Network Pharmacology-Based Prediction of Active Ingredients and Mechanisms of Zanthoxyli Bungeanum Against Lung Carcinoma

Page: [88 - 100] Pages: 13

  • * (Excluding Mailing and Handling)

Abstract

Background: Zanthoxyli Bungeanum (ZB) has been reported to have an effect on lung carcinoma (LC). However, the defined pharmacological mechanism of ZB on LC has not been expounded completely because of the complicated ingredients.

Objective: The aim of this work was to explore the active ingredients and mechanisms of ZB against LC by network pharmacology.

Methods: In this study, systemic network pharmacology was used to explore the underlying mechanism of ZB, including pivotal components collection, target prediction, networks construction, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. At last, molecular docking was carried out to elucidate the involved pharmacological mechanisms.

Results: Twenty-eight potential active compounds with 317 related targets and 598 LC-related targets were collected. Finally, 79 intersection targets were obtained use GO and KEGG pathway enrichment analyses. Based on component-target-pathway network, quercetin, β-sitosterol, and β- amyrin, and 6 targets were selected, including RAC-alpha serine/thre-onine-protein kinase (AKT1), mitogen-active protein kinase1 (MAPK1), Transcription factor p65 (RELA), Caspase-9 (CASP9), G1/S-specifi cyclin-D1 (CCND1), and PI3-kinase subunit gamma (PIK3CG); these six predicted targets were highly involved in the PI3K-AKT signaling pathway.

Conclusion: The active ingredients and mechanisms of ZB against LC were firstly investigated using network pharmacology. This work provides scientific evidence to support the clinical effect of ZB on LC, new insights into the anti-LC mechanism of ZB, and guidance for further study.

Keywords: Zanthoxyli bungeanum, network pharmacology, molecular mechanism, active components, lung carcinoma, transcription.

