Letters in Drug Design & Discovery

Author(s): Yan Li*, Lei Zhang* and Rongjian Dong

DOI: 10.2174/1570180819666220819150351

Research Progress in Regulation of Ferroptosis by Epigallocatechin-3- gallate in Tumor Cells

Page: [1877 - 1883] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Ferroptosis is an identified form of regulated cell death different from cell necrosis, autophagy, and apoptosis, characterized by iron-dependent accumulation of lipid reactive oxygen species. The processes of ferroptosis are mainly related to iron metabolism disorder, inactivation of glutathione peroxidase 4 (GPX4), and coenzyme Q10-dependent pathway. Inducing ferroptosis is considered a promising strategy to fight against cancers, especially apoptosis-resistant tumors. Epigallocatechin-gallate (EGCG) is the predominately active substance in green tea, which is widely consumed worldwide as a beverage. Recently, EGCG has been proved to play an important role in inducing ferroptosis by modulation of the iron metabolism and promotion of glutathione peroxidase 4 (GPX4) protein degradation. Therefore, this review mainly elaborates the regulating effects of EGCG on ferroptosis, aiming to create a new space for the research and development of novel anticancer drugs.

Keywords: Ferroptosis, epigallocatechin-3-gallate, cancer treatment, iron metabolism, HSPA5, green tea

Graphical Abstract

[1]
Jiang, X.; Stockwell, B.R.; Conrad, M. Ferroptosis: mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol., 2021, 22(4), 266-282.
[http://dx.doi.org/10.1038/s41580-020-00324-8] [PMID: 33495651]
[2]
Stockwell, B.R.; Friedmann Angeli, J.P.; Bayir, H.; Bush, A.I.; Conrad, M.; Dixon, S.J.; Fulda, S.; Gascón, S.; Hatzios, S.K.; Kagan, V.E.; Noel, K.; Jiang, X.; Linkermann, A.; Murphy, M.E.; Overholtzer, M.; Oyagi, A.; Pagnussat, G.C.; Park, J.; Ran, Q.; Rosenfeld, C.S.; Salnikow, K.; Tang, D.; Torti, F.M.; Torti, S.V.; Toyokuni, S.; Woerpel, K.A.; Zhang, D.D. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell, 2017, 171(2), 273-285.
[http://dx.doi.org/10.1016/j.cell.2017.09.021] [PMID: 28985560]
[3]
Li, J.; Cao, F.; Yin, H.L.; Huang, Z.J.; Lin, Z.T.; Mao, N.; Sun, B.; Wang, G. Ferroptosis: Past, present and future. Cell Death Dis., 2020, 11(2), 88.
[http://dx.doi.org/10.1038/s41419-020-2298-2] [PMID: 32015325]
[4]
Galluzzi, L.; Vitale, I.; Aaronson, S.A.; Abrams, J.M.; Adam, D.; Agostinis, P.; Alnemri, E.S.; Altucci, L.; Amelio, I.; Andrews, D.W.; Annicchiarico-Petruzzelli, M.; Antonov, A.V.; Arama, E.; Baehrecke, E.H.; Barlev, N.A.; Bazan, N.G.; Bernassola, F.; Bertrand, M.J.M.; Bianchi, K.; Blagosklonny, M.V.; Blomgren, K.; Borner, C.; Boya, P.; Brenner, C.; Campanella, M.; Candi, E.; Carmona-Gutierrez, D.; Cecconi, F.; Chan, F.K.M.; Chandel, N.S.; Cheng, E.H.; Chipuk, J.E.; Cidlowski, J.A.; Ciechanover, A.; Cohen, G.M.; Conrad, M.; Cubillos-Ruiz, J.R.; Czabotar, P.E.; D’Angiolella, V.; Dawson, T.M.; Dawson, V.L.; De