Combinatorial Chemistry & High Throughput Screening

Author(s): Xinhong Wang, Yanhong Mi, Xiaoyu Xiong and Zhongkun Bao*

DOI: 10.2174/1386207325666220705115007

The Protective Effect of Sulforaphane on ER-induced Apoptosis and Inflammation in Necrotizing Enterocolitis Mice

Page: [1186 - 1195] Pages: 10

  • * (Excluding Mailing and Handling)

Abstract

Background: Necrotizing enterocolitis (NEC) is a neonatal intestinal necrotizing disease caused by various factors in newborns. Sulforaphane (SFN) has a strong anti-inflammatory ability and a certain protective effect on intestinal diseases.

Objective: NEC is a common developed gastrointestinal exigency in an untimely baby. SFN is a naturally originated isothiocyanate that has beneficial effects on the intestinal system.The purpose of this study is to study the protective effect of SFN on endoplasmic reticulum stress (ERS)-related NEC.

Methods: The newborn mice were randomly divided into control (n = 15), NEC (n = 20), and NEC+SFN (n = 18) groups. Mice in NEC and SFN+NEC groups were injected with 0.1 μl normal saline or 20 mg/kg/d SFN, respectively. After that, the weight and survival of the mice were recorded every day. Then the mice were sacrificed after 96 h of modeling; ileum tissue and blood samples were collected for qPCR, Western blot, ELISA, HE staining, TUNEL staining, and immunohistochemistry assays.

Results: SFN significantly inhibited the mRNA expression of BIP, CHOP, IL-1β and IL-6, and protein expression of Bax, Caspase-3, Caspase-9 and CHOP, and promoted the expression of Bcl-2 in ER-induced NEC mice intestinal tissues (P<0.01). Meanwhile, SFN could suppress the serum levels of IL-8, IL-10, IL-6, TNF-α, and IL-1β, and positive expression of TLR4 and NF-κB (P<0.01), and promote the serum levels of IL-10. HE staining showed that SFN alleviated the NEC intestinal tissue injury, and TUNNEL staining showed that SFN could reduce the rate of NEC apoptotic cells (P<0.01). Moreover, SFN treatment improved the body weight and survival rate in NEC mice.

Conclusion: SFN could effectively protect against ERS-induced inflammation and apoptosis in NEC mice.

Keywords: sulforaphane, necrotizing enterocolitis, endoplasmic reticulum, apoptosis, inflammation, pharmacology