[1]
Su, T.; He, C.; Li, X.; Xiao, L.; He, J.; Bai, Y.; Tang, Y. Association between early informed diagnosis and survival time in patients with lung cancer. Psychooncology, 2020, 29(5), 878-885.
[http://dx.doi.org/10.1002/pon.5360] [PMID: 32266740]
[2]
Wu, Z.; Zhu, Q.; Zhang, Y.; Yin, Y.; Kang, D.; Cao, R.; Tian, Q.; Lu, S.; Liu, P. EGFR associated pathways involved in traditional Chinese medicine (TCM)-1 induced cell growth inhibition, autophagy and apoptosis in prostate cancer. Mol. Med. Rep., 2018, 17(6), 7875-7885.
[http://dx.doi.org/10.3892/mmr.2018.8818] [PMID: 29620175]
[3]
Hua, H.; Yan, Z.X.; Tian, W.W.; Liu, L.; Sun, H.B.; Zhou, X.J.; Yan, L.C.; Zhao, J.N. Transcriptome and quality evaluation of Sichuan Dao-di herbs Zanthoxylum bungeanum. Zhongguo Zhongyao Zazhi, 2020, 45(4), 732-738.
[PMID: 32237472]
[4]
Zhang, M.; Wang, J.; Zhu, L.; Li, T.; Jiang, W.; Zhou, J.; Peng, W.; Wu, C. Zanthoxylum bungeanum Maxim. (Rutaceae): A systematic review of its traditional uses, botany, phytochemistry, pharmacology, pharmacokinetics, and toxicology. Int. J. Mol. Sci., 2017, 18(10), E2172.
[http://dx.doi.org/10.3390/ijms18102172] [PMID: 29057808]
[5]
Committee, C.P. Chinese pharmacopoeia, science and technology; Press of Shanghai, , 2015; pp. 159-160.
[6]
Han, Y. S.N.L.; Zhang, Zhang; Jiang, J.N. Extraction and anti-tumor activity of essential oil from Zanthoxylum bungeanum seeds. J. Food Sci., 2014, 13-16.
[7]
Huang, R.Y. H.C.W.; Zhou, W.M. Anti-tumor effects of Z. bungeanum Maxim. on pheochromocytoma cells. Heilongjiang Med. J., 2010, (23), 514-515.
[8]
Gao, L.; Wang, X.D.; Niu, Y.Y.; Duan, D.D.; Yang, X.; Hao, J.; Zhu, C.H.; Chen, D.; Wang, K.X.; Qin, X.M.; Wu, X.Z. Molecular targets of Chinese herbs: A clinical study of hepatoma based on network pharmacology. Sci. Rep., 2016, 6, 24944.
[http://dx.doi.org/10.1038/srep24944] [PMID: 27143508]
[9]
Yang, M.; Chen, J.L.; Xu, L.W.; Ji, G. Navigating traditional chinese medicine network pharmacology and computational tools. Evid. Based Complement. Alternat. Med., 2013, 2013, 731969.
[http://dx.doi.org/10.1155/2013/731969] [PMID: 23983798]
[10]
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6, 13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[11]
Liu, Z.; Guo, F.; Wang, Y.; Li, C.; Zhang, X.; Li, H.; Diao, L.; Gu, J.; Wang, W.; Li, D.; He, F. BATMAN-TCM: A bioinformatics analysis tool for molecular mechanism of traditional chinese medicine. Sci. Rep., 2016, 6, 21146.
[http://dx.doi.org/10.1038/srep21146] [PMID: 26879404]
[12]
Xu, X.; Zhang, W.; Huang, C.; Li, Y.; Yu, H.; Wang, Y.; Duan, J.; Ling, Y. A novel chemometric method for the prediction of human oral bioavailability. Int. J. Mol. Sci., 2012, 13(6), 6964-6982.
[http://dx.doi.org/10.3390/ijms13066964] [PMID: 22837674]
[13]
Liu, Q.; Xu, J.; Liao, K.; Tang, N. Oral bioavailability improvement of tailored rosuvastatin loaded niosomal nanocarriers to manage ischemic heart disease: Optimization, ex vivo and in vivo studies. AAPS PharmSciTech, 2021, 22(2), 58.
[http://dx.doi.org/10.1208/s12249-021-01934-x] [PMID: 33502651]
[14]
Wan, Y.; Xu, L.; Liu, Z.; Yang, M.; Jiang, X.; Zhang, Q.; Huang, J. Utilising network pharmacology to explore the underlying mechanism of Wumei Pill in treating pancreatic neoplasms. BMC Complement. Altern. Med., 2019, 19(1), 158.
[http://dx.doi.org/10.1186/s12906-019-2580-y] [PMID: 31272505]
[15]
Safran, M.; Dalah, I.; Alexander, J.; Rosen, N.; Iny Stein, T.; Shmoish, M.; Nativ, N.; Bahir, I.; Doniger, T.; Krug, H.; Sirota-Madi, A.; Olender, T.; Golan, Y.; Stelzer, G.; Harel, A.; Lancet, D. GeneCards Version 3: The human gene integrator. Database (Oxford), 2010, 2010, baq020.
[http://dx.doi.org/10.1093/database/baq020] [PMID: 20689021]
[16]
Hamosh, A.; Scott, A.F.; Amberger, J.S.; Bocchini, C.A.; McKusick, V.A. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res., 2005, 33(Database issue), D514-D517.
[http://dx.doi.org/10.1093/nar/gki033] [PMID: 15608251]
[17]
Demchak, B.; Hull, T.; Reich, M.; Liefeld, T.; Smoot, M.; Ideker, T.; Mesirov, J.P. Cytoscape: The network visualization tool for GenomeSpace workflows. F1000 Res., 2014, 3, 151.
[http://dx.doi.org/10.12688/f1000research.4492.2] [PMID: 25165537]
[18]
Hsia, C.W.; Ho, M.Y.; Shui, H.A.; Tsai, C.B.; Tseng, M.J. Analysis of dermal papilla cell interactome using STRING database to profile the ex vivo hair growth inhibition effect of a vinca alkaloid drug, colchicine. Int. J. Mol. Sci., 2015, 16(2), 3579-3598.
[http://dx.doi.org/10.3390/ijms16023579] [PMID: 25664862]
[19]
El-Hachem, N.; Haibe-Kains, B.; Khalil, A.; Kobeissy, F.H.; Nemer, G. AutoDock and autodocktools for protein-ligand docking: Beta-site amyloid precursor protein cleaving enzyme 1(BACE1) as a case study. Methods Mol. Biol., 2017, 1598, 391-403.
