Graviola Protects Against Hepatic Toxicity Associated with DMBA induced Breast Cancer via Restoration of Antioxidants and Attenuation of Inflammatory Pathways

Page: [1593 - 1599] Pages: 7

  • * (Excluding Mailing and Handling)

Abstract

Aims: This study documented hepatic tissue's protective activity against oxidative damage mediated experimental models of breast cancer.

Background: Gaviola has a long history of improving the protection mechanism against many diseases as an antioxidant and anticancer dietary agent.

Objective: The purpose of this study is to establish changes in hepatic profiling, antioxidants, inflammatory cytokine expression, and DMBA-induced hepatic histopathology of mammalian rats.

Methods: 7,12-dimethylbenz[a] anthracene (DMBA), PAHs, used orally in female Sprague Dawley rats Fifty-seven days-old with breast cancer single-dose diluted in sesame oil of 20 mg/kg/body weight. The cancer-bearing animals had 45 days gastrogavagated at 200 mg/kg/body weight with Graviola. The serum samples were taken at the end of the experiment. The rats were sacrificed to establish the hepatic protective activity of the Graviola by testing hepatic and oxidative stress markers.

Results: Graviola therapy shows that enzymatic and non-enzymatic antioxidants and lipid peroxide levels have increased efficiency and have restored the high activity of hepatic marker enzymes such as ALT, AST, ALP, and GGT. To date, hepatic expression of nuclear factor erythroid 2-like 2 (Nfe2l2) and nuclear factor kappa B subunit 1 (Nfkb1) mediated rats have normalized. In addition, histological observations have demonstrated that Graviola's treatment effectively protects the liver from the oxidative damage caused by DMBA, reinforcing its hepatic defensive nature.

Conclusion: Graviola therapy improves the efficiency of both enzymatic and non-enzymatic antioxidants and lipid peroxide levels. It also helps in the restoration of other liver enzymes.

Keywords: Breast cancer, Graviola, hepatic protection, Antioxidants, lipid peroxide levels, 7, 12-dimethylbenz[a] anthracene (DMBA)

