Letters in Drug Design & Discovery

Author(s): Xian Li, Xinlin Wu and Xiulan Su*

DOI: 10.2174/1570180819666220718121827

Crosstalk between Exosomes and CAFs During Tumorigenesis, Exosomederived Biomarkers, and Exosome-mediated Drug Delivery

Page: [977 - 991] Pages: 15

  • * (Excluding Mailing and Handling)

Abstract

Cancer‐Associated Fibroblasts (CAFs) originate from the activation of fibroblasts in the Tumor Microenvironment (TME) during tumorigenesis, resulting in the promotion of tumor growth, metabolism, and metastasis. Exosomes, which can locally or remotely transfer miRNAs, lncRNAs, proteins, metabolites, and other substances to other cells, have a size and range distribution of 30 to 150 nm and have been described as new particles that mediate communication among neighboring and/or distant cells. Exosomes have regulatory roles in the tumor microenvironment that are different from those in the tumor cells, including mediating the regulation of tumor progression, delivery of miRNAs involved in reprogramming Normal Fibroblasts (NFs) into CAFs, and the modulation of tumor initiation and metastasis. Exosomes can be useful biomarkers of the tumor microenvironment and for the therapy and diagnosis of different diseases. Relevant interactions with cancer cells reprogram NFs into CAFs or allow cell-to-cell communication between CAFs and cancer cells. Several researchers have started exploring the precise molecular mechanisms related to exosome secretion, uptake, composition, and corresponding functions of their "cargo." However, little is known about the processes by which exosomes affect cancer behavior and their potential use as diagnostic biomarkers for cancer treatment. Therefore, the crosstalk between CAFs and exosomes during tumorigenesis and the effects of exosomes as biomarkers and drug carriers for therapy are discussed in this review.

Keywords: Cancer‐associated fibroblasts, exosomes, tumorigenesis, diagnostic biomarkers, drug delivery, microenvironment.

Graphical Abstract

[1]
Li, Y.Y.; Tao, Y.W.; Gao, S.; Li, P.; Zheng, J.M.; Zhang, S.E.; Liang, J.; Zhang, Y. Cancer-associated fibroblasts contribute to oral cancer cells proliferation and metastasis via exosome-mediated paracrine miR-34a-5p. EBioMedicine, 2018, 36, 209-220.
[2]
Yang, F.; Ning, Z.; Ma, L.; Liu, W.; Shao, C.; Shu, Y.; Shen, H. Exosomal miRNAs and miRNA dysregulation in cancer-associated fibroblasts. Mol. Cancer, 2017, 16(1), 148.
[http://dx.doi.org/10.1186/s12943-017-0718-4] [PMID: 28851377]
[3]
Yang, X.; Li, Y.; Zou, L.; Zhu, Z. Role of exosomes in crosstalk between cancer-associated fibroblasts and cancer cells. Front. Oncol., 2019, 9, 356.
[http://dx.doi.org/10.3389/fonc.2019.00356] [PMID: 31131261]
[4]
Hessvik, N.P.; Llorente, A. Current knowledge on exosome biogenesis and release. Cell. Mol. Life Sci., 2018, 75(2), 193-208.
[http://dx.doi.org/10.1007/s00018-017-2595-9] [PMID: 28733901]
[5]
Cochetti, G.; Brancorsini, S.; Del Zingaro, M.; Gaudio, G.; Panciarola, M.; Rossi de Vermandois, J.; Tiezzi, A.; Boni, A.; Mearini, E. Relationship between cellular and exosomal mirnas targeting NOD-like receptors in bladder cancer. Eur. Urol. Suppl., 2018, 17(8), 170.
[http://dx.doi.org/10.1016/S1569-9056(18)33050-1]
[6]
Wei, W.; Zeng, H.; Zheng, R.; Zhang, S.; An, L.; Chen, R.; Wang, S.; Sun, K.; Matsuda, T.; Bray, F.; He, J. Cancer registration in China and its role in cancer prevention and control. Lancet Oncol., 2020, 21(7), e342-e349.
[http://dx.doi.org/10.1016/S1470-2045(20)30073-5] [PMID: 32615118]
[7]
Baig, M.S.; Roy, A.; Rajpoot, S.; Liu, D.; Savai, R.; Banerjee, S.; Kawada, M.; Faisal, S.M.; Saluja, R.; Saqib, U.; Ohishi, T.; Wary, K.K. Tumor-derived exosomes in the regulation of macrophage polarization. Inflamm. Res., 2020, 69(5), 435-451.
[http://dx.doi.org/10.1007/s00011-020-01318-0] [PMID: 32162012]
[8]
Orimo, A.; Weinberg, R.A. Stromal fibroblasts in cancer: A novel tumor-promoting cell type. Cell Cycle, 2006, 5(15), 1597-1601.
[http://dx.doi.org/10.4161/cc.5.15.3112] [PMID: 16880743]
[9]
Fiori, M.E.; Di Franco, S.; Villanova, L.; Bianca, P.; Stassi, G.; De Maria, R. Cancer-associated fibroblasts as abettors of tumor progression at the crossroads of EMT and therapy resistance. Mol. Cancer, 2019, 18(1), 70.
[http://dx.doi.org/10.1186/s12943-019-0994-2] [PMID: 30927908]
[10]
Prakash, Jai. Cancer-associated fibroblasts: Perspectives in cancer therapy.Trends in Cancer; , 2011.
[11]
Li, Q.; Liu, T.; Zhang, L.; Liu, Y.; Zhang, W.; Liu, W.; Cao, Y.; Zhou, G. The role of bFGF in down-regulating α-SMA expression of chondrogenically induced BMSCs and preventing the shrinkage of BMSC engineered cartilage. Biomaterials, 2011, 32(21), 4773-4781.
[http://dx.doi.org/10.1016/j.biomaterials.2011.03.020] [PMID: 21459437]
[12]
Syed, M.; Flechsig, P.; Liermann, J.; Windisch, P.; Staudinger, F.; Akbaba, S.; Koerber, S.A.; Freudlsperger, C.; Plinkert, P.K.; Debus, J.; Giesel, F.; Haberkorn, U.; Adeberg, S. Fibroblast activation protein inhibitor (FAPI) PET for diagnostics and advanced targeted radiotherapy in head and neck cancers. Eur. J. Nucl. Med. Mol. Imaging, 2020, 47(12), 2836-2845.
[http://dx.doi.org/10.1007/s00259-020-04859-y] [PMID: 32447444]
[13]
Hadian, K. Ferroptosis suppressor protein 1 (FSP1) and coenzyme Q 10 cooperatively suppress ferroptosis. Biochemistry, 2020, 59(5), 637-638.
[http://dx.doi.org/10.1021/acs.biochem.0c00030] [PMID: 32003211]
[14]
Öhlund, D.; Handly-Santana, A.; Biffi, G.; Elyada, E.; Almeida, A.S.; Ponz-Sarvise, M.; Corbo, V.; Oni, T.E.; Hearn, S.A.; Lee, E.J.; Chio, I.I.; Hwang, C.I.; Tiriac, H.; Baker, L.A.; Engle, D.D.; Feig, C.; Kultti, A.; Egeblad, M.; Fearon, D.T.; Crawford, J.M.; Clevers, H.; Park, Y.; Tuveson, D.A. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J. Exp. Med., 2017, 214(3), 579-596.
[15]
Baroni, S.; Romero-Cordoba, S.; Plantamura, I.; Dugo, M.; D’Ippolito, E.; Cataldo, A.; Cosentino, G.; Angeloni, V.; Rossini, A.; Daidone, M.G.; Iorio, M.V. Exosome-mediated delivery of miR-9 induces cancer-associated fibroblast-like properties in human breast fibroblasts. Cell Death Dis., 2016, 7(7), e2312.
[http://dx.doi.org/10.1038/cddis.2016.224] [PMID: 27468688]
[16]
Xu, W.P.; Yi, M.; Li, Q.Q.; Zhou, W.P.; Cong, W.M.; Yang, Y.; Ning, B.F.; Yin, C.; Huang, Z.W.; Wang, J.; Qian, H.; Jiang, C.F.; Chen, Y.X.; Xia, C.Y.; Wang, H.Y.; Zhang, X.; Xie, W.F. Perturbation of MicroRNA-370/Lin-28 homolog A/nuclear factor kappa B regulatory circuit contributes to the development of hepatocellular carcinoma. Hepatology, 2013, 58(6), 1977-1991.