[1]
Mohd Amin, A.T.; Zaki, R.A.; Friedmacher, F.; Sharif, S.P. C-reactive protein/albumin ratio is a prognostic indicator for predicting surgical intervention and mortality in neonates with necrotizing enterocolitis. Pediatr. Surg. Int., 2021, 37(7), 881-886.
[http://dx.doi.org/10.1007/s00383-021-04879-1] [PMID: 33779823]
[2]
Perrone, S.; Cremonini, I.; Marinelli, F.; Monaco, S.; Nicoletti, L.; Giordano, M.; Esposito, S. New strategies for necrotizing enterocolitis diagnosis and prevention in newborns. Curr. Pediatr. Rev., 2021, 17(3), 191-200.
[http://dx.doi.org/10.2174/1573396317666210426102610] [PMID: 33902422]
[3]
Zhu, X.L.; Tang, X.G.; Qu, F.; Zheng, Y.; Zhang, W.H.; Diao, Y.Q. Bifidobacterium may benefit the prevention of necrotizing enterocolitis in preterm infants: A systematic review and meta-analysis. Int. J. Surg., 2019, 61, 17-25.
[http://dx.doi.org/10.1016/j.ijsu.2018.11.026] [PMID: 30500473]
[4]
Denning, N.L.; Prince, J.M. Neonatal intestinal dysbiosis in necrotizing enterocolitis. Mol. Med., 2018, 24(1), 4.
[http://dx.doi.org/10.1186/s10020-018-0002-0] [PMID: 30134786]
[5]
Kim, J.H.; Sampath, V.; Canvasser, J. Challenges in diagnosing necrotizing enterocolitis. Pediatr. Res., 2020, 88(S1)(Suppl. 1), 16-20.
[http://dx.doi.org/10.1038/s41390-020-1090-4] [PMID: 32855507]
[6]
Lu, M.; van Tartwijk, F.W.; Lin, J.Q.; Nijenhuis, W.; Parutto, P.; Fantham, M.; Christensen, C.N.; Avezov, E.; Holt, C.E.; Tunnacliffe, A.; Holcman, D.; Kapitein, L.; Schierle, G.S.K.; Kaminski, C.F. The structure and global distribution of the endoplasmic reticulum network are actively regulated by lysosomes. Sci. Adv., 2020, 6(51), eabc7209.
[http://dx.doi.org/10.1126/sciadv.abc7209] [PMID: 33328230]
[7]
Liu, X.; Green, R.M. Endoplasmic reticulum stress and liver diseases. Liver Res., 2019, 3(1), 55-64.
[http://dx.doi.org/10.1016/j.livres.2019.01.002] [PMID: 32670671]
[8]
Dufey, E.; Sepúlveda, D.; Rojas-Rivera, D.; Hetz, C. Cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. 1. An overview. Am. J. Physiol. Cell Physiol., 2014, 307(7), C582-C594.
[http://dx.doi.org/10.1152/ajpcell.00258.2014] [PMID: 25143348]
[9]
Afrazi, A.; Branca, M.F.; Sodhi, C.P.; Good, M.; Yamaguchi, Y.; Egan, C.E.; Lu, P.; Jia, H.; Shaffiey, S.; Lin, J.; Ma, C.; Vincent, G.; Prindle, T., Jr; Weyandt, S.; Neal, M.D.; Ozolek, J.A.; Wiersch, J.; Tschurtschenthaler, M.; Shiota, C.; Gittes, G.K.; Billiar, T.R.; Mollen, K.; Kaser, A.; Blumberg, R.; Hackam, D.J. Toll-like receptor 4-mediated endoplasmic reticulum stress in intestinal crypts induces necrotizing enterocolitis. J. Biol. Chem., 2014, 289(14), 9584-9599.
[http://dx.doi.org/10.1074/jbc.M113.526517] [PMID: 24519940]
[10]
Danilov, C.A.; Chandrasekaran, K.; Racz, J.; Soane, L.; Zielke, C.; Fiskum, G. Sulforaphane protects astrocytes against oxidative stress and delayed death caused by oxygen and glucose deprivation. Glia, 2009, 57(6), 645-656.
[http://dx.doi.org/10.1002/glia.20793] [PMID: 18942756]
[11]
Nguyen, B.; Luong, L.; Naase, H.; Vives, M.; Jakaj, G.; Finch, J.; Boyle, J.; Mulholland, J.W.; Kwak, J.H.; Pyo, S.; de Luca, A.; Athanasiou, T.; Angelini, G.; Anderson, J.; Haskard, D.O.; Evans, P.C. Sulforaphane pretreatment prevents systemic inflammation and renal injury in response to cardiopulmonary bypass. J. Thorac. Cardiovasc. Surg., 2014, 148(2), 690-697.e3.
[http://dx.doi.org/10.1016/j.jtcvs.2013.12.048] [PMID: 24521949]
[12]