Laurenzi, V.; De Maria, R.; Debatin, K-M.; DeBerardinis, R.J.; Deshmukh, M.; Di Daniele, N.; Di Virgilio, F.; Dixit, V.M.; Dixon, S.J.; Duckett, C.S.; Dynlacht, B.D.; El-Deiry, W.S.; Elrod, J.W.; Fimia, G.M.; Fulda, S.; García-Sáez, A.J.; Garg, A.D.; Garrido, C.; Gavathiotis, E.; Golstein, P.; Gottlieb, E.; Green, D.R.; Greene, L.A.; Gronemeyer, H.; Gross, A.; Hajnoczky, G.; Hardwick, J.M.; Harris, I.S.; Hengartner, M.O.; Hetz, C.; Ichijo, H.; Jäättelä, M.; Joseph, B.; Jost, P.J.; Juin, P.P.; Kaiser, W.J.; Karin, M.; Kaufmann, T.; Kepp, O.; Kimchi, A.; Kitsis, R.N.; Klionsky, D.J.; Knight, R.A.; Kumar, S.; Lee, S.W.; Lemasters, J.J.; Levine, B.; Linkermann, A.; Lipton, S.A.; Lockshin, R.A.; López-Otín, C.; Lowe, S.W.; Luedde, T.; Lugli, E.; MacFarlane, M.; Madeo, F.; Malewicz, M.; Malorni, W.; Manic, G.; Marine, J-C.; Martin, S.J.; Martinou, J-C.; Medema, J.P.; Mehlen, P.; Meier, P.; Melino, S.; Miao, E.A.; Molkentin, J.D.; Moll, U.M.; Muñoz-Pinedo, C.; Nagata, S.; Nuñez, G.; Oberst, A.; Oren, M.; Overholtzer, M.; Pagano, M.; Panaretakis, T.; Pasparakis, M.; Penninger, J.M.; Pereira, D.M.; Pervaiz, S.; Peter, M.E.; Piacentini, M.; Pinton, P.; Prehn, J.H.M.; Puthalakath, H.; Rabinovich, G.A.; Rehm, M.; Rizzuto, R.; Rodrigues, C.M.P.; Rubinsztein, D.C.; Rudel, T.; Ryan, K.M.; Sayan, E.; Scorrano, L.; Shao, F.; Shi, Y.; Silke, J.; Simon, H-U.; Sistigu, A.; Stockwell, B.R.; Strasser, A.; Szabadkai, G.; Tait, S.W.G.; Tang, D.; Tavernarakis, N.; Thorburn, A.; Tsujimoto, Y.; Turk, B.; Vanden Berghe, T.; Vandenabeele, P.; Vander Heiden, M.G.; Villunger, A.; Virgin, H.W.; Vousden, K.H.; Vucic, D.; Wagner, E.F.; Walczak, H.; Wallach, D.; Wang, Y.; Wells, J.A.; Wood, W.; Yuan, J.; Zakeri, Z.; Zhivotovsky, B.; Zitvogel, L.; Melino, G.; Kroemer, G. Molecular mechanisms of cell death: Recommendations of the nomenclature committee on cell death 2018. Cell Death Differ., 2018, 25(3), 486-541.
[http://dx.doi.org/10.1038/s41418-017-0012-4] [PMID: 29362479]
[5]
Xu, G.; Wang, H.; Li, X.; Huang, R.; Luo, L. Recent progress on targeting ferroptosis for cancer therapy. Biochem. Pharmacol., 2021, 190, 114584.
[http://dx.doi.org/10.1016/j.bcp.2021.114584] [PMID: 33915157]
[6]
Wu, Y.; Yu, C.; Luo, M.; Cen, C.; Qiu, J.; Zhang, S.; Hu, K. Ferroptosis in Cancer Treatment: Another Way to Rome. Front. Oncol., 2020, 10, 571127.
[http://dx.doi.org/10.3389/fonc.2020.571127] [PMID: 33102227]
[7]
Chen, X.; Kang, R.; Kroemer, G.; Tang, D. Broadening horizons: the role of ferroptosis in cancer. Nat. Rev. Clin. Oncol., 2021, 18(5), 280-296.
