Detection of Acute Optic Neuritis using Contrast-Enhanced 3-Dimensional Cube T1-Weighted Imaging: A Preliminary Study

Page: [1480 - 1487] Pages: 8

  • * (Excluding Mailing and Handling)

Abstract

Objective; We aimed to assess whole-brain imaging with contrast-enhanced (CE) 3- dimensional (3D) Cube T1WI in improving the diagnostic accuracy of acute optic neuritis (ON) compared to conventional CE 2-dimensional (2D) T1WI.

Methods: At a field strength of 3 T, CE 3D Cube T1-weighted and conventional CE 2D T1- weighted MR images were retrospectively analyzed for 32 patients (64 optic nerves) with clinically confirmed acute ON. The study cohort included 36 pathological nerves. Image assessments including the overall image quality, clarity of the optic nerve, and visual contrast enhancement were performed by two blinded neuroradiologists using a 4-point scale. The sensitivity, specificity, and accuracy of the conventional 2D T1WI and 3D Cube T1WI were calculated according to the clinical diagnosis.

Results: The application of 3D Cube T1WI improved the overall image quality compared to 2D Ax T1WI and 2D Cor T1WI (P < 0.05). The clarity of the optic nerve and the visual contrast enhancement were higher for the 3D Cube T1WI compared to the 2D Ax T1WI and 2D Cor T1WI for at least one reader. The sensitivity, specificity, and accuracy were 89%, 86%, 88% for the 3D Cube T1WI respectively, and 75%, 79%, 77% for the conventional 2D T1WI respectively. The lesions detected by the conventional 2D T1WI were all detected by the 3D Cube T1WI.

Conclusion: Our data show that whole-brain imaging with CE 3D Cube T1WI is a viable alternative for the detection of acute ON without sacrificing scanning efficiency.

Keywords: Magnetic resonance imaging, Cube, variable flip angle, 3-dimensional fast spin echo, optic neuritis.

