancer cells. Mol. Cancer, 2008, 7(1), 14.
[http://dx.doi.org/10.1186/1476-4598-7-14] [PMID: 18221502]
[63]
Qian, C.; Xia, Y.; Ren, Y.; Yin, Y.; Deng, A. Identification and validation of PSAT1 as a potential prognostic factor for predicting clinical outcomes in patients with colorectal carcinoma. Oncol. Lett., 2017, 14(6), 8014-8020.
[http://dx.doi.org/10.3892/ol.2017.7211] [PMID: 29344244]
[64]
Wang, H.; Cui, L.; Li, D.; Fan, M.; Liu, Z.; Liu, C.; Pan, S.; Zhang, L.; Zhang, H.; Zhao, Y. Overexpression of PSAT1 regulated by G9A sustains cell proliferation in colorectal cancer. Signal Transduct. Target. Ther., 2020, 5(1), 47.
[http://dx.doi.org/10.1038/s41392-020-0147-5] [PMID: 32300099]
[65]
Montrose, D.C.; Saha, S.; Foronda, M.; McNally, E.M.; Chen, J.; Zhou, X.K.; Ha, T.; Krumsiek, J.; Buyukozkan, M.; Verma, A.; Elemento, O.; Yantiss, R.K.; Chen, Q.; Gross, S.S.; Galluzzi, L.; Dow, L.E.; Dannenberg, A.J. Exogenous and endogenous sources of serine contribute to colon cancer metabolism, growth, and resistance to 5-fluorouracil. Cancer Res., 2021, 81(9), 2275-2288.
[http://dx.doi.org/10.1158/0008-5472.CAN-20-1541] [PMID: 33526512]
[66]
Chassé, H.; Mulner-Lorillon, O.; Boulben, S.; Glippa, V.; Morales, J.; Cormier, P.; Cyclin, B. Cyclin B translation depends on mTOR activity after fertilization in sea urchin embryos. PLoS One, 2016, 11(3), e0150318.
[http://dx.doi.org/10.1371/journal.pone.0150318] [PMID: 26962866]
[67]
Murali, C.; Mudgil, P.; Gan, C.Y.; Tarazi, H.; El-Awady, R.; Abdalla, Y.; Amin, A.; Maqsood, S. Camel whey protein hydrolysates induced G2/M cellcycle arrest in human colorectal carcinoma. Sci. Rep., 2021, 11(1), 7062.
[http://dx.doi.org/10.1038/s41598-021-86391-z] [PMID: 33782460]
[68]
Van Guelpen, B.; Dahlin, A.M.; Hultdin, J.; Eklöf, V.; Johansson, I.; Henriksson, M.L.; Cullman, I.; Hallmans, G.; Palmqvist, R. One-carbon metabolism and CpG island methylator phenotype status in incident colorectal cancer: A nested case–referent study. Cancer Causes Control, 2010, 21(4), 557-566.
[http://dx.doi.org/10.1007/s10552-009-9484-y] [PMID: 20012180]
[69]
Fang, Y.; Liang, X.; Xu, J.; Cai, X. miR-424 targets AKT3 and PSAT1 and has a tumor-suppressive role in human colorectal cancer. Cancer Manag. Res., 2018, 10, 6537-6547.
[http://dx.doi.org/10.2147/CMAR.S185789] [PMID: 30555259]
[70]
Dastmalchi, N.; Baradaran, B.; Banan Khojasteh, S.M.; Hosseinpourfeizi, M.; Safaralizadeh, R. miR‐424: A novel potential therapeutic target and prognostic factor in malignancies. Cell Biol. Int., 2021, 45(4), 720-730.
[http://dx.doi.org/10.1002/cbin.11530] [PMID: 33325141]
[71]
Liu, B.; Jia, Y.; Cao, Y.; Wu, S.; Jiang, H.; Sun, X.; Ma, J.; Yin, X.; Mao, A.; Shang, M. Overexpression of Phosphoserine Aminotransferase 1 (PSAT1) predicts poor prognosis and associates with tumor progression in human esophageal squamous cell carcinoma. Cell. Physiol. Biochem., 2016, 39(1), 395-406.