[http://dx.doi.org/10.1002/hep.26541] [PMID: 23728999]
[17]
Tang, X.; Hou, Y.; Yang, G. Stromal miR-200s contribute to breast cancer cell invasion through CAF activation and ECM remodeling. Cell Death & Differentiation, 23, 132–-145.
[http://dx.doi.org/10.1038/cdd.2015.78]
[18]
Ali, S.; Suresh, R.; Banerjee, S.; Bao, B.; Xu, Z.; Wilson, J.; Philip, P.A.; Apte, M.; Sarkar, F.H. Contribution of microRNAs in understanding the pancreatic tumor microenvironment involving cancer associated stellate and fibroblast cells. Am. J. Cancer Res., 2015, 5(3), 1251-1264.
[PMID: 26046003]
[19]
Liu, M.; Casimiro, M.C.; Wang, C. p21CIP1 attenuates Ras- and c-Myc-dependent breast tumor epithelial mesenchymal transition and cancer stem cell-like gene expression in vivo. Proceedings of the National Academy of Sciences of the United States of America, 106, pp. 19035-19039.
[20]
Hsu, K.F.; Shen, M.R.; Huang, Y.F.; Cheng, Y.M.; Lin, S.H.; Chow, N.H.; Cheng, S.W.; Chou, C.Y.; Ho, C.L. Overexpression of the RNA-binding proteins Lin28B and IGF2BP3 (IMP3) is associated with chemoresistance and poor disease outcome in ovarian cancer. Br. J. Cancer, 2015, 113(3), 414-424.
[http://dx.doi.org/10.1038/bjc.2015.254] [PMID: 26158423]
[21]
Vlassov, A.V.; Magdaleno, S.; Setterquist, R. Exosomes: Current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim. Biophys. Acta, 1820, 948.
[22]
Dou, Y.; Cha, D.J.; Franklin, J.L.; Higginbotham, J.N.; Jeppesen, D.K.; Weaver, A.M.; Prasad, N.; Levy, S.; Coffey, R.J.; Patton, J.G.; Zhang, B. Circular RNAs are down-regulated in KRAS mutant colon cancer cells and can be transferred to exosomes. Sci. Rep., 2016, 6, 37982.
[23]
Valadi, H.; Ekström, K.; Bossios, A.; Sjöstrand, M.; Lee, J.J.; Lötvall, J.O. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol., 2007, 9(6), 654-659.
[http://dx.doi.org/10.1038/ncb1596] [PMID: 17486113]
[24]
Yuan, T.; Huang, X.; Woodcock, M.; Du, M.; Dittmar, R.; Wang, Y.; Tsai, S.; Kohli, M.; Boardman, L.; Patel, T.; Wang, L. Plasma extracellular RNA profiles in healthy and cancer patients. Sci. Rep., 2016, 6(1), 19413.
[http://dx.doi.org/10.1038/srep19413] [PMID: 26786760]
[25]
Zhu, L.; Li, J.; Gong, Y.; Wu, Q.; Tan, S.; Sun, D.; Xu, X.; Zuo, Y.; Zhao, Y.; Wei, Y.Q.; Wei, X.W.; Peng, Y. Exosomal tRNA-derived small RNA as a promising biomarker for cancer diagnosis. Mol. Cancer, 2019, 18(1), 74.
[http://dx.doi.org/10.1186/s12943-019-1000-8] [PMID: 30940133]
[26]
Gezer, U.; Özgür, E.; Cetinkaya, M.; Isin, M.; Dalay, N. Long non-coding RNAs with low expression levels in cells are enriched in secreted exosomes. Cell Biol. Int., 2014, 38(9), 1076-1079.
[http://dx.doi.org/10.1002/cbin.10301] [PMID: 24798520]
[27]
Abels, E.R.; Breakefield, X.O. Introduction to extracellular vesicles: Biogenesis, RNA cargo selection, content, release, and uptake. Cell. Mol. Neurobiol., 2016, 36(3), 301-312.
[http://dx.doi.org/10.1007/s10571-016-0366-z] [PMID: 27053351]
[28]
Guescini, M.; Genedani, S.; Stocchi, V.; Agnati, L.F. Astrocytes and Glioblastoma cells release exosomes carrying mtDNA. J. Neural Transm. (Vienna), 2010, 117(1), 1-4.
[http://dx.doi.org/10.1007/s00702-009-0288-8]
[29]
Thakur, B.K.; Zhang, H.; Becker, A.; Matei, I.; Huang, Y.; Costa-Silva, B.; Zheng, Y.; Hoshino, A.; Brazier, H.; Xiang, J.; Williams, C.; Rodriguez-Barrueco, R.; Silva, J.M.; Zhang, W.; Hearn, S.; Elemento, O.; Paknejad, N.; Manova-Todorova, K.; Welte, K.; Bromberg, J.; Peinado, H.; Lyden, D. Double-stranded DNA in exosomes: A novel biomarker in cancer detection. Cell Res., 2014, 24(6), 766-769.
[http://dx.doi.org/10.1038/cr.2014.44] [PMID: 24710597]
[30]
Azmi, A.S.; Bao, B.; Sarkar, F.H. Exosomes in cancer development, metastasis, and drug resistance: A comprehensive review. Cancer Metastasis Rev., 2013, 32(3-4), 623-642.
[http://dx.doi.org/10.1007/s10555-013-9441-9] [PMID: 23709120]
[31]
Lugli, G.; Cohen, A.M.; Bennett, D.A.; Shah, R.C.; Fields, C.J.; Hernandez, A.G.; Smalheiser, N.R. Plasma exosomal miRNAs in persons with and without alzheimer disease: Altered expression and prospects for biomarkers. PLoS One, 2015, 10(10), e0139233.
[http://dx.doi.org/10.1371/journal.pone.0139233] [PMID: 26426747]
[32]
van Dommelen, S.M.; Vader, P.; Lakhal, S.; Kooijmans, S.A.; van Solinge, W.W.; Wood, M.J.; Schiffelers, R.M. Microvesicles and exosomes: Opportunities for cell-derived membrane vesicles in drug delivery. J. Control. Release, 2012, 161(2), 635-644.
[http://dx.doi.org/10.1016/j.jconrel.2011.11.021] [PMID: 22138068]
[33]
Paggetti, J.; Haderk, F.; Seiffert, M. Chronic lymphocytic leukemia-exosomes switch endothelial and mesenchymal stromal cells into cancer-associated fibroblasts to sustain leukemic cell survival. Blood, 2014, 124(21), 2927.
[http://dx.doi.org/10.1182/blood.V124.21.2927.2927]
[34]
Yoshii, S.; Hayashi, Y.; Iijima, H.; Inoue, T.; Kimura, K.; Sakatani, A.; Nagai, K.; Fujinaga, T.; Hiyama, S.; Kodama, T.; Shinzaki, S.; Tsujii, Y.; Watabe, K.; Takehara, T. Exosomal microRNAs derived from colon cancer cells promote tumor progression by suppressing fibroblast TP53 expression. Cancer Sci., 2019, 110(8), 2396-2407.
[http://dx.doi.org/10.1111/cas.14084] [PMID: 31148360]
[35]
Qin, X.; Guo, H.; Wang, X.; Zhu, X.; Yan, M.; Wang, X.; Xu, Q.; Shi, J.; Lu, E.; Chen, W.; Zhang, J Exosomal miR-196a derived from cancer-associated fibroblasts confers cisplatin resistance in head and neck cancer through targeting CDKN1B and ING5. Genome Biol., 2019, 20(1), 12.
[http://dx.doi.org/10.1186/s13059-018-1604-0] [PMID: 30642385]
[36]
Wu, Q.; Sun, S.; Li, Z.; Yang, Q.; Li, B.; Zhu, S.; Wang, L.; Wu, J.; Yuan, J.; Wang, C.; Li, J.; Sun, S. Breast cancer-released exosomes trigger cancer-associated cachexia to promote tumor progression. Adipocyte, 2019, 8(1), 31-45.
[PMID: 30474469]
[37]
Maia, J.; Caja, S.; Moraes, M.C.S.; Couto, N.; Costa-Silva, B. Exosome-based cell-cell communication in the tumor microenvironment. Front. Cell Dev. Biol., 2018, 6, 18.