Graphical Abstract

[1]
Pau, D.; Al Zubidi, N.; Yalamanchili, S.; Plant, G.T.; Lee, A.G. Optic neuritis. Eye (Lond.), 2011, 25(7), 833-842.
[http://dx.doi.org/10.1038/eye.2011.81] [PMID: 21527960]
[2]
Beck, R.W.; Cleary, P.A.; Anderson, M.M., Jr; Keltner, J.L.; Shults, W.T.; Kaufman, D.I.; Buckley, E.G.; Corbett, J.J.; Kupersmith, M.J.; Miller, N.R. A randomized, controlled trial of corticosteroids in the treatment of acute optic neuritis. N. Engl. J. Med., 1992, 326(9), 581-588.
[http://dx.doi.org/10.1056/NEJM199202273260901] [PMID: 1734247]
[3]
Hickman, S.J.; Dalton, C.M.; Miller, D.H.; Plant, G.T. Management of acute optic neuritis. Lancet, 2002, 360(9349), 1953-1962.
[http://dx.doi.org/10.1016/S0140-6736(02)11919-2] [PMID: 12493277]
[4]
Petzold, A.; Wattjes, M.P.; Costello, F.; Flores-Rivera, J.; Fraser, C.L.; Fujihara, K.; Leavitt, J.; Marignier, R.; Paul, F.; Schippling, S.; Sindic, C.; Villoslada, P.; Weinshenker, B.; Plant, G.T. The investigation of acute optic neuritis: A review and proposed protocol. Nat. Rev. Neurol., 2014, 10(8), 447-458.
[http://dx.doi.org/10.1038/nrneurol.2014.108] [PMID: 25002105]
[5]
Abel, A.; McClelland, C.; Lee, M.S. Critical review: Typical and atypical optic neuritis. Surv. Ophthalmol., 2019, 64(6), 770-779.
[http://dx.doi.org/10.1016/j.survophthal.2019.06.001] [PMID: 31229520]
[6]
Lee, A.G.; Johnson, M.C.; Policeni, B.A.; Smoker, W.R. Imaging for neuro-ophthalmic and orbital disease - a review. Clin. Exp. Ophthalmol., 2009, 37(1), 30-53.
[http://dx.doi.org/10.1111/j.1442-9071.2008.01822.x] [PMID: 19016810]
[7]
Guy, J.; Mao, J.; Bidgood, W.D., Jr; Mancuso, A.; Quisling, R.G. Enhancement and demyelination of the intraorbital optic nerve. Fat suppression magnetic resonance imaging. Ophthalmology, 1992, 99(5), 713-719.
[http://dx.doi.org/10.1016/S0161-6420(92)31892-5] [PMID: 1594216]
[8]
Kupersmith, M.J.; Alban, T.; Zeiffer, B.; Lefton, D. Contrast-enhanced MRI in acute optic neuritis: Relationship to visual performance. Brain, 2002, 125(Pt 4), 812-822.
[http://dx.doi.org/10.1093/brain/awf087] [PMID: 11912114]
[9]
Lagrèze, W.A.; Gaggl, M.; Weigel, M.; Schulte-Mönting, J.; Bühler, A.; Bach, M.; Munk, R.D.; Bley, T.A. Retrobulbar optic nerve diameter measured by high-speed magnetic resonance imaging as a biomarker for axonal loss in glaucomatous optic atrophy. Invest. Ophthalmol. Vis. Sci., 2009, 50(9), 4223-4228.
[http://dx.doi.org/10.1167/iovs.08-2683] [PMID: 19407026]
[10]
Kakite, S.; Fujii, S.; Kurosaki, M.; Kanasaki, Y.; Matsusue, E.; Kaminou, T.; Ogawa, T. Three-dimensional gradient echo versus spin echo sequence in contrast-enhanced imaging of the pituitary gland at 3T. Eur. J. Radiol., 2011, 79(1), 108-112.
[http://dx.doi.org/10.1016/j.ejrad.2009.12.036] [PMID: 20116954]
[11]
Mugler, J.P. III Optimized three-dimensional fast-spin-echo MRI. J. Magn. Reson. Imaging, 2014, 39(4), 745-767.
[http://dx.doi.org/10.1002/jmri.24542] [PMID: 24399498]
[12]
Li, M.L.; Xu, Y.Y.; Hou, B.; Sun, Z.Y.; Zhou, H.L.; Jin, Z.Y.; Feng, F.; Xu, W.H. High-resolution intracranial vessel wall imaging using 3D CUBE T1 weighted sequence. Eur. J. Radiol., 2016, 85(4), 803-807.
[http://dx.doi.org/10.1016/j.ejrad.2016.01.014] [PMID: 26971427]
[13]
Sommer, N.N.; Saam, T.; Coppenrath, E.; Kooijman, H.; Kümpfel, T.; Patzig, M.; Beyer, S.E.; Sommer, W.H.; Reiser, M.F.; Ertl-Wagner, B.; Treitl, K.M. Multiple sclerosis: Improved detection of active cerebral lesions with 3-dimensional T1 black-blood magnetic resonance imaging compared with conventional 3-dimensional T1 GRE imaging. Invest. Radiol., 2018, 53(1), 13-19.
[http://dx.doi.org/10.1097/RLI.0000000000000410] [PMID: 28858894]
[14]