[http://dx.doi.org/10.1159/000445633] [PMID: 27372650]
[72]
Huang, D.; Qiu, S.; Ge, R.; He, L.; Li, M.; Li, Y.; Peng, Y. miR-340 suppresses glioblastoma multiforme. Oncotarget, 2015, 6(11), 9257-9270.
[http://dx.doi.org/10.18632/oncotarget.3288] [PMID: 25831237]
[73]
Wu, Z.; Wu, Q.; Wang, C.; Wang, X.; Huang, J.; Zhao, J.; Mao, S.; Zhang, G.; Xu, X.; Zhang, N. miR-340 inhibition of breast cancer cell migration and invasion through targeting of oncoprotein c-Met. Cancer, 2011, 117(13), 2842-2852.
[http://dx.doi.org/10.1002/cncr.25860] [PMID: 21692045]
[74]
Fernandez, S.; Risolino, M.; Mandia, N.; Talotta, F.; Soini, Y.; Incoronato, M.; Condorelli, G.; Banfi, S.; Verde, P. miR-340 inhibits tumor cell proliferation and induces apoptosis by targeting multiple negative regulators of p27 in non-small cell lung cancer. Oncogene, 2015, 34(25), 3240-3250.
[http://dx.doi.org/10.1038/onc.2014.267] [PMID: 25151966]
[75]
Wang, C.; Su, K.; Zhang, Y.; Zhang, W.; Chu, D.; Zhao, Q.; Guo, R. MicroRNA-365 targets multiple oncogenes to inhibit proliferation, invasion, and self-renewal of aggressive endometrial cancer cells. Cancer Manag. Res., 2018, 10, 5171-5185.
[http://dx.doi.org/10.2147/CMAR.S174889] [PMID: 30464615]
[76]
Zhou, L.; Gao, R.; Wang, Y.; Zhou, M.; Ding, Z. Loss of BAX by miR-365 promotes cutaneous squamous cell carcinoma progression by suppressing apoptosis. Int. J. Mol. Sci., 2017, 18(6), 1157.
[http://dx.doi.org/10.3390/ijms18061157] [PMID: 28556798]
[77]
Qi, J.; Rice, S.J.; Salzberg, A.C.; Runkle, E.A.; Liao, J.; Zander, D.S.; Mu, D. MiR-365 regulates lung cancer and developmental gene thyroid transcription factor 1. Cell Cycle, 2012, 11(1), 177-186.
[http://dx.doi.org/10.4161/cc.11.1.18576] [PMID: 22185756]
[78]
Yan, S.; Jiang, H.; Fang, S.; Yin, F.; Wang, Z.; Jia, Y.; Sun, X.; Wu, S.; Jiang, T.; Mao, A. MicroRNA-340 inhibits esophageal cancer cell growth and invasion by targeting phosphoserine aminotransferase 1. Cell. Physiol. Biochem., 2015, 37(1), 375-386.
[http://dx.doi.org/10.1159/000430361] [PMID: 26316084]
[79]
Sun, C.; Zhang, X.; Chen, Y.; Jia, Q.; Yang, J.; Shu, Y. MicroRNA-365 suppresses cell growth and invasion in esophageal squamous cell carcinoma by modulating phosphoserine aminotransferase 1. Cancer Manag. Res., 2018, 10, 4581-4590.
[http://dx.doi.org/10.2147/CMAR.S157858] [PMID: 30410394]
[80]
Ji, L.; Li, X. Retracted: Long noncoding RNA MEG3 is a tumor suppressor in choriocarcinoma by upregulation of microRNA‐211. J. Cell. Physiol., 2019, 234(12), 22911-22920.