[http://dx.doi.org/10.3389/fcell.2018.00018] [PMID: 29515996]
[38]
Zhang, Y.; Cai, H.; Chen, S.; Sun, D.; Zhang, D.; He, Y. Exosomal transfer of miR-124 inhibits normal fibroblasts to cancer-associated fibroblasts transition by targeting sphingosine kinase 1 in ovarian cancer. J. Cell. Biochem., 2019, 120(8), 13187-13201.
[http://dx.doi.org/10.1002/jcb.28593] [PMID: 30957275]
[39]
Zhao, Y.; Ling, Z.; Hao, Y.; Pang, X.; Han, X.; Califano, J.A.; Shan, L.; Gu, X. MiR-124 acts as a tumor suppressor by inhibiting the expression of sphingosine kinase 1 and its downstream signaling in head and neck squamous cell carcinoma. Oncotarget, 2017, 8(15), 25005-25020.
[http://dx.doi.org/10.18632/oncotarget.15334] [PMID: 28212569]
[40]
Vallabhaneni, K.C.; Penfornis, P.; Dhule, S. Extracellular vesicles from bone marrow mesenchymal stem/stromal cells transport tumor regulatory microRNA, proteins, and metabolites. Oncotarget, 2015, 6(7), 4953-4967.
[http://dx.doi.org/10.18632/oncotarget.3211] [PMID: 25669974]
[41]
He, S.; Li, Z.; Yu, Y.; Zeng, Q.; Cheng, Y.; Ji, W.; Xia, W.; Lu, S. Exosomal miR-499a-5p promotes cell proliferation, migration and EMT via mTOR signaling pathway in lung adenocarcinoma. Exp. Cell Res., 2019, 379(2), 203-213.
[http://dx.doi.org/10.1016/j.yexcr.2019.03.035] [PMID: 30978341]
[42]
Donnarumma, E.; Fiore, D.; Nappa, M.; Roscigno, G.; Adamo, A.; Iaboni, M.; Russo, V.; Affinito, A.; Puoti, I.; Quintavalle, C.; Rienzo, A.; Piscuoglio, S.; Thomas, R.; Condorelli, G. Cancer-associated fibroblasts release exosomal microRNAs that dictate an aggressive phenotype in breast cancer. Oncotarget, 2017, 8(12), 19592-19608.
[http://dx.doi.org/10.18632/oncotarget.14752] [PMID: 28121625]
[43]
Quintavalle, C.; Donnarumma, E.; Iaboni, M.; Roscigno, G.; Garofalo, M.; Romano, G.; Fiore, D.; De Marinis, P.; Croce, C.M.; Condorelli, G. Effect of miR-21 and miR-30b/c on TRAIL-induced apoptosis in glioma cells. Oncogene, 2013, 32(34), 4001-4008.
[http://dx.doi.org/10.1038/onc.2012.410] [PMID: 22964638]
[44]
Bhome, R.; Goh, R.W.; Bullock, M.D. Exosomal microRNAs derived from colorectal cancer-associated fibroblasts: Role in driving cancer progression. Aging (Albany NY), 2017, 9(12), 2666-2694.
[http://dx.doi.org/10.18632/aging.101355] [PMID: 29283887]
[45]
Chen, X.; Ying, X.; Wang, X.; Wu, X.; Zhu, Q.; Wang, X. Exosomes derived from hypoxic epithelial ovarian cancer deliver microRNA-940 to induce macrophage M2 polarization. Oncol. Rep., 2017, 38(1), 522-528.
[http://dx.doi.org/10.3892/or.2017.5697] [PMID: 28586039]
[46]
Zhu, X.; Shen, H.; Yin, X.; Yang, M.; Wei, H.; Chen, Q.; Feng, F.; Liu, Y.; Xu, W.; Li, Y. Macrophages derived exosomes deliver miR-223 to epithelial ovarian cancer cells to elicit a chemoresistant phenotype. J. Exp. Clin. Cancer Res., 2019, 38(1), 81.
[http://dx.doi.org/10.1186/s13046-019-1095-1] [PMID: 30770776]
[47]
Xue, X.Y.; Liu, Y.X.; Wang, C.; Gu, X.J.; Xue, Z.Q.; Zang, X.L.; Ma, X.D.; Deng, H.; Liu, R.; Pan, L.; Liu, S.H. Identification of exosomal miRNAs as diagnostic biomarkers for cholangiocarcinoma and gallbladder carcinoma. Signal Transduct. Target. Ther., 2020, 5(1), 77.
[http://dx.doi.org/10.1038/s41392-020-0162-6] [PMID: 32527999]
[48]
Zhang, M.; Wang, X.; Li, W.; Cui, Y. miR-107 and miR-25 simultaneously target LATS2 and regulate proliferation and invasion of gastric adenocarcinoma (GAC) cells. Biochem. Biophys. Res. Commun., 2015, 460(3), 806-812.
[http://dx.doi.org/10.1016/j.bbrc.2015.03.110] [PMID: 25824045]
[49]
Song, Y.; Dou, H.; Li, X.; Zhao, X.; Li, Y.; Liu, D.; Ji, J.; Liu, F.; Ding, L.; Ni, Y.; Hou, Y. Exosomal miR-146a contributes to the enhanced therapeutic efficacy of interleukin-1β-primed mesenchymal stem cells against sepsis. Stem Cells, 2017, 35(5), 1208-1221.
[http://dx.doi.org/10.1002/stem.2564] [PMID: 28090688]
[50]
Okada, M.; Kim, H.W.; Matsu-ura, K.; Wang, Y.G.; Xu, M.; Ashraf, M. Abrogation of age-induced MicroRNA-195 rejuvenates the senescent mesenchymal stem cells by reactivating telomerase. Stem Cells, 2016, 34(1), 148-159.
[http://dx.doi.org/10.1002/stem.2211] [PMID: 26390028]
[51]
Baumgart, S.; Jeppesen, D.; Heinzelmann, J.; Stöckle, M.; Stampe Ostenfeld, M.; Junker, K. 228 Characterization of miRNA expression pattern from in-vitro obtained exosomes of different urinary bladder cancer cell lines. Eur. Urol. Suppl., 2015, 14(2), e228.
[http://dx.doi.org/10.1016/S1569-9056(15)60227-5]
[52]
Steinbichler, T.B.; Dudás, J.; Riechelmann, H.; Skvortsova, I-I. The role of exosomes in cancer metastasis. Semin. Cancer Biol., 2017, 44, 170-181.
[http://dx.doi.org/10.1016/j.semcancer.2017.02.006] [PMID: 28215970]
[53]
Chou, J.; Werb, Z. MicroRNAs play a big role in regulating ovarian cancer-associated fibroblasts and the tumor microenvironment. Cancer Discov., 2012, 2(12), 1078-1080.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0465] [PMID: 23230184]
[54]
Garofalo, M.; Leva, G.D.; Croce, C.M. MicroRNAs as anti-cancer therapy. Curr. Pharm. Des., 2014, 20(33), 5328-5335.
[http://dx.doi.org/10.2174/1381612820666140128211346] [PMID: 24479801]
[55]
Sun, L.P.; Xu, K.; Cui, J.; Yuan, D.Y.; Zou, B.; Li, J.; Liu, J.L.; Li, K.Y.; Meng, Z.; Zhang, B. Cancer associated fibroblast derived exosomal miR 382 5p promotes the migration and invasion of oral squamous cell carcinoma. Oncol. Rep., 2019, 42(4), 1319-1328.
[http://dx.doi.org/10.3892/or.2019.7255] [PMID: 31364748]
[56]
Wang, J-W.; Wu, X-F.; Gu, X-J.; Jiang, X-H. Exosomal miR-1228 from cancer-associated fibroblasts promotes cell migration and invasion of osteosarcoma by directly targeting SCAI. Oncol. Res., 2019, 27(9), 979-986.
[http://dx.doi.org/10.3727/096504018X15336368805108] [PMID: 30180920]
[57]
Xu, G.; Zhang, B.; Ye, J.; Cao, S.; Shi, J.; Zhao, Y.; Wang, Y.; Sang, J.; Yao, Y.; Guan, W.; Tao, J.; Feng, M.; Zhang, W. Exosomal miRNA-139 in cancer-associated fibroblasts inhibits gastric cancer progression by repressing MMP11 expression. Int. J. Biol. Sci., 2019, 15(11), 2320-2329.