[http://dx.doi.org/10.1038/s41571-020-00462-0] [PMID: 33514910]
[8]
Hassannia, B.; Wiernicki, B.; Ingold, I.; Qu, F.; Van Herck, S.; Tyurina, Y.Y.; Bayır, H.; Abhari, B.A.; Angeli, J.P.F.; Choi, S.M.; Meul, E.; Heyninck, K.; Declerck, K.; Chirumamilla, C.S.; Lahtela-Kakkonen, M.; Van Camp, G.; Krysko, D.V.; Ekert, P.G.; Fulda, S.; De Geest, B.G.; Conrad, M.; Kagan, V.E.; Vanden Berghe, W.; Vandenabeele, P.; Vanden Berghe, T. Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. J. Clin. Invest., 2018, 128(8), 3341-3355.
[http://dx.doi.org/10.1172/JCI99032] [PMID: 29939160]
[9]
Hassannia, B.; Vandenabeele, P.; Vanden Berghe, T. Targeting ferroptosis to iron out cancer. Cancer Cell, 2019, 35(6), 830-849.
[http://dx.doi.org/10.1016/j.ccell.2019.04.002] [PMID: 31105042]
[10]
Stockwell, B.R.; Jiang, X. The chemistry and biology of ferroptosis. Cell Chem. Biol., 2020, 27(4), 365-375.
[http://dx.doi.org/10.1016/j.chembiol.2020.03.013] [PMID: 32294465]
[11]
Wu, Z.; Zhong, M.; Liu, Y.; Xiong, Y.; Gao, Z.; Ma, J.; Zhuang, G.; Hong, X. Application of natural products for inducing ferroptosis in tumor cells. Biotechnol. Appl. Biochem., 2022, 69(1), 190-197.
[http://dx.doi.org/10.1002/bab.2096]
[12]
Graham, H.N. Green tea composition, consumption, and polyphenol chemistry. Prev. Med., 1992, 21(3), 334-350.
[http://dx.doi.org/10.1016/0091-7435(92)90041-F] [PMID: 1614995]
[13]
Yang, C.S.; Wang, Z.Y. Tea and cancer. J. Natl. Cancer Inst., 1993, 85(13), 1038-1049.
[http://dx.doi.org/10.1093/jnci/85.13.1038] [PMID: 8515490]
[14]
Negri, A.; Naponelli, V.; Rizzi, F.; Bettuzzi, S. Molecular targets of epigallocatechin-gallate (EGCG): A special focus on signal transduction and cancer. Nutrients, 2018, 10(12), 1936.
[http://dx.doi.org/10.3390/nu10121936] [PMID: 30563268]
[15]
Yang, C.S.; Maliakal, P.; Meng, X. Inhibition of carcinogenesis by tea. Annu. Rev. Pharmacol. Toxicol., 2002, 42(1), 25-54.
[http://dx.doi.org/10.1146/annurev.pharmtox.42.082101.154309] [PMID: 11807163]
[16]
Wang, J.; Man, G.C.W.; Chan, T.H.; Kwong, J.; Wang, C.C. A prodrug of green tea polyphenol (-)-epigallocatechin-3-gallate (Pro-EGCG) serves as a novel angiogenesis inhibitor in endometrial cancer. Cancer Lett., 2018, 412, 10-20.
[http://dx.doi.org/10.1016/j.canlet.2017.09.054] [PMID: 29024813]
[17]
Cheng, Z.; Zhang, Z.; Han, Y.; Wang, J.; Wang, Y.; Chen, X.; Shao, Y.; Cheng, Y.; Zhou, W.; Lu, X.; Wu, Z. A review on anti-cancer effect of green tea catechins. J. Funct. Foods, 2020, 74, 104172.
[http://dx.doi.org/10.1016/j.jff.2020.104172]
[18]
Oz, H.S.; Chen, T.; de Villiers, W.J. Green tea polyphenols and sulfasalazine have parallel anti-inflammatory properties in colitis models. Front. Immunol., 2013, 4, 132.