[http://dx.doi.org/10.1002/jcp.28853] [PMID: 31124134]
[81]
Dong, Z.; Zhang, A.; Liu, S.; Lu, F.; Guo, Y.; Zhang, G.; Xu, F.; Shi, Y.; Shen, S.; Liang, J.; Guo, W. Aberrant methylation-mediated silencing of lncRNA MEG3 functions as a ceRNA in esophageal cancer. Mol. Cancer Res., 2017, 15(7), 800-810.
[http://dx.doi.org/10.1158/1541-7786.MCR-16-0385] [PMID: 28539329]
[82]
Li, M.K.; Liu, L.X.; Zhang, W.Y.; Zhan, H.L.; Chen, R.P.; Feng, J.L.; Wu, L.F. Long non coding RNA MEG3 suppresses epithelial to mesenchymal transition by inhibiting the PSAT1 dependent GSK 3β/Snail signaling pathway in esophageal squamous cell carcinoma. Oncol. Rep., 2020, 44(5), 2130-2142.
[http://dx.doi.org/10.3892/or.2020.7754] [PMID: 32901893]
[83]
Zhao, R.; Cao, X.; Jin, S.; Li, R.; Zhong, Q.; Jiang, M.; Han, J.; Guo, C.; Zong, H. LncRNA BC200 promotes esophageal squamous cell cancer migration and invasion and can regulate ATF4 expression. Front. Oncol., 2020, 10, 1392.
[http://dx.doi.org/10.3389/fonc.2020.01392] [PMID: 32974142]
[84]
Zhang, Y.; Li, J.; Dong, X.; Meng, D.; Zhi, X.; Yuan, L.; Yao, L. PSAT1 regulated oxidation-reduction balance affects the growth and prognosis of epithelial ovarian cancer. OncoTargets Ther., 2020, 13, 5443-5453.
[http://dx.doi.org/10.2147/OTT.S250066] [PMID: 32606761]
[85]
Zheng, M.J.; Li, X.; Hu, Y.X.; Dong, H.; Gou, R.; Nie, X.; Liu, Q.; Ying-Ying, H.; Liu, J.J.; Lin, B. Identification of molecular marker associated with ovarian cancer prognosis using bioinformatics analysis and experiments. J. Cell. Physiol., 2019, 234(7), 11023-11036.
[http://dx.doi.org/10.1002/jcp.27926] [PMID: 30633343]
[86]
Nizamutdinov, D.; Stock, E.M.; Dandashi, J.A.; Vasquez, E.A.; Mao, Y.; Dayawansa, S.; Zhang, J.; Wu, E.; Fonkem, E.; Huang, J.H. Prognostication of survival outcomes in patients diagnosed with glioblastoma. World Neurosurg., 2018, 109, e67-e74.
[http://dx.doi.org/10.1016/j.wneu.2017.09.104] [PMID: 28951270]
[87]
Jiang, J.; Zhang, L.; Chen, H.; Lei, Y.; Zhang, T.; Wang, Y.; Jin, P.; Lan, J.; Zhou, L.; Huang, Z.; Li, B.; Liu, Y.; Gao, W.; Xie, K.; Zhou, L.; Nice, E.C.; Peng, Y.; Cao, Y.; Wei, Y.; Wang, K.; Huang, C. Regorafenib induces lethal autophagy arrest by stabilizing PSAT1 in glioblastoma. Autophagy, 2020, 16(1), 106-122.
[http://dx.doi.org/10.1080/15548627.2019.1598752] [PMID: 30909789]
[88]
Raines, L.N.; Zhao, H.; Wang, Y.; Chen, H.Y.; Gallart-Ayala, H.; Hsueh, P.C.; Cao, W.; Koh, Y.; Alamonte-Loya, A.; Liu, P.S.; Ivanisevic, J.; Lio, C.W.J.; Ho, P.C.; Huang, S.C.C. PERK is a critical metabolic hub for immunosuppressive function in macrophages. Nat. Immunol., 2022, 23(3), 431-445.