Li, Y.P.; Wang, S.L.; Liu, B.; Tang, L.; Kuang, R.R.; Wang, X.B.; Zhao, C.; Song, X.D.; Cao, X.M.; Wu, X.; Yang, P.Z.; Wang, L.Z.; Chen, A.H. Sulforaphane prevents rat cardiomyocytes from hypoxia/reoxygenation injury in vitro via activating SIRT1 and subsequently inhibiting ER stress. Acta Pharmacol. Sin., 2016, 37(3), 344-353.
[http://dx.doi.org/10.1038/aps.2015.130] [PMID: 26775664]
[13]
Alyoussef, A. Attenuation of experimentally induced atopic dermatitis in mice by sulforaphane: Effect on inflammation and apoptosis. Toxicol. Mech. Methods, 2022, 32(3), 224-232.
[http://dx.doi.org/10.1080/15376516.2021.1994076] [PMID: 34651546]
[14]
Sheng, Q.; Lv, Z.; Cai, W.; Song, H.; Qian, L.; Mu, H.; Shi, J.; Wang, X. Human β-defensin-3 promotes intestinal epithelial cell migration and reduces the development of necrotizing enterocolitis in a neonatal rat model. Pediatr. Res., 2014, 76(3), 269-279.
[http://dx.doi.org/10.1038/pr.2014.93] [PMID: 24956228]
[15]
Yao, X.; Mei, Y.; Mao, W. Quercetin improves mitochondrial function and inflammation in H2O2-induced oxidative stress damage in the gastric mucosal epithelial cell by regulating the PI3K/AKT signaling pathway. Evid. Based Complement. Alternat. Med., 2021, 2021, 1386078.
[http://dx.doi.org/10.1155/2021/1386078] [PMID: 34873406]
[16]
Song, F.C.; Yuan, J.Q.; Zhu, M.D.; Li, Q.; Liu, S.H.; Zhang, L.; Zhao, C. High glucose represses the proliferation of tendon fibroblasts by inhibiting autophagy activation in tendon injury. Biosci. Rep., 2022, 42(3), 42.
[http://dx.doi.org/10.1042/BSR20210640] [PMID: 35293974]
[17]
Nallasamy, P.; Si, H.; Babu, P.V.; Pan, D.; Fu, Y.; Brooke, E.A.; Shah, H.; Zhen, W.; Zhu, H.; Liu, D.; Li, Y.; Jia, Z. Sulforaphane reduces vascular inflammation in mice and prevents TNF-α-induced monocyte adhesion to primary endothelial cells through interfering with the NF-κB pathway. J. Nutr. Biochem., 2014, 25(8), 824-833.
[http://dx.doi.org/10.1016/j.jnutbio.2014.03.011] [PMID: 24880493]
[18]
Li, B.; Kim, D.S.; Yadav, R.K.; Kim, H.R.; Chae, H.J. Sulforaphane prevents doxorubicin-induced oxidative stress and cell death in rat H9c2 cells. Int. J. Mol. Med., 2015, 36(1), 53-64.
[http://dx.doi.org/10.3892/ijmm.2015.2199] [PMID: 25936432]
[19]
Verfaillie, T.; Garg, A.D.; Agostinis, P. Targeting ER stress induced apoptosis and inflammation in cancer. Cancer Lett., 2013, 332(2), 249-264.
[http://dx.doi.org/10.1016/j.canlet.2010.07.016] [PMID: 20732741]
[20]
Feng, H.; Li, M.; Altawil, A.; Yin, Y.; Zheng, R.; Kang, J. Cigarette smoke extracts induce apoptosis in Raw264.7 cells via endoplasmic reticulum stress and the intracellular Ca2+/P38/STAT1 pathway. Toxicol. In Vitro, 2021, 77, 105249.
[http://dx.doi.org/10.1016/j.tiv.2021.105249] [PMID: 34560245]
[21]
Makareeva, E.; Aviles, N.A.; Leikin, S. Chaperoning osteogenesis: New protein-folding disease paradigms. Trends Cell Biol., 2011, 21(3), 168-176.
[http://dx.doi.org/10.1016/j.tcb.2010.11.007] [PMID: 21183349]
[22]
Chiribau, C.B.; Gaccioli, F.; Huang, C.C.; Yuan, C.L.; Hatzoglou, M. Molecular symbiosis of CHOP and C/EBP beta isoform LIP contributes to endoplasmic reticulum stress-induced apoptosis. Mol. Cell. Biol., 2010, 30(14), 3722-3731.
[http://dx.doi.org/10.1128/MCB.01507-09] [PMID: 20479126]
[23]
Teske, B.F.; Fusakio, M.E.; Zhou, D.; Shan, J.; McClintick, J.N.; Kilberg, M.S.; Wek, R.C. CHOP induces activating transcription factor 5 (ATF5) to trigger apoptosis in response to perturbations in protein homeostasis. Mol. Biol. Cell, 2013, 24(15), 2477-2490.