Baumann, B.C.; Bosch, W.R.; Bahl, A.; Birtle, A.J.; Breau, R.H.; Challapalli, A.; Chang, A.J.; Choudhury, A.; Daneshmand, S.; El-Gayed, A.; Feldman, A.; Finkelstein, S.E.; Guzzo, T.J.; Hilman, S.; Jani, A.; Malkowicz, S.B.; Mantz, C.A.; Master, V.; Mitra, A.V.; Murthy, V.; Porten, S.P.; Richaud, P.M.; Sargos, P.; Efstathiou, J.A.; Eapen, L.J.; Christodouleas, J.P. Development and validation of consensus contouring guidelines for adjuvant radiation therapy for bladder cancer after radical cystectomy. Int. J. Radiat. Oncol. Biol. Phys., 2016, 96(1), 78-86.
[http://dx.doi.org/10.1016/j.ijrobp.2016.04.032] [PMID: 27511849]
[15]
Park, J.; Mugler, J.P., III; Horger, W.; Kiefer, B. Optimized T1-weighted contrast for single-slab 3D turbo spin-echo imaging with long echo trains: Application to whole-brain imaging. Magn. Reson. Med., 2007, 58(5), 982-992.
[http://dx.doi.org/10.1002/mrm.21386] [PMID: 17969106]
[16]
Wheeler-Kingshott, C.A.; Parker, G.J.; Symms, M.R.; Hickman, S.J.; Tofts, P.S.; Miller, D.H.; Barker, G.J. ADC mapping of the human optic nerve: Increased resolution, coverage, and reliability with CSF-suppressed ZOOM-EPI. Magn. Reson. Med., 2002, 47(1), 24-31.
[http://dx.doi.org/10.1002/mrm.10016] [PMID: 11754439]
[17]
Busse, R.F.; Hariharan, H.; Vu, A.; Brittain, J.H. Fast spin echo sequences with very long echo trains: Design of variable refocusing flip angle schedules and generation of clinical T2 contrast. Magn. Reson. Med., 2006, 55(5), 1030-1037.
[http://dx.doi.org/10.1002/mrm.20863] [PMID: 16598719]
[18]
Ortendahl, D.A.; Kaufman, L.; Kramer, D.M. Analysis of hybrid imaging techniques. Magn. Reson. Med., 1992, 26(1), 155-173.
[http://dx.doi.org/10.1002/mrm.1910260116] [PMID: 1625561]
[19]
Glockner, J.F.; Hu, H.H.; Stanley, D.W.; Angelos, L.; King, K. Parallel MR imaging: A user’s guide. Radiographics, 2005, 25(5), 1279-1297.
[http://dx.doi.org/10.1148/rg.255045202] [PMID: 16160112]
[20]
Carlson, J.; Crooks, L.; Ortendahl, D.; Kramer, D.M.; Kaufman, L. Signal-to-noise ratio and section thickness in two-dimensional versus three-dimensional Fourier transform MR imaging. Radiology, 1988, 166(1 Pt 1), 266-270.
[http://dx.doi.org/10.1148/radiology.166.1.3336691] [PMID: 3336691]
[21]
Busse, R.F.; Brau, A.C.; Vu, A.; Michelich, C.R.; Bayram, E.; Kijowski, R.; Reeder, S.B.; Rowley, H.A. Effects of refocusing flip angle modulation and view ordering in 3D fast spin echo. Magn. Reson. Med., 2008, 60(3), 640-649.
[http://dx.doi.org/10.1002/mrm.21680] [PMID: 18727082]
[22]
Kato, Y.; Higano, S.; Tamura, H.; Mugikura, S.; Umetsu, A.; Murata, T.; Takahashi, S. Usefulness of contrast-enhanced T1-weighted sampling perfection with application-optimized contrasts by using different flip angle evolutions in detection of small brain metastasis at 3T MR imaging: Comparison with magnetization-prepared rapid acquisition of gradient echo imaging. AJNR Am. J. Neuroradiol., 2009, 30(5), 923-929.
[http://dx.doi.org/10.3174/ajnr.A1506] [PMID: 19213825]
[23]
Jeevanandham, B.; Kalyanpur, T.; Gupta, P.; Cherian, M. Comparison of post-contrast 3D-T1-MPRAGE, 3D-T1-SPACE and 3D-T2-FLAIR MR images in evaluation of meningeal abnormalities at 3-T MRI. Br. J. Radiol., 2017, 90(1074)20160834
[http://dx.doi.org/10.1259/bjr.20160834] [PMID: 28375660]
[24]
Gil, B.; Hwang, E.J.; Lee, S.; Jang, J.; Choi, H.S.; Jung, S.L.; Ahn, K.J.; Kim, B.S. Detection of leptomeningeal metastasis by contrast-enhanced 3D T1-SPACE: Comparison with 2D FLAIR and contrast-enhanced 2D T1-weighted images. PLoS One, 2016, 11(10)e0163081
[http://dx.doi.org/10.1371/journal.pone.0163081] [PMID: 27695096]
[25]
McKinney, A.M.; Lohman, B.D.; Sarikaya, B.; Benson, M.; Lee, M.S.; Benson, M.T. Accuracy of routine fat-suppressed FLAIR and diffusion-weighted images in detecting clinically evident acute optic neuritis. Acta Radiol., 2013, 54(4), 455-461.
[http://dx.doi.org/10.1177/0284185112471797] [PMID: 23386735]