[http://dx.doi.org/10.1038/s41590-022-01145-x] [PMID: 35228694]
[89]
Pan, W.; Zhu, S.; Qu, K.; Meeth, K.; Cheng, J.; He, K.; Ma, H.; Liao, Y.; Wen, X.; Roden, C.; Tobiasova, Z.; Wei, Z.; Zhao, J.; Liu, J.; Zheng, J.; Guo, B.; Khan, S.A.; Bosenberg, M.; Flavell, R.A.; Lu, J. The DNA methylcytosine dioxygenase Tet2 sustains immunosuppressive function of tumor-infiltrating myeloid cells to promote melanoma progression. Immunity, 2017, 47(2), 284-297.e5.
[http://dx.doi.org/10.1016/j.immuni.2017.07.020] [PMID: 28813659]
[90]
Hwang, I.Y.; Kwak, S.; Lee, S.; Kim, H.; Lee, S.E.; Kim, J.H.; Kim, Y.A.; Jeon, Y.K.; Chung, D.H.; Jin, X.; Park, S.; Jang, H.; Cho, E.J.; Youn, H.D. Psat1-dependent fluctuations in α-ketoglutarate affect the timing of ESC differentiation. Cell Metab., 2016, 24(3), 494-501.
[http://dx.doi.org/10.1016/j.cmet.2016.06.014] [PMID: 27476977]
[91]
Bismut, H.; Plas, C. Role of serine biosynthesis and its utilization in the alternative pathway from glucose to glycogen during the response to insulin in cultured foetal-rat hepatocytes. Biochem. J., 1991, 276(3), 577-582.
[http://dx.doi.org/10.1042/bj2760577] [PMID: 1905920]
[92]
Rabaglia, M.E. Gray-Keller, M.P.; Frey, B.L.; Shortreed, M.R.; Smith, L.M.; Attie, A.D. α-Ketoisocaproate-induced hypersecretion of insulin by islets from diabetes-susceptible mice. Am. J. Physiol. Endocrinol. Metab., 2005, 289(2), E218-E224.
[http://dx.doi.org/10.1152/ajpendo.00573.2004] [PMID: 15741243]
[93]
Yu, J.; Xiao, F.; Guo, Y.; Deng, J.; Liu, B.; Zhang, Q.; Li, K.; Wang, C.; Chen, S.; Guo, F. Hepatic phosphoserine aminotransferase 1 regulates insulin sensitivity in mice via tribbles homolog 3. Diabetes, 2015, 64(5), 1591-1602.
[http://dx.doi.org/10.2337/db14-1368] [PMID: 25503742]
[94]
Hamanaka, R.B.; O’Leary, E.M.; Witt, L.J.; Tian, Y.; Gökalp, G.A.; Meliton, A.Y.; Dulin, N.O.; Mutlu, G.M. Glutamine metabolism is required for collagen protein synthesis in lung fibroblasts. Am. J. Respir. Cell Mol. Biol., 2019, 61(5), 597-606.
[http://dx.doi.org/10.1165/rcmb.2019-0008OC] [PMID: 30973753]
[95]
Liao, K.M.; Chao, T.B.; Tian, Y.F.; Lin, C.Y.; Lee, S.W.; Chuang, H.Y.; Chan, T.C.; Chen, T.J.; Hsing, C.H.; Sheu, M.J.; Li, C.F. Overexpression of the PSAT1 gene in nasopharyngeal carcinoma is an indicator of poor prognosis. J. Cancer, 2016, 7(9), 1088-1094.
[http://dx.doi.org/10.7150/jca.15258] [PMID: 27326252]
[96]
Tang, X.; Luo, L.; Li, Y.; Wu, H.; Hu, Q.; Yue, H.; He, X.; Zou, J.; Min, S. Therapeutic potential of targeting HSPA5 through dual regulation of two candidate prognostic biomarkers ANXA1 and PSAT1 in osteosarcoma. Aging (Albany NY), 2021, 13(1), 1212-1235.