[http://dx.doi.org/10.1091/mbc.e13-01-0067] [PMID: 23761072]
[24]
Halpern, M.D.; Holubec, H.; Dominguez, J.A.; Meza, Y.G.; Williams, C.S.; Ruth, M.C.; McCuskey, R.S.; Dvorak, B. Hepatic inflammatory mediators contribute to intestinal damage in necrotizing enterocolitis. Am. J. Physiol. Gastrointest. Liver Physiol., 2003, 284(4), G695-G702.
[http://dx.doi.org/10.1152/ajpgi.00353.2002] [PMID: 12529262]
[25]
Youn, H.S.; Kim, Y.S.; Park, Z.Y.; Kim, S.Y.; Choi, N.Y.; Joung, S.M.; Seo, J.A.; Lim, K.M.; Kwak, M.K.; Hwang, D.H.; Lee, J.Y. Sulforaphane suppresses oligomerization of TLR4 in a thiol-dependent manner. J. Immunol., 2010, 184(1), 411-419.
[http://dx.doi.org/10.4049/jimmunol.0803988]
[26]
Sun, L.; Sun, M.; Ma, K.; Liu, J. Let-7d-5p suppresses inflammatory response in neonatal rats with necrotizing enterocolitis via LGALS3-mediated TLR4/NF-κB signaling pathway. Am. J. Physiol. Cell Physiol., 2020, 319(6), C967-C979.
[http://dx.doi.org/10.1152/ajpcell.00571.2019] [PMID: 32667865]
[27]
Huang, L.; Fan, J.; Chen, Y.X.; Wang, J.H. Inhibition of A2B adenosine receptor attenuates intestinal injury in a rat model of necrotizing enterocolitis. Mediators Inflamm., 2020, 2020, 1562973.
[http://dx.doi.org/10.1155/2020/1562973] [PMID: 32714089]
[28]
Yoo, N.J.; Kim, H.S.; Kim, S.Y.; Park, W.S.; Kim, S.H.; Lee, J.Y.; Lee, S.H. Stomach cancer highly expresses both initiator and effector caspases; an immunohistochemical study. APMIS, 2002, 110(11), 825-832.
[29]
Knott, A.W.; Juno, R.J.; Jarboe, M.D.; Zhang, Y.; Profitt, S.A.; Thoerner, J.C.; Erwin, C.R.; Warner, B.W. EGF receptor signaling affects bcl-2 family gene expression and apoptosis after massive small bowel resection. J. Pediatr. Surg., 2003, 38(6), 875-880.
[http://dx.doi.org/10.1016/S0022-3468(03)00114-3] [PMID: 12778384]
[30]
Clark, J.A.; Lane, R.H.; Maclennan, N.K.; Holubec, H.; Dvorakova, K.; Halpern, M.D.; Williams, C.S.; Payne, C.M.; Dvorak, B. Epidermal growth factor reduces intestinal apoptosis in an experimental model of necrotizing enterocolitis. Am. J. Physiol. Gastrointest. Liver Physiol., 2005, 288(4), G755-G762.
[http://dx.doi.org/10.1152/ajpgi.00172.2004] [PMID: 15528252]
[31]
Gasparello, J.; Papi, C.; Zurlo, M.; Gambari, L.; Rozzi, A.; Manicardi, A.; Corradini, R.; Gambari, R.; Finotti, A. Treatment of human glioblastoma u251 cells with sulforaphane and a peptide nucleic acid (PNA) tTargeting miR-15b-5p: Synergistic effects on induction of apoptosis. Molecules, 2022, 27(4), 1299.
[http://dx.doi.org/10.3390/molecules27041299] [PMID: 35209084]
[32]
Koolivand, M.; Ansari, M.; Moein, S.; Afsa, M.; Malekzadeh, K. The inhibitory effect of sulforaphane on the proliferation of acute myeloid leukemia cell lines through controlling miR-181a. Cell J., 2022, 24(1), 44-50.
[PMID: 35182064]
[33]
Fimognari, C.; Hrelia, P. Sulforaphane as a promising molecule for fighting cancer. Mutat. Res., 2007, 635(2-3), 90-104.
[http://dx.doi.org/10.1016/j.mrrev.2006.10.004] [PMID: 17134937]
[34]
Clarke, J.D.; Dashwood, R.H.; Ho, E. Multi-targeted prevention of cancer by sulforaphane. Cancer Lett., 2008, 269(2), 291-304.
[http://dx.doi.org/10.1016/j.canlet.2008.04.018] [PMID: 18504070]
[35]
Cheung, K.L.; Kong, A.N. Molecular targets of dietary phenethyl isothiocyanate and sulforaphane for cancer chemoprevention. AAPS J., 2010, 12(1), 87-97.
[http://dx.doi.org/10.1208/s12248-009-9162-8] [PMID: 20013083]