[http://dx.doi.org/10.1007/978-1-4939-6952-4_20] [PMID: 28508374]
[20]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[21]
Reyes-Farias, M.; Carrasco-Pozo, C. The anti-cancer effect of quercetin: Molecular implications in cancer metabolism. Int. J. Mol. Sci., 2019, 20(13), E3177.
[http://dx.doi.org/10.3390/ijms20133177] [PMID: 31261749]
[22]
Wen, S.; Gu, D.; Zeng, H. Antitumor effects of beta-amyrin in Hep-G2 liver carcinoma cells are mediated via apoptosis induction, cell cycle disruption and activation of JNK and P38 signalling pathways. J. BUON, 2018, 23(4), 965-970.
[PMID: 30358200]
[23]
Bae, H.; Park, S.; Ham, J.; Song, J.; Hong, T.; Choi, J.H.; Song, G.; Lim, W. ER-Mitochondria Calcium Flux by β-Sitosterol Promotes Cell Death in Ovarian Cancer. Antioxidants, 2021, 10(10), 1583.
[http://dx.doi.org/10.3390/antiox10101583] [PMID: 34679718]
[24]
Won, Y.S.; Kim, J.H.; Lizardo, R.C.M.; Min, H.J.; Cho, H.D.; Hong, S.M.; Seo, K.I. The flavonol isoquercitrin promotes mitochondrial-dependent apoptosis in SK-Mel-2 melanoma cell via the PI3K/AKT/mTOR Pathway. Nutrients, 2020, 12(12), E3683.
[http://dx.doi.org/10.3390/nu12123683] [PMID: 33260329]
[25]
Chen, P.; Chen, J.B.; Chen, W.Y.; Zheng, Q.L.; Wang, Y.Q.; Xu, X.J. Effects of quercetin on nuclear factor-κB p65 expression in renal ubiquitin-proteasome system of diabetic rats. Zhonghua Nei Ke Za Zhi, 2012, 51(6), 460-465.
[PMID: 22943758]
[26]
Wu, Y.; Fu, H.; Zhang, H.; Huang, H.; Chen, M.; Zhang, L.; Yang, H.; Qin, D. Cyclin D1 (CCND1) G870A polymorphisms and cervical cancer susceptibility: A meta-analysis based on ten case-control studies. Tumour Biol., 2014, 35(7), 6913-6918.
[http://dx.doi.org/10.1007/s13277-014-1929-6] [PMID: 24737585]
[27]
Xu, S.; Zhai, S.; Du, T.; Li, Z. LncRNA MIR503HG inhibits non-small cell lung cancer cell proliferation by inducing cell cycle arrest through the downregulation of cyclin D1. Cancer Manag. Res., 2020, 12, 1641-1647.
[http://dx.doi.org/10.2147/CMAR.S227348] [PMID: 32184667]
[28]
Granato, M.; Rizzello, C.; Gilardini Montani, M.S.; Cuomo, L.; Vitillo, M.; Santarelli, R.; Gonnella, R.; D’Orazi, G.; Faggioni, A.; Cirone, M. Quercetin induces apoptosis and autophagy in primary effusion lymphoma cells by inhibiting PI3K/AKT/mTOR and STAT3 signaling pathways. J. Nutr. Biochem., 2017, 41, 124-136.
[http://dx.doi.org/10.1016/j.jnutbio.2016.12.011] [PMID: 28092744]
[29]
Li, X.W.; Tuergan, M.; Abulizi, G. Expression of MAPK1 in cervical cancer and effect of MAPK1 gene silencing on epithelial-mesenchymal transition, invasion and metastasis. Asian Pac. J. Trop. Med., 2015, 8(11), 937-943.
[http://dx.doi.org/10.1016/j.apjtm.2015.10.004] [PMID: 26614994]
[30]
Albanell, J.; Rojo, F.; Baselga, J. Pharmacodynamic studies with the epidermal growth factor receptor tyrosine kinase inhibitor ZD1839. Semin. Oncol., 2001, 28(5)(Suppl. 16), 56-66.
[http://dx.doi.org/10.1016/S0093-7754(01)90283-0] [PMID: 11706397]
[31]
Tsai, C.C.; Chou, Y.T.; Fu, H.W. Protease-activated receptor 2 induces migration and promotes Slug-mediated epithelial-mesenchymal transition in lung adenocarcinoma cells. Biochim. Biophys. Acta Mol. Cell Res., 2019, 1866(3), 486-503.
[http://dx.doi.org/10.1016/j.bbamcr.2018.10.011] [PMID: 30321617]
[32]
Lu, X.; Chen, D.; Yang, F.; Xing, N. Quercetin inhibits Epithelial-to-Mesenchymal Transition (EMT) process and promotes apoptosis in prostate cancer via downregulating lncRNA MALAT1. Cancer Manag. Res., 2020, 12, 1741-1750.
[http://dx.doi.org/10.2147/CMAR.S241093] [PMID: 32210615]
[33]
Rivera Rivera, A.; Castillo-Pichardo, L.; Gerena, Y.; Dharmawardhane, S. Anti-breast cancer potential of quercetin via the Akt/AMPK/Mammalian Target of Rapamycin (mTOR) signaling cascade. PLoS One, 2016, 11(6), e0157251.
[http://dx.doi.org/10.1371/journal.pone.0157251] [PMID: 27285995]
[34]
Lou, Y.; Fang, C.Q.; Li, J.H. A study on the expression of CASP9 gene and its polymorphism distribution in non-small cell lung cancer. Zhonghua Yi Xue Yi Chuan Xue Za Zhi, 2007, 24(1), 59-62.
[PMID: 17285546]
[35]
Sugantha Priya, E.; Selvakumar, K.; Bavithra, S.; Elumalai, P.; Arunkumar, R.; Raja Singh, P.; Brindha Mercy, A.; Arunakaran, J. Anti-cancer activity of quercetin in neuroblastoma: An in vitro approach. Neurol. Sci., 2014, 35(2), 163-170.
[http://dx.doi.org/10.1007/s10072-013-1462-1] [PMID: 23771516]
[36]
Roy, S.; Banerjee, S.; Chakraborty, T. Vanadium quercetin complex attenuates mammary cancer by regulating the P53, Akt/mTOR pathway and downregulates cellular proliferation correlated with increased apoptotic events. Biometals, 2018, 31(4), 647-671.
[http://dx.doi.org/10.1007/s10534-018-0117-3] [PMID: 29855745]