[http://dx.doi.org/10.3389/fimmu.2013.00132] [PMID: 23761791]
[19]
Byun, E-B.; Mi-SoYang; Kim, J-H.; Song, D-S.; Lee, B-S.; Park, J-N.; Park, S-H.; Park, C.; Jung, P-M.; Sung, N-Y.; Byun, E-H. Epigallocatechin-3-gallate-mediated tollip induction through the 67-kDa laminin receptor negatively regulating TLR4 signaling in endothelial cells. Immunobiology, 2014, 219(11), 866-872.
[http://dx.doi.org/10.1016/j.imbio.2014.07.010] [PMID: 25109435]
[20]
Feng, H.; Schorpp, K.; Jin, J.; Yozwiak, C.E.; Hoffstrom, B.G.; Decker, A.M.; Rajbhandari, P.; Stokes, M.E.; Bender, H.G.; Csuka, J.M.; Upadhyayula, P.S.; Canoll, P.; Uchida, K.; Soni, R.K.; Hadian, K.; Stockwell, B.R. Transferrin receptor is a specific ferroptosis marker. Cell Rep., 2020, 30(10), 3411-3423.e7.
[http://dx.doi.org/10.1016/j.celrep.2020.02.049] [PMID: 32160546]
[21]
El Hout, M.; Dos Santos, L.; Hamaï, A.; Mehrpour, M. A promising new approach to cancer therapy: Targeting iron metabolism in cancer stem cells. Semin. Cancer Biol., 2018, 53, 125-138.
[http://dx.doi.org/10.1016/j.semcancer.2018.07.009] [PMID: 30071257]
[22]
Kagan, V.E.; Mao, G.; Qu, F.; Angeli, J.P.F.; Doll, S.; Croix, C.S.; Dar, H.H.; Liu, B.; Tyurin, V.A.; Ritov, V.B.; Kapralov, A.A.; Amoscato, A.A.; Jiang, J.; Anthonymuthu, T.; Mohammadyani, D.; Yang, Q.; Proneth, B.; Klein-Seetharaman, J.; Watkins, S.; Bahar, I.; Greenberger, J.; Mallampalli, R.K.; Stockwell, B.R.; Tyurina, Y.Y.; Conrad, M.; Bayır, H. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat. Chem. Biol., 2017, 13(1), 81-90.
[http://dx.doi.org/10.1038/nchembio.2238] [PMID: 27842066]
[23]
Doll, S.; Freitas, F.P.; Shah, R.; Aldrovandi, M.; da Silva, M.C.; Ingold, I.; Goya Grocin, A.; Xavier da Silva, T.N.; Panzilius, E.; Scheel, C.H.; Mourão, A.; Buday, K.; Sato, M.; Wanninger, J.; Vignane, T.; Mohana, V.; Rehberg, M.; Flatley, A.; Schepers, A.; Kurz, A.; White, D.; Sauer, M.; Sattler, M.; Tate, E.W.; Schmitz, W.; Schulze, A.; O’Donnell, V.; Proneth, B.; Popowicz, G.M.; Pratt, D.A.; Angeli, J.P.F.; Conrad, M. FSP1 is a glutathione-independent ferroptosis suppressor. Nature, 2019, 575(7784), 693-698.
[http://dx.doi.org/10.1038/s41586-019-1707-0] [PMID: 31634899]
[24]
Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; Morrison, B., III; Stockwell, B.R. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell, 2012, 149(5), 1060-1072.
[http://dx.doi.org/10.1016/j.cell.2012.03.042] [PMID: 22632970]
[25]
Mai, T.T.; Hamaï, A.; Hienzsch, A.; Cañeque, T.; Müller, S.; Wicinski, J.; Cabaud, O.; Leroy, C.; David, A.; Acevedo, V.; Ryo, A.; Ginestier, C.; Birnbaum, D.; Charafe-Jauffret, E.; Codogno, P.; Mehrpour, M.; Rodriguez, R. Salinomycin kills cancer stem cells by sequestering iron in lysosomes. Nat. Chem., 2017, 9(10), 1025-1033.