[http://dx.doi.org/10.7150/ijbs.33750] [PMID: 31595150]
[58]
Zhang, L.; Zhang, S.; Yao, J.; Lowery, F.J.; Zhang, Q.; Huang, W.C.; Li, P.; Li, M.; Wang, X.; Zhang, C.; Wang, H.; Ellis, K.; Cheerathodi, M.; McCarty, J.H.; Palmieri, D.; Saunus, J.; Lakhani, S.; Huang, S.; Sahin, A.A.; Aldape, K.D.; Steeg, P.S.; Yu, D. Microenvironment-induced PTEN loss by exosomal microRNA primes brain metastasis outgrowth. Nature, 2015, 527(7576), 100-104.
[http://dx.doi.org/10.1038/nature15376] [PMID: 26479035]
[59]
Halvorsen, A.R.; Helland, Å.; Gromov, P.; Wielenga, V.T.; Talman, M.M.; Brunner, N.; Sandhu, V.; Børresen-Dale, A.L.; Gromova, I.; Haakensen, V.D. Profiling of microRNAs in tumor interstitial fluid of breast tumors - a novel resource to identify biomarkers for prognostic classification and detection of cancer. Mol. Oncol., 2017, 11(2), 220-234.
[http://dx.doi.org/10.1002/1878-0261.12025] [PMID: 28145100]
[60]
Hu, Y.; Yan, C.; Mu, L.; Huang, K.; Li, X.; Tao, D.; Wu, Y.; Qin, J. Fibroblast-derived exosomes contribute to chemoresistance through priming cancer stem cells in colorectal cancer. PLoS One, 2015, 10(5), e0125625.
[http://dx.doi.org/10.1371/journal.pone.0125625] [PMID: 25938772]
[61]
Au Yeung, C.L.; Co, N.N.; Tsuruga, T.; Yeung, T.L.; Kwan, S.Y.; Leung, C.S.; Li, Y.; Lu, E.S.; Kwan, K.; Wong, K.K.; Schmandt, R.; Lu, K.H.; Mok, S.C. Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1. Nat. Commun., 2016, 7(1), 11150.
[http://dx.doi.org/10.1038/ncomms11150] [PMID: 27021436]
[62]
Jiang, L.; Gu, Y.; Du, Y.; Liu, J. Exosomes: Diagnostic biomarkers and therapeutic delivery vehicles for cancer. Mol. Pharm., 2019, 16(8), 3333-3349.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00409] [PMID: 31241965]
[63]
Ren, J.; Ding, L.; Zhang, D.; Shi, G.; Xu, Q.; Shen, S.; Wang, Y.; Wang, T.; Hou, Y. Carcinoma-associated fibroblasts promote the stemness and chemoresistance of colorectal cancer by transferring exosomal lncRNA H19. Theranostics, 2018, 8(14), 3932-3948.
[http://dx.doi.org/10.7150/thno.25541] [PMID: 30083271]
[64]
Li, L.; Wang, Z.; Hu, X.; Wan, T.; Wu, H.; Jiang, W.; Hu, R. Human aortic smooth muscle cell-derived exosomal miR-221/222 inhibits autophagy via a PTEN/Akt signaling pathway in human umbilical vein endothelial cells. Biochem. Biophys. Res. Commun., 2016, 479(2), 343-350.
[http://dx.doi.org/10.1016/j.bbrc.2016.09.078] [PMID: 27644883]
[65]
Fan, Q.; Yang, L.; Zhang, X.; Peng, X.; Wei, S.; Su, D.; Zhai, Z.; Hua, X.; Li, H. The emerging role of exosome-derived non-coding RNAs in cancer biology. Cancer Lett., 2018, 414, 107-115.
[http://dx.doi.org/10.1016/j.canlet.2017.10.040] [PMID: 29107112]
[66]
Mostak, A.; Carrascosa, L.G.; Alain, W. An exosomal- and interfacial biosensing-based strategy for remote monitoring of aberrantly phosphorylated proteins in lung cancer cells. Biomater. Sci., 2018, 6.
[http://dx.doi.org/10.1039/.C1038BM00629F-]
[67]
Mao, L.; Li, J.; Chen, W.X.; Cai, Y.Q.; Yu, D.D.; Zhong, S.L.; Zhao, J.H.; Zhou, J.W.; Tang, J.H. Exosomes decrease sensitivity of breast cancer cells to adriamycin by delivering microRNAs. Tumour Biol., 2016, 37(4), 5247-5256.
[http://dx.doi.org/10.1007/s13277-015-4402-2] [PMID: 26555545]
[68]
Nouraee, N.; Khazaei, S.; Vasei, M.; Razavipour, S.F.; Sadeghizadeh, M.; Mowla, S.J. MicroRNAs contribution in tumor microenvironment of esophageal cancer. Cancer Biomark., 2016, 16(3), 367-376.
[http://dx.doi.org/10.3233/CBM-160575] [PMID: 26889983]
[69]
Ding, L.; Ren, J.; Zhang, D.; Li, Y.; Huang, X.; Hu, Q.; Wang, H.; Song, Y.; Ni, Y.; Hou, Y. A novel stromal lncRNA signature reprograms fibroblasts to promote the growth of oral squamous cell carcinoma via LncRNA-CAF/interleukin-33. Carcinogenesis, 2018, 39(3), 397-406.
[http://dx.doi.org/10.1093/carcin/bgy006] [PMID: 29346528]
[70]
Webber, J.; Yeung, V.; Clayton, A. Extracellular vesicles as modulators of the cancer microenvironment. Semin. Cell Dev. Biol., 2015, 40, 27-34.
[http://dx.doi.org/10.1016/j.semcdb.2015.01.013] [PMID: 25662446]
[71]
Alguacil-Núñez, C.; Ferrer-Ortiz, I.; García-Verdú, E.; López-Pirez, P.; Llorente-Cortijo, I.M.; Sainz, Jr, B. Current perspectives on the crosstalk between lung cancer stem cells and cancer-associated fibroblasts. Crit. Rev. Oncol. Hematol., 2018, 125, 102-110.
[http://dx.doi.org/10.1016/j.critrevonc.2018.02.015] [PMID: 29650269]
[72]
Heneberg, P. Paracrine tumor signaling induces transdifferentiation of surrounding fibroblasts. Crit. Rev. Oncol. Hematol., 2016, 97, 303-311.
[http://dx.doi.org/10.1016/j.critrevonc.2015.09.008]
[73]
Ostrowski, M.; Carmo, N.B.; Krumeich, S. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nature Cell Biol., 2010, 12, 19-30.
[http://dx.doi.org/10.1038/ncb2000]
[74]
Chen, Y.; Zeng, C.; Zhan, Y.; Wang, H.; Jiang, X.; Li, W. Aberrant low expression of p85α in stromal fibroblasts promotes breast cancer cell metastasis through exosome-mediated paracrine Wnt10b. Oncogene, 2017, 36(33), 4692-4705.
[http://dx.doi.org/10.1038/onc.2017.100]
[75]
Hu, Y-B.; Yan, C.; Mu, L.; Mi, Y-L.; Zhao, H.; Hu, H.; Li, X-L.; Tao, D-D.; Wu, Y-Q.; Gong, J-P.; Qin, J-C. Exosomal Wnt-induced dedifferentiation of colorectal cancer cells contributes to chemotherapy resistance. Oncogene, 2019, 38(11), 1951-1965.
[http://dx.doi.org/10.1038/s41388-018-0557-9] [PMID: 30390075]
[76]
Sharma, S.; Alharbi, M.; Kobayashi, M.; Lai, A.; Guanzon, D.; Zuñiga, F.; Ormazabal, V.; Palma, C.; Scholz-Romero, K.; Rice, G.E.; Hooper, J.D.; Salomon, C. Proteomic analysis of exosomes reveals an association between cell invasiveness and exosomal bioactivity on endothelial and mesenchymal cell migration in vitro. Clin. Sci. (Lond.), 2018, 132(18), 2029-2044.
[http://dx.doi.org/10.1042/CS20180425] [PMID: 30219799]
[77]
Nakamura, K.; Sawada, K.; Kinose, Y.; Yoshimura, A.; Toda, A.; Nakatsuka, E.; Hashimoto, K.; Mabuchi, S.; Morishige, K-I.; Kurachi, H.; Lengyel, E.; Kimura, T. Exosomes promote ovarian cancer Cell invasion through transfer of CD44 to peritoneal mesothelial cells. Mol. Cancer Res., 2017, 15(1), 78-92.