[http://dx.doi.org/10.18632/aging.202258] [PMID: 33291071]
[97]
Sen, N.; Cross, A.M.; Lorenzi, P.L.; Khan, J.; Gryder, B.E.; Kim, S.; Caplen, N.J. EWS-FLI1 reprograms the metabolism of Ewing sarcoma cells via positive regulation of glutamine import and serine-glycine biosynthesis. Mol. Carcinog., 2018, 57(10), 1342-1357.
[http://dx.doi.org/10.1002/mc.22849] [PMID: 29873416]
[98]
Issaq, S.H.; Mendoza, A.; Kidner, R.; Rosales, T.I.; Duveau, D.Y.; Heske, C.M.; Rohde, J.M.; Boxer, M.B.; Thomas, C.J.; DeBerardinis, R.J.; Helman, L.J. EWS-FLI1–regulated serine synthesis and exogenous serine are necessary for ewing sarcoma cellular proliferation and tumor growth. Mol. Cancer Ther., 2020, 19(7), 1520-1529.
[http://dx.doi.org/10.1158/1535-7163.MCT-19-0748] [PMID: 32371575]
[99]
Yang, K.; Xiao, Y.; Xu, T.; Yu, W.; Ruan, Y.; Luo, P.; Cheng, F. Integrative analysis reveals CRHBP inhibits renal cell carcinoma progression by regulating inflammation and apoptosis. Cancer Gene Ther., 2020, 27(7-8), 607-618.
[http://dx.doi.org/10.1038/s41417-019-0138-2] [PMID: 31570754]
[100]
Liu, M.; Pan, Q.; Xiao, R.; Yu, Y.; Lu, W.; Wang, L. A cluster of metabolism-related genes predict prognosis and progression of clear cell renal cell carcinoma. Sci. Rep., 2020, 10(1), 12949.
[http://dx.doi.org/10.1038/s41598-020-67760-6] [PMID: 32737333]
[101]
Morais, M.; Dias, F.; Teixeira, A.L.; Medeiros, R. MicroRNAs and altered metabolism of clear cell renal cell carcinoma: Potential role as aerobic glycolysis biomarkers. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(9), 2175-2185.
[http://dx.doi.org/10.1016/j.bbagen.2017.05.028] [PMID: 28579513]
[102]
Zhang, Y.; Chen, M.; Liu, M.; Xu, Y.; Wu, G. Glycolysis-related genes serve as potential prognostic biomarkers in clear cell renal cell carcinoma. Oxid. Med. Cell. Longev., 2021, 2021, 1-20.
[http://dx.doi.org/10.1155/2021/6699808] [PMID: 33564363]
[103]
Wu, J.; Sun, Z.; Bi, Q.; Wang, W. A ferroptosis-related genes model allows for prognosis and treatment stratification of clear cell renal cell carcinoma: a bioinformatics analysis and experimental verification. Front. Oncol., 2022, 12, 815223.
[http://dx.doi.org/10.3389/fonc.2022.815223] [PMID: 35155251]
[104]
Zhang, X.; Du, L.; Qiao, Y.; Zhang, X.; Zheng, W.; Wu, Q.; Chen, Y.; Zhu, G.; Liu, Y.; Bian, Z.; Guo, S.; Yang, Y.; Ma, L.; Yu, Y.; Pan, Q.; Sun, F.; Wang, J. Ferroptosis is governed by differential regulation of transcription in liver cancer. Redox Biol., 2019, 24, 101211.
[http://dx.doi.org/10.1016/j.redox.2019.101211] [PMID: 31108460]
[105]
Yao, F.; Zhan, Y.; Pu, Z.; Lu, Y.; Chen, J.; Deng, J.; Wu, Z.; Chen, B.; Chen, J.; Tian, K.; Ni, Y.; Mou, L. LncRNAs target ferroptosis-related genes and impair activation of CD4+ T cell in gastric cancer. Front. Cell Dev. Biol., 2021, 9, 797339.
[http://dx.doi.org/10.3389/fcell.2021.797339] [PMID: 34966745]