Graphical Abstract

[1]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[2]
Ibrahim, A.S.; Khaled, H.M.; Mikhail, N.N.; Baraka, H.; Kamel, H. Cancer incidence in egypt: Results of the national population-based cancer registry program. J. Cancer Epidemiol., 2014, 2014, 437971.
[http://dx.doi.org/10.1155/2014/437971] [PMID: 25328522]
[3]
Jung, K.J.; Wallig, M.A.; Singletary, K.W. Purple grape juice inhibits 7,12-dimethylbenz[a]anthracene (DMBA)-induced rat mammary tumorigenesis and in vivo DMBA-DNA adduct formation. Cancer Lett., 2006, 233(2), 279-288.
[http://dx.doi.org/10.1016/j.canlet.2005.03.020] [PMID: 15878797]
[4]
Costa, I.; Solanas, M.; Escrich, E. Histopathologic characterization of mammary neoplastic lesions induced with 7,12 dimethylbenz(alpha)anthracene in the rat: A comparative analysis with human breast tumors. Arch. Pathol. Lab. Med., 2002, 126(8), 915-927.
[http://dx.doi.org/10.5858/2002-126-0915-HCOMNL] [PMID: 12171489]
[5]
Karnam, K.C.; Ellutla, M.; Bodduluru, L.N.; Kasala, E.R.; Uppulapu, S.K.; Kalyankumarraju, M.; Lahkar, M. Preventive effect of berberine against DMBA-induced breast cancer in female Sprague Dawley rats. Biomed. Pharmacother., 2017, 92, 207-214.
[6]
Robbiano, L.; Carrozzino, R.; Puglia, C.P.; Corbu, C.; Brambilla, G. Correlation between induction of DNA fragmentation and micronuclei formation in kidney cells from rats and humans and tissue-specific carcinogenic activity. Toxicol. Appl. Pharmacol., 1999, 161(2), 153-159.
[http://dx.doi.org/10.1006/taap.1999.8796] [PMID: 10581209]
[7]
Hamdy, S.M.; Sayed, O.N.; Abdel Latif, A.K.M.; Abdel-Aziz, A.M.; Amin, A.M. Hesperidin and tiger nut reduced carcinogenicity of DMBA in female rats. Biomed. Pharmacother., 2016, 83, 718-724.
[8]
Kavitha, K.; Thiyagarajan, P.; Rathna Nandhini, J.; Mishra, R.; Nagini, S. Chemopreventive effects of diverse dietary phytochemicals against DMBA-induced hamster buccal pouch carcinogenesis via the induction of Nrf2-mediated cytoprotective antioxidant, detoxification, and DNA repair enzymes. Biochimie, 2013, 95(8), 1629-1639.
[http://dx.doi.org/10.1016/j.biochi.2013.05.004] [PMID: 23707664]
[9]
Florczyk, U.; Łoboda, A.; Stachurska, A.; Józkowicz, A.; Dulak, J. Role of Nrf2 transcription factor in cellular response to oxidative stress. Postepy Biochem., 2010, 56(2), 147-155.
[PMID: 20873109]
[10]
Ma, Q.; He, X. Molecular basis of electrophilic and oxidative defense: Promises and perils of Nrf2. Pharmacol. Rev., 2012, 64(4), 1055-1081.
[http://dx.doi.org/10.1124/pr.110.004333] [PMID: 22966037]
[11]
Li, Y.; Paonessa, J.D.; Zhang, Y. Mechanism of chemical activation of Nrf2. PLoS One, 2012, 7(4), e35122.
[http://dx.doi.org/10.1371/journal.pone.0035122] [PMID: 22558124]
[12]
Sinha, D.; Sarkar, N.; Biswas, J.; Bishayee, A. Resveratrol for breast cancer prevention and therapy: Preclinical evidence and molecular mechanisms. Semin. Cancer Biol., 2016, 40-41, 209-232.
[http://dx.doi.org/10.1016/j.semcancer.2015.11.001] [PMID: 26774195]
[13]
George, V.C.; Kumar, D.R.; Rajkumar, V.; Suresh, P.K.; Kumar, R.A. Quantitative assessment of the relative antineoplastic potential of the n-butanolic leaf extract of Annona muricata Linn. in normal and immortalized human cell lines. Asian Pac. J. Cancer Prev., 2012, 13(2), 699-704.
[http://dx.doi.org/10.7314/APJCP.2012.13.2.699] [PMID: 22524847]
[14]
Bendinelli, P.; Matteucci, E.; Maroni, P.; Desiderio, M.A. NF-kappaB activation, dependent on acetylation/deacetylation, contributes to HIF-1 activity and migration of bone metastatic breast carcinoma cells. Mol. Cancer Res., 2009, 7(8), 1328-1341.
[http://dx.doi.org/10.1158/1541-7786.MCR-08-0548] [PMID: 19671685]
[15]
Vasanthi, H.R. ShriShriMal, N.; Das, D.K. Retraction Notice: Phytochemicals from plants to combat cardiovascular disease. Curr. Med. Chem., 2012, 19(14), 2242-2251.
[http://dx.doi.org/10.2174/092986712800229078] [PMID: 22414106]
[16]
Freitas, A.F.; Pereira, F.F.; Formagio, A.S.; Lucchetta, J.T.; Vieira, M.C.; Mussury, R.M. Effects of Methanolic Extracts of Annona Species on the Development and Reproduction of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Neotrop. Entomol., 2014, 43(5), 446-452.
[http://dx.doi.org/10.1007/s13744-014-0225-x] [PMID: 27193955]
[17]
Zorofchian Moghadamtousi, S.; Karimian, H.; Rouhollahi, E.; Paydar, M.; Fadaeinasab, M.; Abdul Kadir, H. Annona muricata leaves induce G₁ cell cycle arrest and apoptosis through mitochondria-mediated pathway in human HCT-116 and HT-29 colon cancer cells. J. Ethnopharmacol., 2014, 156, 277-289.
[http://dx.doi.org/10.1016/j.jep.2014.08.011] [PMID: 25195082]