[http://dx.doi.org/10.1158/1541-7786.MCR-16-0191] [PMID: 27758876]
[78]
Enriquez, V.A.; Cleys, E.R.; Da Silveira, J.C.; Spillman, M.A.; Winger, Q.A.; Bouma, G.J. High LIN28A expressing ovarian cancer cells secrete exosomes that induce invasion and migration in HEK293 cells. BioMed Res. Int., 2015, 2015, 701390.
[http://dx.doi.org/10.1155/2015/701390] [PMID: 26583126]
[79]
Yi, H.; Ye, J.; Yang, X.M.; Zhang, L.W.; Zhang, Z.G.; Chen, Y.P. High-grade ovarian cancer secreting effective exosomes in tumor angiogenesis. Int. J. Clin. Exp. Pathol., 2015, 8(5), 5062-5070.
[PMID: 26191200]
[80]
Zhao, L.; Liu, W.; Xiao, J.; Cao, B. The role of exosomes and “exosomal shuttle microRNA” in tumorigenesis and drug resistance. Cancer Lett., 2015, 356(2 Pt B), 339-346.
[http://dx.doi.org/10.1016/j.canlet.2014.10.027] [PMID: 25449429]
[81]
Masoumi-Dehghi, S.; Babashah, S.; Sadeghizadeh, M. microRNA-141-3p-containing small extracellular vesicles derived from epithelial ovarian cancer cells promote endothelial cell angiogenesis through activating the JAK/STAT3 and NF-κB signaling pathways. J. Cell Commun. Signal., 2020, 14(2), 233-244.
[http://dx.doi.org/10.1007/s12079-020-00548-5] [PMID: 32034654]
[82]
Wu, H-J.; Hao, M.; Yeo, S.K.; Guan, J-L. FAK signaling in cancer-associated fibroblasts promotes breast cancer cell migration and metastasis by exosomal miRNAs-mediated intercellular communication. Oncogene, 2020, 39(12), 2539-2549.
[http://dx.doi.org/10.1038/s41388-020-1162-2] [PMID: 31988451]
[83]
Li, Y-Y.; Xu, Q-W.; Xu, P-Y.; Li, W-M. MSC-derived exosomal miR-34a/c-5p and miR-29b-3p improve intestinal barrier function by targeting the Snail/Claudins signaling pathway. Life Sci., 2020, 257, 118017.
[http://dx.doi.org/10.1016/j.lfs.2020.118017] [PMID: 32603821]
[84]
Goulet, C.R.; Bernard, G.; Tremblay, S.; Chabaud, S.; Bolduc, S.; Pouliot, F. Exosomes induce fibroblast differentiation into cancer-associated fibroblasts through TGFβ signaling. Mol. Cancer Res., 2018, 16(7), 1196-1204.
[http://dx.doi.org/10.1158/1541-7786.MCR-17-0784] [PMID: 29636362]
[85]
Wang, X.; Zhou, Q.; Yu, Z.; Wu, X.; Chen, X.; Li, J.; Li, C.; Yan, M.; Zhu, Z.; Liu, B.; Su, L. Cancer-associated fibroblast-derived Lumican promotes gastric cancer progression via the integrin β1-FAK signaling pathway. Int. J. Cancer, 2017, 141(5), 998-1010.
[http://dx.doi.org/10.1002/ijc.30801]
[86]
Fukui, H.; Zhang, X.; Sun, C.; Hara, K.; Kikuchi, S.; Yamasaki, T.; Kondo, T.; Tomita, T.; Oshima, T.; Watari, J.; Imura, J.; Fujimori, T.; Sasako, M.; Miwa, H. IL-22 produced by cancer-associated fibroblasts promotes gastric cancer cell invasion via STAT3 and ERK signaling. Br. J. Cancer, 2014, 111(4), 763-771.
[http://dx.doi.org/10.1038/bjc.2014.336] [PMID: 24937671]
[87]
Yan, B.; Liu, Q.; Liu, G.; Huang, X.; Zhu, G.; Gao, L.; Xu, Y. Macrophage-derived exosomes mediate osteosarcoma cell behavior by activating AKT signaling. RSC Advances, 2020, 10(9), 10.
[http://dx.doi.org/10.1039/C9RA07332A]
[88]
Lee, S.H.; Oh, H.J.; Kim, M.J.; Lee, B.C. Exosomes derived from oviduct cells mediate the EGFR/MAPK signaling pathway in cumulus cells. J. Cell. Physiol., 2020, 235(2), 1386-1404.
[http://dx.doi.org/10.1002/jcp.29058] [PMID: 31338842]
[89]
Blackwell, R.H.; Foreman, K.E.; Gupta, G.N. The role of cancer-derived exosomes in tumorigenicity & epithelial-to-mesenchymal transition. Cancers (Basel), 2017, 9(8), 105.
[http://dx.doi.org/10.3390/cancers9080105] [PMID: 28796150]
[90]
Yeon, J.H.; Jeong, H.E.; Seo, H.; Cho, S.; Kim, K.; Na, D.; Chung, S.; Park, J.; Choi, N.; Kang, J.Y. Cancer-derived exosomes trigger endothelial to mesenchymal transition followed by the induction of cancer-associated fibroblasts. Acta Biomaterialia, 2018, 76, 146-153.
[http://dx.doi.org/10.1016/j.actbio.2018.07.001]
[91]
Webber, J.; Steadman, R.; Mason, M.D.; Tabi, Z.; Clayton, A. Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res., 2010, 70(23), 9621-9630.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1722] [PMID: 21098712]
[92]
Ohnishi, S.; Sumiyoshi, H.; Kitamura, S.; Nagaya, N. Mesenchymal stem cells attenuate cardiac fibroblast proliferation and collagen synthesis through paracrine actions. FEBS Lett., 2007, 581(21), 3961-3966.
[http://dx.doi.org/10.1016/j.febslet.2007.07.028] [PMID: 17662720]
[93]
Peinado, H.; Zhang, H.; Matei, I.R.; Costa-Silva, B.; Hoshino, A.; Rodrigues, G.; Psaila, B.; Kaplan, R.N.; Bromberg, J.F.; Kang, Y.; Bissell, M.J.; Cox, T.R.; Giaccia, A.J.; Erler, J.T.; Hiratsuka, S.; Ghajar, C.M.; Lyden, D. Pre-metastatic niches: Organ-specific homes for metastases. Nat. Rev. Cancer, 2017, 17(5), 302-317.
[http://dx.doi.org/10.1038/nrc.2017.6] [PMID: 28303905]
[94]
Li, W.; Zhang, X.; Wang, J.; Li, M.; Cao, C.; Tan, J.; Ma, D.; Gao, Q. TGFβ1 in fibroblasts-derived exosomes promotes epithelial-mesenchymal transition of ovarian cancer cells. Oncotarget, 2017, 8(56), 96035-96047.
[http://dx.doi.org/10.18632/oncotarget.21635] [PMID: 29221185]
[95]
Wu, X.; Gao, Y.; Xu, L.; Dang, W.; Yan, H.; Zou, D.; Zhu, Z.; Luo, L.; Tian, N.; Wang, X.; Tong, Y.; Han, Z. Exosomes from high glucose-treated glomerular endothelial cells trigger the epithelial-mesenchymal transition and dysfunction of podocytes. Sci. Rep., 2017, 7(1), 9371.
[http://dx.doi.org/10.1038/s41598-017-09907-6] [PMID: 28839221]
[96]
Fan, B.; Li, C.; Szalad, A.; Wang, L.; Pan, W.; Zhang, R.; Chopp, M.; Zhang, Z.G.; Liu, X.S. Mesenchymal stromal cell-derived exosomes ameliorate peripheral neuropathy in a mouse model of diabetes. Diabetologia, 2020, 63(2), 431-443.
[http://dx.doi.org/10.1007/s00125-019-05043-0] [PMID: 31740984]
[97]
Tan, S.; Xia, L.; Yi, P.; Han, Y.; Tang, L.; Pan, Q.; Tian, Y.; Rao, S.; Oyang, L.; Liang, J.; Lin, J.; Su, M.; Shi, Y.; Cao, D.; Zhou, Y.; Liao, Q. Exosomal miRNAs in tumor microenvironment. J. Exp. Clin. Cancer Res., 2020, 39, 67.