[http://dx.doi.org/10.1038/nchem.2778] [PMID: 28937680]
[26]
Ooko, E.; Saeed, M.E.M.; Kadioglu, O.; Sarvi, S.; Colak, M.; Elmasaoudi, K.; Janah, R.; Greten, H.J.; Efferth, T. Artemisinin derivatives induce iron-dependent cell death (ferroptosis) in tumor cells. Phytomedicine, 2015, 22(11), 1045-1054.
[http://dx.doi.org/10.1016/j.phymed.2015.08.002] [PMID: 26407947]
[27]
Kim, H-S.; Quon, M.J.; Kim, J.A. New insights into the mechanisms of polyphenols beyond antioxidant properties; Lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox Biol., 2014, 2, 187-195.
[http://dx.doi.org/10.1016/j.redox.2013.12.022] [PMID: 24494192]
[28]
Ryan, P.; Hynes, M.J. The kinetics and mechanisms of the complex formation and antioxidant behaviour of the polyphenols EGCg and ECG with iron(III). J. Inorg. Biochem., 2007, 101(4), 585-593.
[http://dx.doi.org/10.1016/j.jinorgbio.2006.12.001] [PMID: 17257683]
[29]
Nakagawa, H.; Wachi, M.; Woo, J-T.; Kato, M.; Kasai, S.; Takahashi, F.; Lee, I-S.; Nagai, K. Fenton reaction is primarily involved in a mechanism of (-)-epigallocatechin-3-gallate to induce osteoclastic cell death. Biochem. Biophys. Res. Commun., 2002, 292(1), 94-101.
[http://dx.doi.org/10.1006/bbrc.2002.6622] [PMID: 11890677]
[30]
Nakagawa, H.; Hasumi, K.; Woo, J-T.; Nagai, K.; Wachi, M. Generation of hydrogen peroxide primarily contributes to the induction of Fe(II)-dependent apoptosis in Jurkat cells by (-)-epigallocatechin gallate. Carcinogenesis, 2004, 25(9), 1567-1574.
[http://dx.doi.org/10.1093/carcin/bgh168] [PMID: 15090467]
[31]
Chuan, D.; Mu, M.; Hou, H.; Zhao, N.; Li, J.; Tong, A.; Zou, B.; Chen, H.; Han, B.; Guo, G. Folic acid-functionalized tea polyphenol as a tumor-targeting nano-drug delivery system. Mater. Des., 2021, 206, 109805.
[http://dx.doi.org/10.1016/j.matdes.2021.109805]
[32]
Chen, H.; Yan, Z.; Wu, S.; Li, F. A glutathione-responsive polyphenol-Constructed nanodevice for double roles in apoptosis and ferroptosis. Colloids Surf. B Biointerfaces, 2021, 205, 111902.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111902] [PMID: 34107442]
[33]
Yang, W.S.; SriRamaratnam, R.; Shimada, K.; Skouta, R.; Vasanthi, V.S;; Jaime, C.H.; Paul, C.A.; Alykhan, S.F.; Clary, B.C.; Lewis, M.B.; Albert, W.G.; Clary, B.C.; Virginia, W.C.; Stuart, L.S.; Brent, R.S. Regulation of ferroptotic cancer cell death by GPX4. Cell, 2014, 156(1), 317-331.
[http://dx.doi.org/10.1016/j.cell.2013.12.010] [PMID: 24439385]
[34]
Zhu, S.; Zhang, Q.; Sun, X.; Zeh, H.J., III; Lotze, M.T.; Kang, R.; Tang, D. HSPA5 regulates ferroptotic cell death in cancer cells. Cancer Res., 2017, 77(8), 2064-2077.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-1979] [PMID: 28130223]
[35]
Madhavan, S.; Nagarajan, S. GRP78 and next generation cancer hallmarks: An underexplored molecular target in cancer chemoprevention research. Biochimie, 2020, 175, 69-76.