[18]
Vickers, A. Botanical medicines for the treatment of cancer: Rationale, overview of current data, and methodological considerations for phase I and II trials. Cancer Invest., 2002, 20(7-8), 1069-1079.
[http://dx.doi.org/10.1081/CNV-120005926] [PMID: 12449740]
[19]
Matsushige, A.; Matsunami, K.; Kotake, Y.; Otsuka, H.; Ohta, S. Three new megastigmanes from the leaves of Annona muricata. J. Nat. Med., 2012, 66(2), 284-291.
[http://dx.doi.org/10.1007/s11418-011-0583-1] [PMID: 21892756]
[20]
Zeweil, M.M.; Sadek, K.M.; Taha, N.M.; El-Sayed, Y.; Menshawy, S. Graviola attenuates DMBA-induced breast cancer possibly through augmenting apoptosis and antioxidant pathway and downregulating estrogen receptors. Environ. Sci. Pollut. Res. Int., 2019, 26(15), 15209-15217.
[http://dx.doi.org/10.1007/s11356-019-04920-w] [PMID: 30924043]
[21]
Grubbs, C.J.; Juliana, M.M.; Hill, D.L.; Whitaker, L.M. Suppression by pregnancy of chemically induced preneoplastic cells of the rat mammary gland. Anticancer Res., 1986, 6(6), 1395-1400.
[PMID: 3101578]
[22]
Florence, N.T.; Benoit, M.Z.; Jonas, K.; Alexandra, T.; Désiré, D.D.; Pierre, K.; Théophile, D. Antidiabetic and antioxidant effects of Annona muricata (Annonaceae), aqueous extract on streptozotocin-induced diabetic rats. J. Ethnopharmacol., 2014, 151(2), 784-790.
[http://dx.doi.org/10.1016/j.jep.2013.09.021] [PMID: 24076471]
[23]
Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 1979, 95(2), 351-358.
[http://dx.doi.org/10.1016/0003-2697(79)90738-3] [PMID: 36810]
[24]
Nishikimi, M.; Appaji, N.; Yagi, K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem. Biophys. Res. Commun., 1972, 46(2), 849-854.
[http://dx.doi.org/10.1016/S0006-291X(72)80218-3] [PMID: 4400444]
[25]
Aebi, H. Catalase in vitro. Methods Enzymol., 1984, 105, 121-126.
[http://dx.doi.org/10.1016/S0076-6879(84)05016-3] [PMID: 6727660]
[26]
Paglia, D.E.; Valentine, W.N. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med., 1967, 70(1), 158-169.
[PMID: 6066618]
[27]
Beutler, E.; Duron, O.; Kelly, B.M. Improved method for the determination of blood glutathione. J. Lab. Clin. Med., 1963, 61, 882-888.
[PMID: 13967893]
[28]
Habig, W.H.; Pabst, M.J.; Jakoby, W.B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem., 1974, 249(22), 7130-7139.
[http://dx.doi.org/10.1016/S0021-9258(19)42083-8] [PMID: 4436300]
[29]
Boom, R.; Sol, C.J.; Salimans, M.M.; Jansen, C.L.; Wertheim-van Dillen, P.M.; van der Noordaa, J. Rapid and simple method for purification of nucleic acids. J. Clin. Microbiol., 1990, 28(3), 495-503.
[http://dx.doi.org/10.1128/jcm.28.3.495-503.1990] [PMID: 1691208]
[30]
Wiame, I.; Remy, S.; Swennen, R.; Sági, L. Irreversible heat inactivation of DNase I without RNA degradation. Biotechniques, 2000, 29(2), 252-254, 256.
[http://dx.doi.org/10.2144/00292bm11] [PMID: 10948426]
[31]
Longo, M.C.; Berninger, M.S.; Hartley, J.L. Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions. Gene, 1990, 93(1), 125-128.
[http://dx.doi.org/10.1016/0378-1119(90)90145-H] [PMID: 2227421]
[32]
Izzotti, A.; Camoirano, A.; Cartiglia, C.; Grubbs, C.J.; Lubet, R.A.; Kelloff, G.J.; De Flora, S. Patterns of DNA adduct formation in liver and mammary epithelial cells of rats treated with 7,12-dimethylbenz(a)anthracene, and selective effects of chemopreventive agents. Cancer Res., 1999, 59(17), 4285-4290.
[PMID: 10485473]
[33]
Frenkel, K.; Wei, L.; Wei, H. 7,12-dimethylbenz[a]anthracene induces oxidative DNA modification in vivo. Free Radic. Biol. Med., 1995, 19(3), 373-380.
[http://dx.doi.org/10.1016/0891-5849(95)00046-Z] [PMID: 7557552]
[34]
Osawa, T.; Namiki, M.; Kawakishi, S. Role of dietary antioxidants in protection against oxidative damage. Basic Life Sci., 1990, 52, 139-153.
[http://dx.doi.org/10.1007/978-1-4615-9561-8_11] [PMID: 2183766]
[35]
Ozturk, F.; Ozturk, I.C.; Batcioglu, K.; Vardi, N. The effect of melatonin on 7,12-dimethyl-benz[a]anthracene injury in comparison with vitamin E + selenium in mouse kidneys. Fundam. Clin. Pharmacol., 2006, 20(4), 359-364.
[http://dx.doi.org/10.1111/j.1472-8206.2006.00419.x] [PMID: 16867019]
[36]
Tak, P.P.; Firestein, G.S. NF-kappaB: A key role in inflammatory diseases. J. Clin. Invest., 2001, 107(1), 7-11.
[http://dx.doi.org/10.1172/JCI11830] [PMID: 11134171]
[37]
Su, Z.Y.; Shu, L.; Khor, T.O.; Lee, J.H.; Fuentes, F.; Kong, A.N. A perspective on dietary phytochemicals and cancer chemoprevention: Oxidative stress, nrf2, and epigenomics. Top. Curr. Chem., 2013, 329, 133-162.
[http://dx.doi.org/10.1007/128_2012_340] [PMID: 22836898]