[http://dx.doi.org/10.1186/s13046-020-01570-6]
[98]
Sohel, M.M.H. Circulating microRNAs as biomarkers in cancer diagnosis. Life Sci., 2020, 248, 117473.
[http://dx.doi.org/10.1016/j.lfs.2020.117473] [PMID: 32114007]
[99]
Khalyfa, A.; Gozal, D. Exosomal miRNAs as potential biomarkers of cardiovascular risk in children. J. Transl. Med., 2014, 12, 162.
[http://dx.doi.org/10.1186/1479-5876-12-162] [PMID: 24912806]
[100]
Hessvik, N.P.; Sandvig, K.; Llorente, A. Exosomal miRNAs as biomarkers for prostate cancer. Front. Genet., 2013, 4, 36.
[http://dx.doi.org/10.3389/fgene.2013.00036] [PMID: 23519132]
[101]
Munagala, R.; Aqil, F.; Gupta, R.C. Exosomal miRNAs as biomarkers of recurrent lung cancer. Tumour Biol., 2016, 37(8), 10703-10714.
[http://dx.doi.org/10.1007/s13277-016-4939-8] [PMID: 26867772]
[102]
Giau, V.V.; An, S.S.A. Emergence of exosomal miRNAs as a diagnostic biomarker for Alzheimer’s disease. J. Neurol. Sci., 2016, 360, 141-152.
[http://dx.doi.org/10.1016/j.jns.2015.12.005] [PMID: 26723991]
[103]
Ogata-Kawata, H.; Izumiya, M.; Kurioka, D.; Honma, Y.; Yamada, Y.; Furuta, K.; Gunji, T.; Ohta, H.; Okamoto, H.; Sonoda, H.; Watanabe, M.; Nakagama, H.; Yokota, J.; Kohno, T.; Tsuchiya, N. Circulating exosomal microRNAs as biomarkers of colon cancer. PLoS One, 2014, 9(4), e92921.
[http://dx.doi.org/10.1371/journal.pone.0092921] [PMID: 24705249]
[104]
Matsumura, T.; Sugimachi, K.; Iinuma, H.; Takahashi, Y.; Kurashige, J.; Sawada, G.; Ueda, M.; Uchi, R.; Ueo, H.; Takano, Y.; Shinden, Y.; Eguchi, H.; Yamamoto, H.; Doki, Y.; Mori, M.; Ochiya, T.; Mimori, K. Exosomal microRNA in serum is a novel biomarker of recurrence in human colorectal cancer. Br. J. Cancer, 2015, 113(2), 275-281.
[http://dx.doi.org/10.1038/bjc.2015.201] [PMID: 26057451]
[105]
Liao, B.; Zhou, M.X.; Zhou, F.K.; Luo, X.M.; Zhong, S.X.; Zhou, Y.F.; Qin, Y.S.; Li, P.P.; Qin, C. Exosome-derived MiRNAs as biomarkers of the development and progression of intracranial aneurysms. J. Atheroscler. Thromb., 2020, 27(6), 545-610.
[http://dx.doi.org/10.5551/jat.51102] [PMID: 31597886]
[106]
Hosseini, M.; Khatamianfar, S.; Hassanian, S.M.; Nedaeinia, R.; Shafiee, M.; Maftouh, M.; Ghayour-Mobarhan, M.; ShahidSales, S.; Avan, A. Exosome-encapsulated microRNAs as potential circulating biomarkers in colon cancer. Curr. Pharm. Des., 2017, 23(11), 1705-1709.
[http://dx.doi.org/10.2174/1381612822666161201144634] [PMID: 27908272]
[107]
Xie, C.; Jin, X.; Fei, Z.; Su, H.; Zhao, L. Evaluation of exosomal miRNAs from plasma as potential biomarkers for non-small-cell lung cancer. J. Clin. Oncol., 2016, 34(15)(suppl.), e20004-e20004.
[http://dx.doi.org/10.1200/JCO.2016.34.15_suppl.e20004]
[108]
Li, D.B.; Liu, J.L.; Wang, W.; Li, R.Y.; Yu, D.J.; Lan, X.Y.; Li, J.P. Plasma Exosomal miR-422a and miR-125b-2-3p Serve as Biomarkers for Ischemic Stroke. Curr. Neurovasc. Res., 2017, 14(4), 330-337.
[http://dx.doi.org/10.2174/1567202614666171005153434] [PMID: 28982331]
[109]
Zhang, W.; Ni, M.; Su, Y.; Wang, H.; Zhu, S.; Zhao, A.; Li, G. MicroRNAs in serum exosomes as potential biomarkers in clear-cell renal cell carcinoma. Eur. Urol. Focus, 2018, 4(3), 412-419.
[http://dx.doi.org/10.1016/j.euf.2016.09.007] [PMID: 28753793]
[110]
Wei, C.; Li, Y.; Huang, K.; Li, G.; He, M. Exosomal miR-1246 in body fluids is a potential biomarker for gastrointestinal cancer. Biomark Med., 2018, 12(10), 1185-1196.
[http://dx.doi.org/10.2217/bmm-2017-0440] [PMID: 30235938]
[111]
Yao, Y.F.; Qu, M.W.; Li, G.C.; Zhang, F.B.; Rui, H.C. Circulating exosomal miRNAs as diagnostic biomarkers in Parkinson’s disease. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(16), 5278-5283.
[PMID: 30178852]
[112]
Mu, H.; Zhang, S.; Yao, Z.; Liu, Y.; Lin, K.; Zhao, Z.; Zhu, Y. The diagnostic and prognostic value of exosome-derived long non-coding RNAs in cancer patients: A meta-analysis. Clin. Exp. Med., 2020, 20(3), 339-348.
[http://dx.doi.org/10.1007/s10238-020-00638-z] [PMID: 32504320]
[113]
Zhang, P.; Zhou, H.; Lu, K.; Lu, Y.; Wang, Y.; Feng, T. Exosome-mediated delivery of MALAT1 induces cell proliferation in breast cancer. OncoTargets Ther., 2018, 11, 291-299.
[http://dx.doi.org/10.2147/OTT.S155134] [PMID: 29386907]
[114]
Guay, C.; Regazzi, R. Exosomes as new players in metabolic organ cross-talk. Diabetes Obes. Metab., 2017, 19(Suppl. 1), 137-146.
[http://dx.doi.org/10.1111/dom.13027] [PMID: 28880477]
[115]
Nakayama, A. Comprehensive analysis of urinary proteins for identification of renal disease markers. Rinsho Byori, 2014, 62(7), 722-726.
[PMID: 25669044]
[116]
Melo, S.A.; Luecke, L.B.; Kahlert, C.; Fernandez, A.F.; Gammon, S.T.; Kaye, J.; LeBleu, V.S.; Mittendorf, E.A.; Weitz, J.; Rahbari, N.; Reissfelder, C.; Pilarsky, C.; Fraga, M.F.; Piwnica-Worms, D.; Kalluri, R. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature, 2015, 523(7559), 177-182.
[http://dx.doi.org/10.1038/nature14581] [PMID: 26106858]
[117]
Kimura, H.; Yamamoto, H.; Harada, T.; Fumoto, K.; Osugi, Y.; Sada, R.; Maehara, N.; Hikita, H.; Mori, S.; Eguchi, H.; Ikawa, M.; Takehara, T.; Kikuchi, A. CKAP4, a DKK1 receptor, is a biomarker in exosomes derived from pancreatic cancer and a molecular target for therapy. Clin. Cancer Res., 2019, 25(6), 1936-1947.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-2124] [PMID: 30610103]
[118]
Sandfeld-Paulsen, B.; Aggerholm-Pedersen, N.; Bæk, R.; Jakobsen, K.R.; Meldgaard, P.; Folkersen, B.H.; Rasmussen, T.R.; Varming, K.; Jørgensen, M.M.; Sorensen, B.S. Exosomal proteins as prognostic biomarkers in non-small cell lung cancer. Mol. Oncol., 2016, 10(10), 1595-1602.