[http://dx.doi.org/10.1016/j.biochi.2020.05.005] [PMID: 32422159]
[36]
Chen, X.; Kang, R.; Kroemer, G.; Tang, D. Targeting ferroptosis in pancreatic cancer: A double-edged sword. Trends Cancer, 2021, 7(10), 891-901.
[http://dx.doi.org/10.1016/j.trecan.2021.04.005] [PMID: 34023326]
[37]
Ermakova, S.P.; Kang, B.S.; Choi, B.Y.; Choi, H.S.; Schuster, T.F.; Ma, W.Y.; Bode, A.M.; Dong, Z. (-)-Epigallocatechin gallate overcomes resistance to etoposide-induced cell death by targeting the molecular chaperone glucose-regulated protein 78. Cancer Res., 2006, 66(18), 9260-9269.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-1586] [PMID: 16982771]
[38]
Chen, Y.; Mi, Y.; Zhang, X.; Ma, Q.; Song, Y.; Zhang, L.; Wang, D.; Xing, J.; Hou, B.; Li, H.; Jin, H.; Du, W.; Zou, Z. Dihydroartemisinin-induced unfolded protein response feedback attenuates ferroptosis via PERK/ATF4/HSPA5 pathway in glioma cells. J. Exp. Clin. Cancer Res., 2019, 38(1), 402.
[http://dx.doi.org/10.1186/s13046-019-1413-7] [PMID: 31519193]
[39]
Wu, Z.; Geng, Y.; Lu, X.; Shi, Y.; Wu, G.; Zhang, M.; Shan, B.; Pan, H.; Yuan, J. Chaperone-mediated autophagy is involved in the execution of ferroptosis. Proc. Natl. Acad. Sci. USA, 2019, 116(8), 2996-3005.
[http://dx.doi.org/10.1073/pnas.1819728116] [PMID: 30718432]
[40]
Wang, J.; Yin, Y.; Hua, H.; Li, M.; Luo, T.; Xu, L.; Wang, R.; Liu, D.; Zhang, Y.; Jiang, Y. Blockade of GRP78 sensitizes breast cancer cells to microtubules-interfering agents that induce the unfolded protein response. J. Cell. Mol. Med., 2009, 13(9B), 3888-3897.
[http://dx.doi.org/10.1111/j.1582-4934.2009.00873.x] [PMID: 19674193]
[41]
La, X.; Zhang, L.; Li, Z.; Li, H.; Yang, Y. (-)-Epigallocatechin gallate (EGCG) enhances the sensitivity of colorectal cancer cells to 5-FU by inhibiting GRP78/NF-κB/miR-155-5p/MDR1 Pathway. J. Agric. Food Chem., 2019, 67(9), 2510-2518.
[http://dx.doi.org/10.1021/acs.jafc.8b06665] [PMID: 30741544]
[42]
Liu, Y.; Wang, Y.; Liu, J.; Kang, R.; Tang, D. Interplay between MTOR and GPX4 signaling modulates autophagy-dependent ferroptotic cancer cell death. Cancer Gene Ther., 2021, 28(1-2), 55-63.
[http://dx.doi.org/10.1038/s41417-020-0182-y] [PMID: 32457486]
[43]
Gurusinghe, K.R.D.S.N.S.; Mishra, A.; Mishra, S. Glucose-regulated protein 78 substrate-binding domain alters its conformation upon EGCG inhibitor binding to nucleotide-binding domain: Molecular dynamics studies. Sci. Rep., 2018, 8(1), 5487.
[http://dx.doi.org/10.1038/s41598-018-22905-6] [PMID: 29615633]
[44]
Dixon, S.J.; Stockwell, B.R. The role of iron and reactive oxygen species in cell death. Nat. Chem. Biol., 2014, 10(1), 9-17.
[http://dx.doi.org/10.1038/nchembio.1416] [PMID: 24346035]