[http://dx.doi.org/10.1016/j.molonc.2016.10.003] [PMID: 27856179]
[119]
Jakobsen, K.R.; Paulsen, B.S.; Bæk, R.; Varming, K.; Sorensen, B.S.; Jørgensen, M.M. Exosomal proteins as potential diagnostic markers in advanced non-small cell lung carcinoma. J. Extracell. Vesicles, 2015, 4(1), 26659.
[http://dx.doi.org/10.3402/jev.v4.26659] [PMID: 25735706]
[120]
Chen, I.H.; Xue, L.; Hsu, C.C.; Paez, J.S.; Pan, L.; Andaluz, H.; Wendt, M.K.; Iliuk, A.B.; Zhu, J.K.; Tao, W.A. Phosphoproteins in extracellular vesicles as candidate markers for breast cancer. Proc. Natl. Acad. Sci. USA, 2017, 114(12), 3175-3180.
[http://dx.doi.org/10.1073/pnas.1618088114] [PMID: 28270605]
[121]
Sok Hwee Cheow, E.; Hwan Sim, K.; de Kleijn, D.; Neng Lee, C.; Sorokin, V.; Sze, S.K. Simultaneous enrichment of plasma soluble and extracellular vesicular glycoproteins using prolonged ultracentrifugation-electrostatic repulsion-hydrophilic interaction chromatography (PUC-ERLIC) approach. Mol. Cell. Proteomics, 2015, 14(6), 1657-1671.
[http://dx.doi.org/10.1074/mcp.O114.046391] [PMID: 25862729]
[122]
Chen, I.H.; Aguilar, H.A.; Paez Paez, J.S.; Wu, X.; Pan, L.; Wendt, M.K.; Iliuk, A.B.; Zhang, Y.; Tao, W.A. Analytical pipeline for discovery and verification of glycoproteins from plasma-derived extracellular vesicles as breast cancer biomarkers. Anal. Chem., 2018, 90(10), 6307-6313.
[http://dx.doi.org/10.1021/acs.analchem.8b01090] [PMID: 29629753]
[123]
Costa, J. Glycoconjugates from extracellular vesicles: Structures, functions and emerging potential as cancer biomarkers. Biochim. Biophys. Acta Rev. Cancer, 2017, 1868(1), 157-166.
[http://dx.doi.org/10.1016/j.bbcan.2017.03.007] [PMID: 28347750]
[124]
Llorente, A.; Skotland, T.; Sylvänne, T.; Kauhanen, D.; Róg, T.; Orłowski, A.; Vattulainen, I.; Ekroos, K.; Sandvig, K. Molecular lipidomics of exosomes released by PC-3 prostate cancer cells. Biochim. Biophys. Acta, 2013, 1831(7), 1302-1309.
[http://dx.doi.org/10.1016/j.bbalip.2013.04.011] [PMID: 24046871]
[125]
Fernandis, A.Z.; Wenk, M.R. Lipid-based biomarkers for cancer. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2009, 877(26), 2830-2835.
[http://dx.doi.org/10.1016/j.jchromb.2009.06.015] [PMID: 19570730]
[126]
Min, H.K.; Lim, S.; Chung, B.C.; Moon, M.H. Shotgun lipidomics for candidate biomarkers of urinary phospholipids in prostate cancer. Anal. Bioanal. Chem., 2011, 399(2), 823-830.
[http://dx.doi.org/10.1007/s00216-010-4290-7] [PMID: 20953865]
[127]
Skotland, T.; Ekroos, K.; Kauhanen, D.; Simolin, H.; Seierstad, T.; Berge, V.; Sandvig, K.; Llorente, A. Molecular lipid species in urinary exosomes as potential prostate cancer biomarkers. Eur. J. Cancer, 2017, 70, 122-132.
[http://dx.doi.org/10.1016/j.ejca.2016.10.011] [PMID: 27914242]
[128]
Arrighetti, N.; Corbo, C.; Evangelopoulos, M.; Pastò, A.; Zuco, V.; Tasciotti, E. Exosome-like nanovectors for drug delivery in cancer. Curr. Med. Chem., 2019, 26(33), 6132-6148.
[http://dx.doi.org/10.2174/0929867325666180831150259] [PMID: 30182846]
[129]
Mehryab, F.; Rabbani, S.; Shahhosseini, S.; Shekari, F.; Fatahi, Y.; Baharvand, H.; Haeri, A. Exosomes as a next-generation drug delivery system: An update on drug loading approaches, characterization, and clinical application challenges. Acta Biomater., 2020, 113, 42-62.
[http://dx.doi.org/10.1016/j.actbio.2020.06.036] [PMID: 32622055]
[130]
van der Meel, R.; Fens, M.H A M.; Vader, P.; van Solinge, W.W.; Eniola-Adefeso, O.; Schiffelers, R.M. Extracellular vesicles as drug delivery systems: Lessons from the liposome field. J. Control. Release, 2014, 195, 72-85.
[http://dx.doi.org/10.1016/j.jconrel.2014.07.049] [PMID: 25094032]
[131]
Antimisiaris, S.G.; Mourtas, S.; Marazioti, A. Exosomes and exosome-inspired vesicles for targeted drug delivery. Pharmaceutics, 2018, 10(4), 10.
[http://dx.doi.org/10.3390/pharmaceutics10040218] [PMID: 30404188]
[132]
Zheng, Y.; Hasan, A.; Nejadi Babadaei, M.M.; Behzadi, E.; Nouri, M.; Sharifi, M.; Falahati, M. Exosomes: Multiple-targeted multifunctional biological nanoparticles in the diagnosis, drug delivery, and imaging of cancer cells. Biomed. Pharmacother., 2020, 129, 110442.
[http://dx.doi.org/10.1016/j.biopha.2020.110442] [PMID: 32593129]
[133]
Zheng, H.; Zhan, Y.; Liu, S.; Lu, J.; Luo, J.; Feng, J.; Fan, S. The roles of tumor-derived exosomes in non-small cell lung cancer and their clinical implications. J. Exp. Clin. Cancer Res., 2018, 37(1), 226.
[http://dx.doi.org/10.1186/s13046-018-0901-5] [PMID: 30217217]
[134]
Munagala, R.; Aqil, F.; Jeyabalan, J.; Agrawal, A.K.; Mudd, A.M.; Kyakulaga, A.H.; Singh, I.P.; Vadhanam, M.V.; Gupta, R.C. Exosomal formulation of anthocyanidins against multiple cancer types. Cancer Lett., 2017, 393, 94-102.
[http://dx.doi.org/10.1016/j.canlet.2017.02.004] [PMID: 28202351]
[135]
Morishita, M.; Takahashi, Y.; Nishikawa, M.; Ariizumi, R.; Takakura, Y. Enhanced class I tumor antigen presentation via cytosolic delivery of exosomal cargos by tumor-cell-derived exosomes displaying a pH-sensitive fusogenic peptide. Mol. Pharm., 2017, 14(11), 4079-4086.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00760] [PMID: 28977747]
[136]
Aqil, F.; Munagala, R.; Jeyabalan, J.; Agrawal, A.K.; Gupta, R. Exosomes for the enhanced tissue bioavailability and efficacy of curcumin. AAPS J., 2017, 19(6), 1691-1702.
[http://dx.doi.org/10.1208/s12248-017-0154-9] [PMID: 29047044]
[137]
Fuhrmann, G.; Serio, A.; Mazo, M.; Nair, R.; Stevens, M.M. Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins. J. Control. Release, 2015, 205, 35-44.
[http://dx.doi.org/10.1016/j.jconrel.2014.11.029] [PMID: 25483424]
[138]
Jang, S.C.; Kim, O.Y.; Yoon, C.M.; Choi, D.S.; Roh, T.Y.; Park, J.; Nilsson, J.; Lötvall, J.; Kim, Y.K.; Gho, Y.S. Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano, 2013, 7(9), 7698-7710.
[http://dx.doi.org/10.1021/nn402232g] [PMID: 24004438]
[139]
Bruno, S.; Collino, F.; Iavello, A. Effects of mesenchymal stromal cell-derived extracellular vesicles on tumor growth. Front. Immunol., 2014, 5, 382.
[http://dx.doi.org/10.3389/fimmu.2014.00382]
[140]
Vashisht, M.; Rani, P.; Onteru, S.K.; Singh, D. Curcumin encapsulated in milk exosomes resists human digestion and possesses enhanced intestinal permeability in vitro. Appl. Biochem. Biotechnol., 2017, 183(3), 993-1007.
[http://dx.doi.org/10.1007/s12010-017-2478-4] [PMID: 28466459]
[141]
Munagala, R.; Aqil, F.; Jeyabalan, J.; Gupta, R.C. Bovine milk-derived exosomes for drug delivery. Cancer Lett., 2016, 371(1), 48-61.
[http://dx.doi.org/10.1016/j.canlet.2015.10.020] [PMID: 26604130]
[142]
Agrawal, A.K.; Aqil, F.; Jeyabalan, J.; Spencer, W.A.; Beck, J.; Gachuki, B.W.; Alhakeem, S.S.; Oben, K.; Munagala, R.; Bondada, S.; Gupta, R.C. Milk-derived exosomes for oral delivery of paclitaxel. Nanomedicine, 2017, 13(5), 1627-1636.
[http://dx.doi.org/10.1016/j.nano.2017.03.001] [PMID: 28300659]
[143]
Aqil, F.; Kausar, H.; Agrawal, A.K.; Jeyabalan, J.; Kyakulaga, A.H.; Munagala, R.; Gupta, R. Exosomal formulation enhances therapeutic response of celastrol against lung cancer. Exp. Mol. Pathol., 2016, 101(1), 12-21.
[http://dx.doi.org/10.1016/j.yexmp.2016.05.013] [PMID: 27235383]
[144]
Chen, T.; Xi, Q.Y.; Ye, R.S.; Cheng, X.; Qi, Q.E.; Wang, S.B.; Shu, G.; Wang, L.N.; Zhu, X.T.; Jiang, Q.Y.; Zhang, Y.L. Exploration of microRNAs in porcine milk exosomes. BMC Genomics, 2014, 15(1), 100.
[http://dx.doi.org/10.1186/1471-2164-15-100] [PMID: 24499489]
[145]
Ratliff, T.L. TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. J. Urol., 2004, 172(2), 809.
[http://dx.doi.org/10.1016/S0022-5347(05)61795-8]
[146]
Liu, J.; Chen, S.; Wang, W.; Ning, B.F.; Chen, F.; Shen, W.; Ding, J.; Chen, W.; Xie, W.F.; Zhang, X. Cancer-associated fibroblasts promote hepatocellular carcinoma metastasis through chemokine-activated hedgehog and TGF-β pathways. Cancer Lett., 2016, 379(1), 49-59.
[http://dx.doi.org/10.1016/j.canlet.2016.05.022] [PMID: 27216982]
[147]
Yoon, N.; Park, M.S.; Shigemoto, T.; Peltier, G.; Lee, R.H. Activated human mesenchymal stem|[sol]|stromal cells suppress metastatic features of MDA-MB-231 cells by secreting IFN-|. Cell Death Dis., 2016, 7(4), e2191. [beta]
[http://dx.doi.org/10.1038/cddis.2016.90]
[148]
Gomari, H.; Forouzandeh Moghadam, M.; Soleimani, M. Targeted cancer therapy using engineered exosome as a natural drug delivery vehicle. OncoTargets Ther., 2018, 11, 5753-5762.
[http://dx.doi.org/10.2147/OTT.S173110] [PMID: 30254468]
[149]
Gang, J.; Yong, H.; Yanli, A.; Ding, Y.; He, C.; Wang, X.; Tang, Q. NRP-1 targeted and cargo-loaded exosomes facilitate simultaneous imaging and therapy of glioma in vitro and in vivo. Biomaterials, 2018, 178, 302-316.
[http://dx.doi.org/10.1016/j.biomaterials.2018.06.029] [PMID: 29982104]
[150]
Jung, K.O.; Jo, H.; Yu, J.H.; Gambhir, S.S.; Pratx, G. Development and MPI tracking of novel hypoxia-targeted theranostic exosomes. Biomaterials, 2018, 177, 139-148.
[http://dx.doi.org/10.1016/j.biomaterials.2018.05.048] [PMID: 29890363]
[151]
Kim, M.S.; Haney, M.J.; Zhao, Y.; Mahajan, V.; Deygen, I.; Klyachko, N.L.; Inskoe, E.; Piroyan, A.; Sokolsky, M.; Okolie, O.; Hingtgen, S.D.; Kabanov, A.V.; Batrakova, E.V. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine, 2016, 12(3), 655-664.
[http://dx.doi.org/10.1016/j.nano.2015.10.012] [PMID: 26586551]
[152]
Kalimuthu, S.; Gangadaran, P.; Rajendran, R.L.; Zhu, L.; Oh, J.M.; Lee, H.W.; Gopal, A.; Baek, S.H.; Jeong, S.Y.; Lee, S.W.; Lee, J.; Ahn, B.C. A new approach for loading anticancer drugs into mesenchymal stem cell-derived exosome mimetics for cancer therapy. Front. Pharmacol., 2018, 9, 1116.
[http://dx.doi.org/10.3389/fphar.2018.01116] [PMID: 30319428]
[153]
Kalani, A.; Chaturvedi, P.; Kamat, P.K.; Maldonado, C.; Bauer, P.; Joshua, I.G.; Tyagi, S.C.; Tyagi, N. Curcumin-loaded embryonic stem cell exosomes restored neurovascular unit following ischemia-reperfusion injury. Int. J. Biochem. Cell Biol., 2016, 79, 360-369.
[http://dx.doi.org/10.1016/j.biocel.2016.09.002] [PMID: 27594413]
[154]
Gao, J.; Wang, S.; Wang, Z. High yield, scalable and remotely drug-loaded neutrophil-derived extracellular vesicles (EVs) for anti-inflammation therapy. Biomaterials, 2017, 135, 62-73.
[http://dx.doi.org/10.1016/j.biomaterials.2017.05.003] [PMID: 28494264]
[155]
Paggetti, J.; Haderk, F.; Seiffert, M.; Janji, B.; Distler, U.; Ammerlaan, W.; Kim, Y.J.; Adam, J.; Lichter, P.; Solary, E.; Berchem, G.; Moussay, E. Exosomes released by chronic lymphocytic leukemia cells induce the transition of stromal cells into cancer-associated fibroblasts. Blood, 2015, 126(9), 1106-1117.
[http://dx.doi.org/10.1182/blood-2014-12-618025] [PMID: 26100252]
[156]
Koch, R.; Aung, T.; Vogel, D.; Chapuy, B.; Wenzel, D.; Becker, S.; Sinzig, U.; Venkataramani, V.; von Mach, T.; Jacob, R.; Truemper, L.; Wulf, G.G. Nuclear trapping through inhibition of exosomal export by indomethacin increases cytostatic efficacy of doxorubicin and pixantrone. Clin. Cancer Res., 2016, 22(2), 395-404.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0577] [PMID: 26369630]
[157]
Raimondo, S.; Naselli, F.; Fontana, S.; Monteleone, F.; Dico, A.L.; Saieva, L.; Zito, G.; Flugy, A.; Manno, M.; Di Bella, M.A.; De Leo, G.; Alessandro, R. Citrus limon-derived nanovesicles inhibit cancer cell proliferation and suppress CML xenograft growth by inducing TRAIL-mediated cell death. Oncotarget, 2015, 6(23), 19514-19527.
[http://dx.doi.org/10.18632/oncotarget.4004] [PMID: 26098775]
[158]
Boyiadzis, M.; Whiteside, T.L. The emerging roles of tumor-derived exosomes in hematological malignancies. Leukemia, 2017, 31(6), 1259-1268.
[http://dx.doi.org/10.1038/leu.2017.91] [PMID: 28321122]
[159]
Webber, J.P.; Spary, L.K.; Sanders, A.J.; Chowdhury, R.; Jiang, W.G.; Steadman, R.; Wymant, J.; Jones, A.T.; Kynaston, H.; Mason, M.D.; Tabi, Z.; Clayton, A. Differentiation of tumour-promoting stromal myofibroblasts by cancer exosomes. Oncogene, 2015, 34(3), 290-302.
[http://dx.doi.org/10.1038/onc.2013.560] [PMID: 24441045]
[160]
Eichmüller, S.B.; Osen, W.; Mandelboim, O.; Seliger, B. Immune modulatory microRNAs involved in tumor attack and tumor immune escape. J. Natl. Cancer Inst., 2017, 109(10)
[http://dx.doi.org/10.1093/jnci/djx034] [PMID: 28383653]